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Abstract. The technique of tracing along magnetic field
lines is widely used in magnetospheric physics to provide
a ‘‘magnetic frame of reference’’ that facilitates both the
planning of experiments and the interpretation of
observations. The precision of any such magnetic frame
of reference depends critically on the accurate represen-
tation of the various sources of magnetic field in the
magnetosphere. In order to consider this important
problem systematically, a study is initiated to estimate
first the uncertainties in magnetic-field-line tracing in the
magnetosphere that arise solely from the published
(standard) errors in the specification of the geomagnetic
field of internal origin. Because of the complexity in
computing these uncertainties for the complete geomag-
netic field of internal origin, attention is focused in this
preliminary paper on the uncertainties in magnetic-field-
line tracing that result from the standard errors in just
the axisymmetric part of the internal geomagnetic field.
An exact analytic equation exists for the magnetic field
lines of an arbitrary linear combination of axisymmetric
multipoles. This equation is used to derive numerical
estimates of the uncertainties in magnetic-field-line
tracing that are due to the published standard errors
in the axisymmetric spherical harmonic coefficients (i.e.
g 0

n � dg 0
n ). Numerical results determined from the

analytic equation are compared with computational
results based on stepwise numerical integration along
magnetic field lines. Excellent agreement is obtained
between the analytical and computational methods in
the axisymmetric case, which provides great confidence
in the accuracy of the computer program used for
stepwise numerical integration along magnetic field
lines. This computer program is then used in the
following paper to estimate the uncertainties in mag-
netic-field-line tracing in the magnetosphere that arise
from the published standard errors in the full set of

spherical harmonic coefficients, which define the com-
plete (non-axisymmetric) geomagnetic field of internal
origin. Numerical estimates of the uncertainties in
magnetic-field-line tracing in the magnetosphere, calcu-
lated here for the axisymmetric part of the internal
geomagnetic field, should be regarded as ‘‘first approx-
imations’’ in the sense that such estimates are only as
accurate as the published standard errors in the set of
axisymmetric spherical harmonic coefficients. However,
all procedures developed in this preliminary paper can
be applied to the derivation of more realistic estimates of
the uncertainties in magnetic-field-line tracing in the
magnetosphere, following further progress in the deter-
mination of more accurate standard errors in the
spherical harmonic coefficients.

1 Introduction

The technique of tracing along magnetic field lines is
widely used in magnetospheric physics to provide a
‘‘magnetic frame of reference’’ that facilitates both the
planning of experiments and the interpretation of
observations. More generally, the Earth’s magnetic field
provides a basic coordinate system for studying the
distribution and movement of plasmas and energetic
charged particles in the ionosphere and magnetosphere
(Chapman and Bartels, 1940; McIlwain, 1961; Akasofu
and Chapman, 1972; Stern, 1976, 1994; Stern and
Tsyganenko, 1992). For example, precise knowledge of
the geomagnetic field is important in detailed studies of:
(i) the motion of trapped particles that form the ‘‘Van
Allen radiation belts’’ (Roederer, 1972; Walt, 1994); (ii)
the precipitation of auroral particles into the upper
atmosphere (McIlwain, 1960; Albert, 1967; Evans, 1968;
Eather, 1973; Meng, 1978; Feldstein and Galperin, 1985;
Gorney, 1987; Newell et al., 1991); and (iii) the
trajectories of energetic solar protons and galactic
cosmic rays in the vicinity of the Earth (St�ormer, 1955;
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Vallarta, 1961; Alfv�en and F�althammar, 1963; North-
rop, 1963; Roederer, 1970; Baker et al., 1990; Shea and
Smart, 1990). In many branches of solar-terrestrial
physics, the International Geomagnetic Reference Field
(IGRF), or Definitive Geomagnetic Reference Field
(DGRF), which specifies the (external) magnetic field
originating from electric currents within the interior of
the Earth (Peddie, 1982; Langel, 1992), provides a
fundamental magnetic reference system (Hultqvist,
1958, McIlwain, 1961; Hakura, 1965; Gustafsson,
1970, 1984; Stassinopoulos et al., 1984; Baker and
Wing, 1989; Gustafsson et al., 1992; Papitashvili et al.,
1992). This reference magnetic field is also used
extensively in the analysis and interpretation of iono-
spheric plasma velocities measured by both coherent-
and incoherent-scatter radars (Greenwald et al., 1978;
Nielson et al., 1983; Rishbeth and Williams, 1985; Baker
et al., 1989). Quite apart from its importance in solar-
terrestrial physics, the IGRF provides a basic reference
frame, or coordinate system, that is used in air and
marine navigation, exploration geophysics, land survey-
ing and the drilling of oil wells (Stuart et al., 1988;
Barraclough, 1990; Meyers and Davis, 1990).

The magnetic field in the magnetosphere arises from
six main sources: (1) currents flowing in the Earth’s
liquid metallic (electrically conducting) outer core; (2)
ionospheric currents; (3) field-aligned (or Birkeland)
currents; (4) ring currents; (5) magnetopause currents;
and (6) magnetotail currents (Stern and Tsyganenko,
1992). Any realistic model of the magnetic field in the
magnetosphere must include accurate representations of
each source. In practice, such models are usually
modular, being based on the superposition of a subset
of the six separate sources. Some of these sources are
represented more accurately and realistically than
others. For example, magnetic fields resulting from
currents in the Earth’s core, ring currents and magneto-
tail currents are reasonably realistic (in decreasing order
of accuracy), whereas magnetic fields arising from
ionospheric currents, field-aligned currents and magne-
topause currents are usually represented by an all-
purpose ‘‘polynomial’’ rather than separate modules
(Stern and Tsyganenko, 1992). Magnetospheric models
also need to be sufficiently flexible to allow for various
known factors that affect the magnetosphere, such as
the tilt angle (W), the complement of the angle between
the geomagnetic (dipole) axis and the Sun-Earth line.
Other factors that influence the state of the magneto-
sphere are represented quantitatively by indices such as
the auroral electrojet index (AE), the equatorial ring
current index (Dst), the solar-wind pressure (p), the
interplanetary magnetic field (IMF) and the area of the
polar cap.

The uses and limitations of magnetic-field models, as
well as the concomitant uses and abuses of magnetic-
field-line tracing in the magnetosphere, have been
discussed by several authors (e.g. Tsyganenko, 1987,
1989, 1990, 1991, 1993; Birn et al., 1991; Elphinstone
et al., 1991; Fairfield, 1991; Pulkkinen, 1991; Pulkkinen
et al., 1991, 1992; Stasiewicz, 1991; Stern and Tsyga-
nenko, 1992; Baker et al., 1993; Stern, 1990, 1993, 1994;

Jordan, 1994). Although the applicability and utility of
the various magnetic-field models are contentious
matters, there can be no doubt that an accurate model
of the magnetic field in the magnetosphere would be of
great scientific value. This paper begins a systematic
study of the uncertainties in field-line tracing in the
magnetosphere by considering first those uncertainties
that arise solely from possible errors in the specification
of the geomagnetic field of internal origin (i.e. DGRF or
IGRF). Characteristic uncertainties in field-line tracing
in the magnetosphere are estimated using one of the few
published models of the geomagnetic field that presents
both the spherical harmonic coefficients and their
standard errors (Langel et al., 1989, 1992). Uncertainties
in the specification of the external sources of magnetic
field in the magnetosphere (viz. ionospheric, Birkeland,
ring, magnetopause and magnetotail currents) may
produce comparable, or even larger, uncertainties in
field-line tracing. However, it must be emphasized that
the purpose of this and the following paper is to initiate
a systematic study of the possible errors in field-line
tracing in the magnetosphere, starting with the geomag-
netic field of internal origin (DGRF or IGRF).

The motivation for this study stems largely from the
frequent requirement in solar-terrestrial physics to
compare measurements made by ground-based and
satellite-borne instruments. In the past, such compar-
isons have often employed the technique of tracing
along magnetic field lines in the magnetosphere without
providing any estimate of the associated uncertainties.
In this and the following companion paper, an effort is
made to determine the characteristic uncertainties in
magnetic-field-line tracing that result from the inevitable
uncertainties in the specification of the Earth’s internal
magnetic field. In particular, estimates are presented for
the uncertainty in tracing along a magnetic field line
from the surface of the Earth to either the magnetic
equatorial plane or the magnetic conjugate point.
Although the present pair of papers merely report the
first results of an ongoing systematic study of all
possible sources of uncertainty in magnetic-field-line
tracing in the magnetosphere, it is hoped that these
initial results will facilitate certain comparisons between
measurements made on the ground and in space.

2 The main magnetic field of the Earth

It will be shown that a detailed analytic discussion of the
uncertainties in magnetic-field-line tracing in the
magnetosphere is only practicable for the axisymmetric
part of the Earth’s main magnetic field. Nevertheless, it
is convenient to formulate the problem in terms of the
general spherical harmonic expansion of the geomag-
netic field of internal origin. This approach not only
provides a sound framework for subsequent numerical
calculations of the uncertainty in field-line tracing for
the complete geomagnetic field, but also serves to
illustrate the very large number of field-line integrations
required.
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2.1 Spherical harmonic analysis of the main field

At any given instant of time (epoch) the external scalar
potential V �r; h;/� of the Earth’s main magnetic field,
which is of internal origin, can be expressed in the form
(Chapman and Bartels, 1940; Roederer, 1972; Stern,
1976, 1994; Langel, 1992)

V �r; h;/� �RE

X

1

n�1

�RE=r�n�1

�

X

n

m�0

�g m
n cos m/� h m

n sin m/� P m
n �cos h�:

�1�

This spherical harmonic expansion, which is obtained by
solving Laplace’s equation �r

2V � 0�, is valid only
outside the region of origin of the Earth’s main magnetic
field (predominantly the liquid metallic outer core), in
an ideal external region containing no sources of
magnetic field (i.e. curl B � 0). In this particular
representation of the geomagnetic field, positions on
the surface of the Earth are specified in terms of
geocentric spherical polar coordinates �r; h;/� with
origin O at the centre of the Earth; r is the geocentric
radial distance in km �r � RE�; h is the geographic co-
latitude with the north geographic pole at h � 0, and /
is the geographic longitude measured east from Green-
wich. The radius of the reference sphere, r � RE, is taken
to be the mean radius of the Earth (6371.2 km);
P m

n �cos h� is Schmidt’s partially (or quasi-) normalized
associated Legendre function of order m and degree n
(where m and n are integers; m 2 I �

0 and n 2 I��; g m
n

and h m
n are the spherical harmonic (or Schmidt)

coefficients for the particular epoch considered, ex-
pressed in units of nanotesla (nT); and all physical
quantities are measured in SI units. In this paper the
definition of scalar magnetic potential (V ) is such that
the spherical harmonic coefficients g m

n and h m
n have the

(conventional) dimensions of magnetic induction (i.e.
B � ÿgrad V ).

2.2 Determination of the spherical harmonic coefficients

The numerical values of the spherical harmonic coeffi-
cients g m

n and h m
n , which occur in Eq. 1, are usually

calculated from a weighted-least-squares fitting proce-
dure that uses all available magnetic data (for a particular
epoch) on a global scale, from observatories, satellites
and repeat stations, as well as from various aeromag-
netic, shipborne and land surveys (Langel et al., 1989,
1992; Barraclough, 1990). To perform the least-squares
analysis, the infinite summation in Eq. 1 is replaced by a
finite summation that terminates at degree nmax (i.e.
1 � n � nmax, rather than 1 � n <1). In theory, Eq. 1 is
valid only if nmax is infinitely large but, in practice, nmax is
restricted to a finite value by the inability of the data to
resolve spherical harmonic coefficients of degree greater
than nmax (Langel, 1992). For most epochs, the available
magnetic data do not justify a value of nmax greater than

10. This value is kept constant in the various DGRF and
IGRF models to maintain consistency.

It is known from magnetic measurements at the
surface of the Earth that the geomagnetic field changes
gradually with time (Chapman and Bartels, 1940;
Langel, 1992). Thus the spherical harmonic coefficients
g m

n and h m
n are really functions of time (t). It is assumed

that these coefficients vary linearly with time according
to the equation (Langel et al., 1992)

g�t� � g�t0� �

Z t

t0

_g�s� ds; �2�

where the dot denotes differentiation with respect to
time. A particular geomagnetic reference field (DGRF
or IGRF) comprises sets of tabulated values of the
spherical harmonic coefficients g m

n and h m
n , which define

the main-field models at epochs separated by five years.
In addition, a predictive secular-variation model defined
by _g m

n and _h m
n , expressed in units of nT/year, is used to

extrapolate the geomagnetic reference field up to five
years beyond the epoch of the latest main-field model.
The maximum degree (nmax) of this secular-variation
model is usually 8. For any date prior to the latest
epoch, which does not coincide with an epoch of one of
the quinquennial main-field models, linear interpolation
between the two main-field models that delimit the
specified date is employed to derive actual magnetic-field
components.

2.3 Uncertainties in the spherical harmonic coefficients

Since the spherical harmonic coefficients g m
n �t0� and

h m
n �t0�; for a particular epoch t0, are calculated using a

weighted-least-squares fitting procedure, there are
uncertainties (‘‘error bars’’) associated with the numer-
ical values of these coefficients (Barraclough, 1990;
Lowes, 1990a,b). A few published models of the
geomagnetic field [viz. the NASA Goddard Space Flight
Center Models: GSFC (12/83); GSFC 1985S; GSFC
1985DS; GSFC 1990S; GSFC 1990DS] give numerical
values for both the spherical harmonic coefficients and
their standard errors (Langel et al., 1989, 1992). The
standard error in each spherical harmonic coefficient is
approximately comparable with the magnitude of the
corresponding annual variation, at least for the
candidate models for DGRF 1985 and IGRF 1990
(Barraclough et al., 1992; Langel et al., 1992).

Although some earlier spherical harmonic models of
the geomagnetic field quoted uncertainty values for the
model coefficients, these were, without exception, based
simply on how well the model fitted the data, and did
not take account of any correlations between coeffi-
cients. Consequently, these earlier uncertainties under-
estimated the actual uncertainties by a factor of between
2 and 10. The model published by Langel et al. (1989)
represents the first attempt to estimate realistic coeffi-
cient uncertainties. In their model, which is essentially a
revision of an earlier model, approximate allowance is
made for the magnetic field arising from neglected
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higher-degree fields (truncation), the presence of crustal
magnetic fields and the existence of external magnetic
fields, particularly Sq (which represents the solar diurnal
variation of ionospheric currents under quiet geomag-
netic conditions). Subsequently, Langel et al. (1992)
presented further models, which are the first to be
published anew with realistic uncertainty values. These
models also take account of neglected higher-degree
fields (truncation), crustal fields and Sq. It is believed
that the resulting (standard) error estimates are a good
indicator of actual coefficient accuracy (Langel et al.,
1992), at least to within a factor of 2 (Langel et al.,
1989). Hopefully, future research will result in even
more realistic estimates of the errors in the spherical
harmonic coefficients, based on a more rigorous treat-
ment of both systematic and stochastic errors.

The uncertainties (‘‘error bars’’) associated with the
spherical harmonic coefficients g m

n and h m
n are denoted

in this paper by dg m
n and dh m

n ; respectively. In
illustrative numerical calculations, dg m

n and dh m
n are

assumed to be multiples of the corresponding standard
errors, although the procedures developed here are
equally valid for other realistic numerical estimates of
dg m

n and dh m
n . Any discussion of the accuracy of the

geomagnetic field, or the accuracy of field-line tracing
in the magnetosphere, must therefore allow for the fact
that the numerical value of each spherical harmonic
coefficient g m

n , or h m
n , is not exact but lies (in a

statistical sense) within the interval �g m
n ÿ dg m

n ;

g m
n � dg m

n �, or �h m
n ÿ dh m

n ; h m
n � dh m

n �, where dg m
n � 0

and dh m
n � 0.

2.4 Range of a geomagnetic-field model

The determination of the uncertainty in the accuracy of
field-line tracing in the magnetosphere is now concep-
tually equivalent to a mathematical problem in (multi-
ple) interval analysis. Each spherical harmonic coeffi-
cient g m

n is assumed to lie in the interval of real numbers
�g m

n ÿ dg m
n ; g m

n � dg m
n �, which is represented by the

ordered pair of real numbers (the ‘‘lower’’ and ‘‘upper’’
end-points), g m

n ÿ dg m
n and g m

n � dg m
n �dg m

n � 0�; simi-
larly for h m

n . The ‘‘range’’, or variability, of a
geomagnetic-field model (DGRF or IGRF) at any
epoch t0 is defined in terms of the set of ‘‘limiting
geomagnetic-field models’’, which results from selecting
every possible permutation of the pairs of ‘‘end-points’’
for g m

n and h m
n . If the spherical harmonic expansion

defined by Eq. 1 is truncated at degree nmax, the number
(N ) of spherical harmonic coefficients is given by
N � nmax�nmax � 2� in the general case. Hence the
number (N) of ‘‘limiting geomagnetic-field models’’
�G� is given by N � 2N and the set of such field models
can be expressed symbolically in the form fG1, G2,
G3,. . . ; GNg. Since it is necessary to refer this variability
to the mean (or central) geomagnetic-field model G0
(which is defined by the set of central values g m

n and h m
n ),

the number of different ‘‘models’’ to be considered in
this method of determining the uncertainty in field-line
tracing is N� 1, that is 2N

� 1. This approach involves

considering all possible permutations of the ‘‘end-
points’’.

The uncertainty in the geocentric distance �r� of an
arbitrary point on a magnetic field line is denoted
symbolically by dr, where dr 2 R. The mean (or central)
model G0 corresponds to r, whereas the models with
errors associated with them, namely fG1; G2;

G3; . . . ; GNg, correspond to a set of values fr � drg.
For just the axisymmetric part of the geomagnetic field
(with which this paper is largely concerned) the set of
values fr � drg, corresponding to the set of geomagnetic
field lines passing through a fixed ‘‘starting’’ point (for
example, a point on the surface of the Earth), lie in a
meridian plane. In principle, dr can be measured
uniquely with respect to r in any convenient direction
in the meridian plane through this fixed ‘‘starting
point’’. For the general (non-axisymmetric) geomagnetic
field, however, the set of values fr � drg does not lie in a
meridian plane and dr must then be regarded as the
magnitude �j dr j� of a vector dr, whose strict definition
also involves an azimuthal angle with respect to the
central vector r (as discussed in greater detail in the
following companion paper). In practice, an important
goal in the following analysis is to find the largest
possible value for dr �drmax� at the geomagnetic equator,
or on the surface of the Earth in the opposite
hemisphere, for any given starting point on the surface
of the Earth. The field model Gmax that gives the
maximum value drmax clearly belongs to the set of N
limiting geomagnetic-field models.

Table 1 indicates that, in the general (non-axisym-
metric) case, the number of limiting geomagnetic-field
models increases very rapidly as the highest degree
�nmax� increases to only a modest value �nmax � 5�. For
example, if a computer program were used to trace (by
stepwise numerical integration) along a geomagnetic
field line, starting at a fixed point on the Earth’s surface,
more than 16.7 million field-line tracings would be
required to determine the uncertainty in the location of
the point where this particular field line crosses the
geomagnetic equator (say) in the case nmax � 4.

Owing to the extremely large number of field-line
tracings required in the general case (g m

n , h m
n ; 0 � m � n,

1 � n � nmax), the uncertainties in field-line tracing in the
magnetosphere are first investigated analytically for just
the axisymmetric part �m � 0� of the internal geomag-
netic field �g 0

n ; 1 � n � nmax�. In the special case m � 0,
the number (N ) of spherical harmonic coefficients is
given by N � nmax. The analytic approach in the

Table 1. The number of limiting geomagnetic-field models

Highest Number of Number of
degree coefficients limiting models
[nmax] [N� nmax(nmax+2)] �N � 2N]

1 3 8
2 8 256
3 15 32768
4 24 16777216
5 35 34359738368
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axisymmetric case provides deeper physical insight into
this complicated problem and also provides a method of
checking the numerical accuracy of a computer program
that has been developed to trace along magnetic field
lines by stepwise numerical integration. Once the
accuracy of this computer program has been validated
in the general axisymmetric case �nmax � 10�, and a
special axisymmetric case �nmax � 4� has been examined
analytically, the uncertainties in field-line tracing in the
general non-axisymmetric case (g m

n , h m
n ; 0 � m � n,

1 � n � nmax) are evaluated in the following paper by
Willis et al. (1997), hereafter referred to as Paper II.

3 The axisymmetric part of the geomagnetic field

An exact equation for the magnetic field lines of an
arbitrary axisymmetric magnetic field is presented in
Sect. 3.1. In general, this equation cannot be solved
analytically to express r as a function of h. However, it is
shown in Sect. 3.2 that in the special case nmax � 4,
corresponding to the summation of the axially symme-
tric dipole �g 0

1 �, quadrupole �g 0
2 �, octupole �g 0

3 � and
sedecimupole �g 0

4 � terms, this exact equation reduces to
a quartic, which can be solved analytically. [Some
authors use the term ‘‘hexadecapole’’ rather than
‘‘sedecimupole’’; the latter term was introduced by
Winch (1967).] In the magnetic equatorial plane, the
quartic simplifies still further to a cubic. The sign of the
discriminant of this cubic equation depends on both the
magnitude and sign of the ratio g 0

3 =g 0
1 .

3.1 General axisymmetric case

Backus (1988) has derived an exact equation for the
magnetic field lines of an arbitrary axisymmetric
magnetic field B outside a sphere S�RE�, of radius RE,
containing all sources of B. Using the notation adopted
in this paper, his equation for the magnetic field lines
can be expressed in the form (cf. his Eq. 8)

r2 sin2 h
X

1

n�1

nÿ1g 0
n �RE=r�n�2P 0

n �cos h� � K; �3�

where the prime denotes differentiation with respect to
cos h and K denotes a constant. Making the substi-
tution l � cos h, so that dl=dh � ÿ sin h and
P 0

n �l� � dP 0
n �l�=dl, it can be seen immediately that

P 0

n �l� � ÿ�dP 0
n �cos h�=dh�= sin h. Moreover, since

dP 0
n �cos h�=dh � ÿ�n�n� 1�=2�1=2 P 1

n �cos h� (Chapman
and Bartels, 1940; Chap. XVII, Eq. 55), Eq. 3 can be
written in the form

R 2
E

X

1

n�1

��n� 1�=2n�1=2g 0
n �RE=r�n sin h P 1

n �cos h� � K:�4�

Equation 4 is an exact analytic expression for the
magnetic field lines resulting from the axisymmetric
scalar magnetic potential defined by Eq. 1 with
m � 0 �h 0

n � 0�.

If all spherical harmonic coefficients in the above
summation are zero apart from the first (i.e.
g 0

1 6� 0; g 0
n � 0 for n � 2�, Eq. 4 reduces to the form

R 2
E g 0

1 �RE=r� sin2 h � K, since P 1
1 �cos h� � sin h. As-

suming that r � r1 when h � p=2, this simple equation
becomes

r � r1 sin2 h; �5�

which is the well-known equation for the field lines of a
magnetic dipole aligned with the polar axis �h � 0; p�.
The parameter r1�� RE= sin2 h0� specifies the geocentric
distance at which a dipole magnetic field line, which
intersects the reference sphere, r � RE, at colatitude h0,
crosses the equatorial plane �h � p=2�. This last
equation indicates that the magnetic-field configuration
of a dipole is independent of the dipole strength �g 0

1 �.
Similarly, if all terms in the summation vanish apart

from the nth, Eq. 4 simplifies to the form
RE

2
��n � 1�=2n�1=2g 0

n �RE=r�n sin h P 1
n �cos h� � K. If the

constant K is taken to be RE
2
��n� 1�=2n�1=2g 0

n �RE=rn�
n,

where the parameter rn defines (not necessarily directly)
the geocentric distance of a magnetic field line, this last
equation becomes

r � rn�j sin h P 1
n �cos h� j�1=n

; �6�

which is just the equation for the magnetic field lines of
an individual axisymmetric magnetic multipole of
degree n (Willis and Young, 1987; cf. their Eq. 19).

Equation 4 can be rewritten in the more appropriate
form

g 0
1 �R

3
E =r� sin2 h

��

1�
X

1

n�2

��n� 1�=2n�1=2
�g 0

n =g 0
1 �

� �RE=r�nÿ1 P 1
n �cos h�= sin h

��

� K;�7�

which is particularly useful if the dipole term �g 0
1 �

predominates – as is the case for the contemporary
geomagnetic field. The constant in Eq. 7 can be specified
by assuming that a magnetic field line crosses the
reference sphere, r � RE, at colatitude h � h0. Then the
equation for magnetic field lines in the axisymmetric
case �m � 0� becomes

r � r1 sin2 h

hh

1�
P

1

n�2

��n�1�=2n�1=2
�g 0

n =g 0
1 ��RE=r�nÿ1P 1

n �cos h�= sin h

ii

hh

1�
P

1

n�2

��n�1�=2n�1=2
�g 0

n =g 0
1 � P 1

n �cos h0�= sin h0

ii
:

�8�

Here r1�� RE=sin2 h0� again denotes the geocentric dis-
tance at which a dipole magnetic field line crosses the
equatorial plane �h � p=2�. [In the axisymmetric case
�m � 0�, the geographic and geomagnetic equators coin-
cide.]Equation8reducescorrectlytoEq.5ifonlythedipole
term�n � 1� ispresent(i.e.g 0

1 6� 0; g 0
n � 0 for n � 2�.It is

important toemphasize that Eq. 8refers to a magnetic field
line (or, more correctly, a shell of magnetic field lines)
passing through the fixed point (or azimuthal ring of
points) r � RE; h � h0 �0 � / � 2p�, irrespective of the
actual values of the spherical harmonic coefficients g 0

n .
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Stated simply, the shell of magnetic field lines is
deliberately anchored at colatitude h � h0 on the (mean)
surface of the Earth �r � RE�. This choice of constant in
Eq. 7 facilitates comparisons with computer programs
that trace along magnetic field lines by stepwise
numerical integration, starting at a fixed point on the
Earth’s surface (see Sect. 4.4).

In the axisymmetric case �m � 0�, it is particularly
convenient to consider the uncertainty in the position of
the point where a field line crosses the (magnetic)
equatorial plane. It follows from Eq. 8 that the
geocentric distance of a field line in the equatorial plane
�h � p=2� is given by

r � r1

1�
P

1

n�2
��n�1�=2n�1=2

�g 0
n =g 0

1 ��RE=r�nÿ1P 1
n �0�

� �� �

1�
P

1

n�2
��n�1�=2n�1=2

�g 0
n=g

0
1 � P 1

n �cos h0�=sin h0

� �� � :

�9�

Moreover, Schmidt’s partially normalized associated
Legendre function P 1

n �0� can be expressed in the
following form (Erd�elyi et al., 1953; Vol. 1, Sect. 3.4,
amended Eq. 20)

P 1
n �0� � ÿ 2�2=n�n � 1��1=2pÿ1=2 cos��n� 1�p=2�

� C�n=2� 1�=C�n=2 � 1=2�;
�10�

where C denotes the Gamma function. The presence of
the trigonometric term in Eq. 10 implies that

P 1
n �0� 6� 0 if n is odd

and

P 1
n �0� � 0 if n is even

9

>

=

>

;

: �11�

Therefore, it is only the axially symmetric multipoles
�g 0

n � of odd degree (n) that actually contribute to the
numerator in Eq. 9, although multipoles of both odd
and even degree contribute to the ‘‘normalization
factor’’ in the denominator. This property of P 1

n �0�
significantly reduces the number of terms in the
polynomial equation of degree nmax �nmax odd) or
nmax ÿ 1 �nmax even), which defines the geocentric
distance of field lines in the equatorial plane if the
infinite summations in Eq. 9 are truncated at degree
nmax. This reduction in the number of terms simplifies
the subsequent analysis.

3.2 Special axisymmetric case nmax � 4

The equations derived in the previous subsection are
completely general. In particular, Eq. 8 provides an
exact analytic expression for the field lines of the
axisymmetric magnetic field obtained by ignoring the
non-axisymmetric part �m 6� 0� of the main geomagnetic
field defined by Eq. 1. Nevertheless, Eq. 8 cannot be
solved analytically to express r as a function of h in the
general case. It is shown in this subsection, however,
that r can be expressed explicitly in terms of h for the
axisymmetric magnetic field arising from the sum-

mation of just the first four (axisymmetric) multipoles
�nmax � 4�; namely, a dipole �g 0

1 �, a quadrupole �g 0
2 �, an

octupole �g 0
3 � and a sedecimupole �g 0

4 �.
If the infinite summations in Eq. 8 are restricted to

finite summations with nmax � 4, and the associated
Legendre functions are replaced by their trigonometric
forms (Matsushita and Campbell, 1967), the equation
for magnetic field lines reduces to the form

r � r1 sin2 h �1� �3=2� �g 0
2 =g 0

1 � �RE=r� cos h

� �1=2��g 0
3 =g 0

1 ��RE=r�2
�5 cos2 hÿ 1�

� �5=8��g 0
4 =g 0

1 � �RE=r�3 cos h �7 cos2 hÿ 3��=F

� �cos h0�; �12�

where

F �cos h0� �1� �3=2� �g 0
2 =g 0

1 � cos h0

� �1=2� �g 0
3 =g 0

1 � �5 cos2 h0 ÿ 1�

� �5=8� �g 0
4 =g 0

1 � cos h0 �7 cos2 h0 ÿ 3�:

�13�

Equation 12 is a quartic in r that can be solved
analytically to express r as a function of h. Inclusion
of the axisymmetric duotrigintupole �g 0

5 � results in a
quintic equation that, in general, cannot be solved
analytically (i.e. for arbitrary values of the spherical
harmonic coefficients g 0

n ; 1 � n � 5�; similarly for high-
er-degree axisymmetric multipoles �n > 5�.

The roots of Eq. 12 are extremely complicated and
hence the following discussion is restricted to the
equation for the point at which an individual magnetic
field line crosses the equatorial plane �h � p=2�; namely

r3
ÿ �r1=F � r2

� �1=2� �g 0
3 =g 0

1 �R
2
E �r1=F � � 0; �14�

where F is used as an abbreviation for F �cos h0�, defined
by Eq. 13. The form of Eq. 14 is entirely consistent with
the earlier statement (cf. Sect. 3.1) that it is only the
axisymmetric multipoles �g 0

n � of odd degree (n) that
yield non-zero coefficients in the polynomial equation
defining the geocentric distance at which a field line
crosses the equatorial plane �h � p=2�:

The discriminant, D, of the simpler cubic equation
can be expressed in the form

D � 2�g 0
3 =g 0

1 �R
2

E �r1=F �4

� �1 ÿ �27=8��g 0
3 =g 0

1 � sin4 h0 F 2
�; �15�

if the equation RE=r1 � sin2 h0 is used to eliminate
�RE=r1�

2. Since g 0
3 =g 0

1 < 0 for the contemporary geo-
magnetic field (Barraclough et al., 1992) and the time-
averaged palaeomagnetic field for both the Brunhes
(normal) and Matuyama (reversed) epochs (Schneider
and Kent, 1990), it follows from Eq. 15 that D < 0 for
several realistic geomagnetic applications. If D < 0,
Eq. 14 has only one real, and hence physically mean-
ingful, positive root. In this case each magnetic field line
crosses the equatorial plane only once �r � RE�.

It remains to consider the rather more conjectural
cases for which g 0

3 =g 0
1 > 0. This condition might
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possibly apply to the historical geomagnetic field before
about 1700 AD (Barraclough, 1974; Thompson and
Barraclough, 1982) and to certain idealized models of the
transition magnetic field during a geomagnetic polarity
reversal (Williams and Fuller, 1981; Weeks et al., 1988),
provided the dipole term is not identically zero (i.e.
g 0

1 6� 0) and any non-axisymmetric terms are small.
If g 0

3 =g 0
1 > 0 and 1 < �27=8��g 0

3 =g 0
1 � sin4 h0 F 2

; D < 0
and once again there is only one physically meaningful
root of Eq. 14, which implies that each magnetic field line
crosses the equatorial plane only once �r � RE�: If
g 0

3 =g 0
1 > 0 and 1 > �27=8� �g 0

3 =g 0
1 � sin4 h0 F 2

;D > 0
and hence Eq. 14 has three real roots, although these
roots are not all physically meaningful in the sense that
each root is positive and greater than or equal to RE. It
follows from Eq. 15 that the condition for multiple roots,
D � 0, is satisfied if (27/8)�g 0

3 =g 0
1 � sin4 h0 F 2

� 1.

4 Uncertainties in field-line tracing for
the axisymmetric part of the internal geomagnetic field

The various analytical and computational methods of
determining the uncertainties in magnetic-field-line
tracing in the magnetosphere, resulting from just the
axisymmetric part of the internal geomagnetic field, are
described in this section. Attention is focused on the
special case nmax � 4 and the general case 1 � n � nmax.

4.1 Analytic solution in the special
axisymmetric case nmax � 4

The geocentric distance at which an individual magnetic
field line crosses the equatorial plane in the special
axisymmetric case nmax � 4 is defined by Eq. 14. This
cubic equation can be solved analytically either by using
standard algebraic techniques (Jones, 1975) or by using
the computer algebra package Mathematica (Wolfram,
1988). Both methods have been used to confirm that the
three roots �r�1; �r�2 and �r�3 of Eq. 14 can be expressed
in the exact form

�r�1 � r1=3F � �1� �r1=3F<�2
�< ; �16�

�r�2 � r1=3F ÿ �1=2��1� �r1=3F<�2
�< � i�

���

3
p

=2�

� �1ÿ �r1=3F<�2
�< ; �17�

�r�3 � r1=3F ÿ �1=2��1� �r1=3F<�2
�< ÿ i�

���

3
p

=2�

� �1ÿ �r1=3F<�2
�< ; �18�

where i �
�������

ÿ1
p

; F is defined by Eq. 13 and

< � ���r1=3F �3
ÿ �RE=2�2

�r1=F � �g 0
3 =g 0

1 �

� f��r1=3F �3
ÿ �RE=2�2

�r1=F ��g 0
3 =g 0

1 ��
2

ÿ �r1=3F �6
g

1=2
��

1=3
: �19�

The computer algebra package Mathematica has also
been used to check that the three roots �r�1; �r�2 and

�r�3, defined by Eqs. 16–19, actually satisfy Eq. 14 and
the following conditions on the roots of this equation :
�r�1 � �r�2 � �r�3 � r1=F ; �r�1�r�2 � �r�2�r�3��r�3�r�1

� 0; and �r�1�r�2�r�3 � ÿ�1=2� �g 0
3 =g 0

1 �R
2
E�r1=F �:

By inserting specific numerical values for
g 0

n �1 � n � 4�; RE; r1 and h0, Eqs. 16–19 provide the
geocentric distance at which an individual magnetic field
line crosses the equatorial plane in the special axisym-
metric case nmax � 4. If Eq. 14 has three real roots, only
one geocentric distance is physically meaningful in the
sense that it is positive and greater than or equal to RE
(see Sect. 3.2). The parameters h0 and r1 are related by
the equation for a dipole line of force, namely
RE � r1 sin2 h0. Therefore, h0 and r1 may be regarded
as alternative labels that define a particular shell of
magnetic field lines, as discussed in Sect. 3.1. Selecting a
particular value of h0 (or r1� for the contemporary
geomagnetic field, Eq. 16 can be used to find the real
solutions of Eq. 14 for the mean (or central) values of
the axisymmetric spherical harmonic coefficients
g 0

n �1 � n � 4� and for all 16 �� 24
� permutations of

the end points of the intervals �g 0
n ÿ dg 0

n ; g
0

n � dg 0
n �, as

outlined in Sect. 2.4. This procedure provides 16 values
of dr from which the largest value, drmax, can be
determined.

4.2 Approximate analytic solution in
the general axisymmetric case 1� n � nmax

If the infinite summations in Eq. 9 are restricted to finite
summations with 2 � n � nmax, the geocentric distance
at which a magnetic field line crosses the equatorial
plane becomes

r � r1

1�
P

nmax

n�2
��n� 1�=2n�1=2

�g 0
n =g 0

1 ��RE=r�nÿ1P 1
n �0�

� �� �

1�
P

nmax

n�2
��n� 1�=2n�1=2

�g 0
n=g

0
1 �P

1
n �cos h0�=sin h0

� �� � :

�20�

As implied previously, this equation cannot be solved
analytically in the general axisymmetric case
2 � n � nmax to express r explicitly as a function of h0.
However, it is possible to obtain an approximate
solution of Eq. 20 if all terms under the summation
signs are small compared with unity (i.e. if j g 0

n =g 0
1 j� 1

for 2 � n � nmax). In this situation the binomial theorem
can be used to obtain a power-series expansion of the
small terms. Likewise, if allowance is made for the
uncertainties dg 0

n in the axisymmetric spherical harmo-
nic coefficients g 0

n �1 � n � nmax�, but triple and higher
products of the small terms dg 0

n =g 0
n �1 � n � nmax� are

neglected, an approximate expression can be derived for
the uncertainty �dr� in magnetic-field-line tracing in the
magnetosphere.

Using this approach, it is shown in Appendix A that
dr can be expressed in the approximate form
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dr � r1

X

N �

max

N�

�1

�ÿ1�N�

ÿ1
�N �

ÿ 1�
X

nmax

n�2

bnGn

 !N �

ÿ3
2

4

2

4

�

X

nmax

n�2

bndGn

 !

X

nmax

n�2

�an ÿ bn�Gn

" #

X

nmax

n�2

bnGn

 !"(

�

�N �

ÿ 2�
2

X

nmax

n�2

bndGn

 !#

�

X

nmax

n�2

�an ÿ bn�dGn

" #

�

X

nmax

n�2

bnGn

 !)

�

X

nmax

n�2

bnGn

 !N �

ÿ1

�

X

nmax

n�2

�an ÿ bn�dGn

" ###

; �21�

where, for n � 2,

Gn � g 0
n =g 0

1 ; �22�

dGn=Gn � �dg 0
n =g 0

n ÿ dg 0
1 =g 0

1 �

ÿ �dg 0
1 =g 0

1 ��dg 0
n =g 0

n ÿ dg 0
1 =g 0

1 �; �23�

to second order in the small terms dg 0
1 =g 0

1 and dg 0
n =g 0

n ,

an � ��n� 1�=2n�1=2
�RE=r1�

nÿ1 P 1
n �0�; �24�

and

bn � ��n� 1�=2n�1=2 P 1
n �cos h0�= sin h0: �25�

In Eq. 21 summations that really extend over the infinite
range 1 � N�

<1 are restricted to the finite range
1 � N�

� N �

max, by analogy with the summations over
the finite range 2 � n � nmax.

Contrary to the convention adopted in Sect. 2.3,
dg 0

n �1 � n � nmax� can be either positive or negative in
the set of equations just given (see Appendix A). Hence
dr can be either positive or negative in the case of the
axisymmetric part �m � 0� of the internal geomagnetic
field, as discussed further in Sect. 6.2. The set of values
fr � drg defines a linear (or curvilinear) interval in
which dr is regarded as being positive or negative with
respect to the central value r. If follows from Eq. 21 that
dr ! 0 as dGn ! 0 for 2 � n � nmax, which implies that
if there are no uncertainties in the axisymmetric
spherical harmonic coefficients g 0

n �2 � n � nmax� then
there is no uncertainty in the geocentric distance (r) at
which a magnetic field line crosses the geomagnetic
equator �h � p=2�. This last result confirms the earlier
conclusion that the magnetic-field configuration of a
dipole is independent of the dipole strength �g 0

1 � dg 0
1 �.

Finally, Eq. 21 reduces correctly to the case of a dipole
plus an individual multipole of degree n if the symbols
denoting summation over n are removed.

By analogy with the scheme discussed in Sect. 4.1,
Eqs. 21–25 can be used to find the 2nmax values of dr
corresponding to the 2nmax permutations of the end
points of the intervals �g 0

n ÿ dg 0
n ; g 0

n � dg 0
n �, from which

the largest value, drmax, can be determined.

4.3 Computational solution in the
general axisymmetric case 1� n � nmax

It follows from Eq. 20 that the geocentric distance at
which a magnetic field line crosses the equatorial plane
in the (truncated) axisymmetric case 1 � n � nmax is
given by

rnmax
ÿ�r1=Fnmax�r

nmaxÿ1
ÿ �2=3�1=2

�g 0
3 =g 0

1 �

� R 2
E �r1=Fnmax�P

1
3 �0�r

nmaxÿ3
ÿ �3=5�1=2

� �g 0
5 =g 0

1 �R
4

E �r1=Fnmax�P
1

5 �0�r
nmaxÿ5

ÿ

ÿ ��nmax � 1�=2nmax�
1=2
�g 0

nmax
=g 0

1 �R
nmaxÿ1
E

� �r1=Fnmax�P
1

nmax
�0� � 0; �26�

where

Fnmax � 1�
X

nmax

n�2

��n� 1�=2n�1=2
�g 0

n =g 0
1 �

� P 1
n �cos h0�= sin h0: �27�

In this last equation, Fnmax denotes the parameter
F �cos h0� in the case for which the infinite summation
in Eq. 9 is truncated at n � nmax; this parameter reduces
to the form given in Eq. 13 if nmax � 4. Equation 11
implies that the constant term in the polynomial Eq. 26
is non-zero if nmax is odd and zero if nmax is even.
Therefore, the maximum degree of the polynomial
equation in r is nmax if nmax is odd and is nmax ÿ 1 if
nmax is even.

If specific numerical values for g 0
n �1 � n �

nmax�; RE; r1 and h0 �RE � r1 sin2 h0� are substituted
into Eq. 26, the resulting polynomial can be solved
numerically to determine the geocentric distance at
which an individual magnetic field line crosses the
equatorial plane in the general axisymmetric case
1 � n � nmax. In this paper the MATLAB polynomial
function ‘‘roots’’ (MATLAB Reference Guide, 1992)
has been used to find the roots of the polynomial Eq. 26.
For a particular value of h0�or r1�, this MATLAB
function can be used to find the real roots of the
polynomial Eq. 26 for the mean (or central) values of the
axisymmetric spherical harmonic coefficients g 0

n �1 � n
� nmax� and for all 2nmax permutations of the end-points
of the intervals �g 0

n ÿ dg 0
n ; g

0
n � dg 0

n �, as outlined in Sect.
2.4. By analogy with the special axisymmetric case
nmax � 4, this procedure provides 2nmax values of dr from
which the largest value, drmax, can be determined.

4.4 Stepwise numerical integration
along magnetic field lines

It is also possible to calculate the uncertainties in
magnetic-field-line tracing in the magnetosphere by
using a stepwise numerical integration procedure to
trace along magnetic field lines. This approach is
equivalent to obtaining a numerical solution of the
differential equations that define the magnetic field lines
in the magnetosphere. By analogy with the scheme
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outlined in Sect. 4.3, stepwise numerical integrations are
performed for the mean (or central) values of the
axisymmetric spherical harmonic coefficients g 0

n �1 � n
� nmax� and for all 2nmax permutations of the end-points
of the intervals �g 0

n ÿ dg 0
n ; g 0

n � dg 0
n �. This procedure

provides 2n
max values of dr from which the largest value,

drmax, can be determined.
The computer program used to perform stepwise

numerical integration along magnetic field lines is
discussed in Paper II. It suffices to note in this section
that stepwise numerical integration merely provides an
alternative method of determining drmax in the case of
the axisymmetric part �m � 0� of the geomagnetic field
of internal origin. However, no analytic equation exists
for the magnetic field lines in the non-axisymmetric case
�m 6� 0� of the complete geomagnetic field of internal
origin. In this latter case, drmax must be determined by
stepwise numerical integration along magnetic field
lines. The reason for introducing stepwise numerical
integration here is to show that, in the axisymmetric case
�m � 0�, this procedure provides results which are in
excellent agreement with those obtained using the
analytic equation derived by Backus (1988). This
comparison indicates that the computer program
employed to perform stepwise numerical integrations
along magnetic field lines is accurate and can be used
with confidence in Paper II to determine drmax in the case
of the complete geomagnetic field of internal origin.

5 Comparison of numerical results derived
by the various methods

The various methods of determining the uncertainties in
magnetic-field-line tracing in the magnetosphere, which
are discussed in Sects. 4.1–4.4, are compared in this
section. All numerical results presented in this paper
relate solely to the axisymmetric part �m � 0� of the
geomagnetic field of internal origin: the results for the
complete non-axisymmetric �m 6� 0� geomagnetic field
of internal origin are presented in Paper II. Results are
given for two illustrative cases in which the magnetic
field line crosses the geomagnetic equator �h � p=2� at a
nominal dipolar distance of either 2 or 6 RE; that is
r1 � 2 RE or r1 � 6 RE. The results for the case
r1 � 2 RE are likely to be reasonably realistic even when
the external contributions to the geomagnetic field in the
magnetosphere are included, because this case refers to
the inner magnetosphere where the external contribu-
tions are relatively unimportant. The results for the case
r1 � 6 RE are likely to be rather less realistic because the
magnetic field line passes through a region of the
magnetosphere in which the external contributions to
the geomagnetic field have a strong influence on the
magnetic-field configuration. However, it must be
emphasized again that the purpose of the present pair
of papers is to initiate a systematic study of the possible
uncertainties in field-line tracing in the magnetosphere,
starting with the geomagnetic field of internal origin (i.e.
DGRF or IGRF).

All numerical estimates of uncertainties in field-line
tracing in the magnetosphere �drmax� presented in this
paper (and in Paper II) are based on the NASA
Goddard Space Flight Center Model designated GSFC
1990D (Langel et al., 1992; cf. their Table 6). In all
illustrative numerical calculations, each dg 0

n is assumed
to be exactly equal to the corresponding standard error
in the geomagnetic field model GSFC 1990D, as
outlined in Sect. 2.3. However, if each dg 0

n is taken to
be the same multiple (say k) of the standard error, then
the associated numerical uncertainties can be obtained
approximately by multiplying the values of drmax
tabulated in this paper (and in Paper II) by the factor
k. The validity of this approximation in the general
axisymmetric case can be understood in terms of the
functional form of Eqs. 21–25, provided that the
inequalities �g 0

n =g 0
1 � � 1 and �dg 0

n =g 0
n � � 1 are satisfied

for at least the important spherical harmonic coeffi-
cients. For completeness, the values of g 0

n ; dg 0
n and

j dg 0
n =g 0

n j for the geomagnetic field model GSFC 1990D
are presented in Table 2. It is clear from this table that
third-order terms in dg 0

n =g 0
n �1 � n � nmax� can be

neglected, which justifies the approximations made in
Sect. 4.2 and Appendix A.

Tables 3 and 4 present numerical estimates of the
maximum uncertainty drmax in the geocentric distance at
which a magnetic field line crosses the geomagnetic
equator �h � p=2� for the axisymmetric part �m � 0� of
the geomagnetic field of internal origin. Table 3 provides
results for the special axisymmetric case nmax � 4, which
is discussed in detail in Sects. 3.2 and 4.1. Similarly,
Table 4 provides results for the general axisymmetric
case with nmax � 10, which is discussed in detail in Sect.
4.3. Both tables present estimates of drmax for nominal

Table 2. Values of g0
n, dg0

n and jdg0
n=g0

nj for the geomagnetic field
model GSFC 1990D (after Langel et al., 1992)

n g0
n dg0

n jdg0
n=g0

nj

(nT) (nT)

1 )29771.0 10.06 3.38 × 10)4

2 )2137.0 8.62 4.03 × 10)3

3 1313.5 8.21 6.25 × 10)3

4 939.1 6.70 7.13 × 10)3

5 )211.0 4.28 2.03 × 10)2

6 60.8 3.45 5.67 × 10)2

7 74.1 2.11 2.85 × 10)2

8 22.3 1.84 8.25 × 10)2

9 4.4 1.49 3.39 × 10)1

10 )3.4 1.25 3.68 × 10)1

Table 3. Comparison between various numerical estimates for
drmax at the geomagnetic equator in the special axisymmetric case
nmax � 4

Method of solution drmax (r1 � 2 RE) drmax (r1 � 6 RE)
(km) (km)

Exact (Mathematica) 7.2183 48.3942
Polynomial (MATLAB) 7.2183 48.3942
Tracing Program 7.2184 48.3945
Approx. Eqns 7.2760 48.4597
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dipolar crossing distances of r1 � 2 RE and r1 � 6 RE, as
already noted. In these tables the following abbrevia-
tions are used to denote the methods by which the
numerical estimates for drmax are derived. Exact
�Mathematica� refers to the exact algebraic solution of
the cubic equation, Eq. 14, which is obtained using the
computer algebra package Mathematica (Wolfram,
1988) and is defined by Eq. 16. Polynomial (MATLAB)
refers to the numerical solution of the tenth-degree
polynomial, Eq. 26, using the MATLAB polynomial
function ‘‘roots’’ (MATLAB Reference Guide, 1992).
Tracing Program refers to numerical results obtained
using the computer program that performs stepwise
numerical integration, as discussed in detail in Sect. 3 of
Paper II. Approx. Eqns refers to the approximate
algebraic solution of Eq. 20, defined by Eqs. 21–25.

It is clear from Tables 3 and 4 that all methods of
estimating drmax give numerical results that are in
remarkably good agreement. Table 3 is included because
the special axisymmetric case nmax � 4 is the highest-
degree case for which the equations can be solved
exactly using algebraic techniques. Thus the only
possible source of numerical inaccuracy in the values
of drmax presented in the first row of Table 3 arises solely
from the insertion of numerical values in an algebraic
expression. However, the values of drmax based on an
iterative numerical procedure for finding the roots of the
cubic equation, Eq. 14, and on stepwise numerical
integration along magnetic field lines (i.e. rows 2 and 3
of Table 3) only differ from the ‘‘exact’’ estimates (i.e.
row 1 of Table 3) by less than 1 m. Therefore, the
technique of stepwise numerical integration along field
lines does not result in significant cumulative numerical
errors. Even the approximate algebraic solution of Eq.
20 with nmax � 4, which is only valid to second order in
the small terms dg 0

n =g 0
n �1 � n � nmax�, is adequately

accurate for many purposes.
It can be seen from the numerical estimates for drmax

presented in Table 4 that similar conclusions hold for
the general axisymmetric case nmax � 10, which corre-
sponds to the entire axisymmetric part of the geomag-
netic field model GSFC 1990D (Langel et al., 1992). The
differences between corresponding numbers in Tables 3
and 4 represent the additional contributions to drmax
that arise from higher-degree axisymmetric multipoles in
the range 5 � n � 10. The fact that the estimates of drmax
obtained using the tracing program in the case nmax � 10
are in remarkably good agreement with those obtained
quite independently from the solution of the analytic
equation derived by Backus (1988) implies that the
tracing program is very accurate. This conclusion is of

vital importance in Paper II, which considers the
uncertainties in magnetic-field-line tracing in the mag-
netosphere for the complete geomagnetic field of
internal origin. In this non-axisymmetric case, no
analytic equation exists for the magnetic field lines,
and uncertainties in field-line tracing can only be
estimated using stepwise numerical integration along
magnetic field lines.

The numerical estimates for drmax presented in both
Tables 3 and 4 imply that classical pertubation theory
(i.e. Approx. Eqns) yields estimates which are signifi-
cantly less accurate than those calculated by any of the
numerical methods. However, classical pertubation
theory has the great compensating advantage that Eqs.
21–25 give an indication of how dr varies as a function
of the (axisymmetric) spherical harmonic coefficients
�g 0

n � and their associated errors �dg 0
n �, at least for

j g 0
n =g 0

1 j� 1 �2 � n � nmax� and j dg 0
n =g 0

n j� 1 �1 � n
� nmax�.

6 Interval mapping for the axisymmetric part
of the internal geomagnetic field

It is assumed implicitly in Sects. 2.4 and 4.1–4.4 that in
the axisymmetric case �m � 0� drmax can be determined
simply by considering every possible permutation of the
‘‘lower’’ and ‘‘upper’’ end-points, g 0

n ÿ dg 0
n ; g 0

n � dg 0
n ;

of the intervals of real numbers �g 0
n ÿ dg 0

n ; g 0
n � dg 0

n � for
1 � n � nmax: Stated alternatively, it is assumed that the
maximum value of dr �drmax� in the set of values
fr � drg corresponds to a particular permutation of
the endpoints �g 0

n � dg 0
n � in the coefficient intervals

�g 0
n � Dg 0

n �, where dr 2 R and ÿdg 0
n � Dg 0

n � �dg 0
n .

This implicit assumption effectively reduces a contin-
uous interval mapping problem to a discrete one, which
enables calculations of the uncertainties in magnetic-
field-line tracing in the magnetosphere to be undertaken
with finite computing resources. Since it is intuitively
clear that the axisymmetric part of the spherical
harmonic expansion of the internal geomagnetic field
is a well-behaved function of the spherical harmonic
coefficients, this implicit assumption seems reasonable
physically. An argument is developed in the following
section to demonstrate numerically that interior points
in the coefficient intervals apparently do not map to
exterior points in the uncertainty interval for r.

6.1 Conjecture 1: interval mapping
in the axisymmetric case �m � 0�

Consider the following conjecture for the axisymmetric
part of the internal geomagnetic field �m � 0�, which is
designated Conjecture 1. (Conjecture 2 is presented in
Paper II.) Conjecture 1: For the contemporary geomag-
netic field, there do not exist points g 0

n � Dg 0
n , where

ÿdg 0
n � Dg 0

n � �dg 0
n �dg 0

n � 0�, in the interval
�g 0

n ÿ dg 0
n ; g

0
n �dg 0

n � for which P�g 0
n � Dg 0

n � � r � Dr
such that j Dr j>j drmax j. The symbol P is used to
denote the ‘‘transformation’’ from coefficient intervals

Table 4. Comparison between various numerical estimates for
drmax at the geomagnetic equator in the general axisymmetric case
nmax = 10

Method of solution drmax (r1 � 2 RE) drmax (r1 � 6 RE)
(km) (km)

Polynomial (MATLAB) 9.3029 65.4833
Tracing Program 9.3030 65.4839
Approx. Eqns 9.3876 65.5684
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to uncertainty interval using the polynomial Eq. 26 to
find Dr for given Dg 0

n �1 � n � nmax�, as discussed in
Sect. 4.3. Note that with this definition, P�g 0

n � � r and
P�g 0

n � dg 0
n � � r � drmax.

The credibility of Conjecture 1 is established by
calculating dr by two different methods and comparing
the results as follows. In Method A it is supposed that
the interval of real numbers �g 0

n ÿ dg 0
n ; g

0
n � dg 0

n � is
represented by the five sample points (real numbers) g 0

n ;

g 0
n � �1=2�dg 0

n and g 0
n � dg 0

n �dg 0
n � 0�; rather than by

just the two end-points g 0
n � dg 0

n . By an obvious
extension of the arguments presented in Sect. 2.4, there
are 5nmax ‘‘limiting geomagnetic-field models’’ in this
case, since N � nmax if m � 0. The use of the term
‘‘limiting geomagnetic-field model’’ for the three interior
sample points g 0

n and g 0
n � �1=2�dg 0

n tacitly acknowledges
the possibility that Conjecture 1 might be incorrect. The
MATLAB polynomial function ‘‘roots’’ (MATLAB
Reference Guide, 1992) is then used to solve the
corresponding 510 polynomials defined by Eqs. 26 and
27 in the general axisymmetric case nmax � 10, using the
axisymmetric part of the internal geomagnetic-field
model GSFC 1990D (cf. Table 2). This procedure
generates the 510 values of dr A that correspond to sele-
cting all 510 permutations of the five sample points g 0

n ;

g 0
n � �1=2�dg 0

n ; g
0

n � dg 0
n , according to Method A. An-

other MATLAB routine is used to arrange these 510

values of drA as a monotonic increasing sequence fdrA
min;

. . . ; drA
maxg, where drA

min and drA
max denote the smallest and

largest values of drA calculated by Method A.
In Method B the MATLAB polynomial function

‘‘roots’’ is used to solve the 510 polynomials generated
by Eqs. 26 and 27 if each of the ten coefficients
g 0

n �1 � n � 10� in the GSFC 1990D model is assumed
to have a random error Dg 0

n in the error interval �ÿdg 0
n ;

�dg 0
n � and this random selection of the ten errors Dg 0

n is
repeated 510 times. The random errors Dg 0

n are
generated using the NAG routine G05DAF (NAG
Fortran Library Manual, 1988), which produces se-
quences of pseudo-random numbers taken from a
uniform distribution in the interval �g 0

n ÿ dg 0
n ;

g 0
n � dg 0

n �. The resulting 510 values of drB are then
arranged as a monotonic increasing sequence fdrB

min;

. . . ; drB
maxg, where drB

min and drB
max denote the smallest and

largest values of drB calculated by Method B.
Lastly, the values of drA

max and drB
max are compared

with each other and with the value of drmax obtained by
considering all 210 possible permutations of the end-
points of the intervals �g 0

n ÿ dg 0
n ; g

0
n � dg 0

n � for
1 � n � 10, as described in Sect. 2.4; similarly for
drmin; drA

min and drB
min. On the basis of these comparisons,

Conjecture 1 is accepted (at least as a working hy-
pothesis) if the four conditions drA

max � drmax;

drA
max> drB

max; drA
min � drmin and drA

min < drB
min hold. These

four conditions have been satisfied in every case
examined in this study. Therefore, a set of ten internal
points, lying in the axisymmetric coefficient intervals
�g 0

n ÿ dg 0
n ; g

0
n � dg 0

n � for 1 � n � 10, apparently always
maps to a value of dr lying in the uncertainty interval
�drmin; drmax�.

The argument presented here certainly does not
constitute a completely rigorous mathematical proof of
Conjecture 1. In fact, the credibility of Conjecture 1 has
only been investigated numerically for the spherical
harmonic coefficients �g 0

n � and associated errors �dg 0
n �

that specify the axisymmetric part of the GSFC 1990D
geomagnetic reference field (Langel et al., 1992). Never-
theless, Conjecture 1 is equally credible for the axisym-
metric part of any contemporary geomagnetic reference
field. This conclusion follows from the fact that the
functional form of Eq. 21 , together with the definitions
in Eqs 22–25, corroborates the credibility of Conjecture
1 under the conditions j g 0

n =g 0
1 j� 1 �2 � n � nmax� and

j dg 0
n =g 0

n j� 1 �1 � n � nmax), which hold for all
contemporary geomagnetic reference fields. Finally,
however, it must be stressed that no conclusion is being
propounded in this paper about the credibility of
Conjecture 1 for purely arbitrary values of the axisym-
metric spherical harmonic coefficients �g 0

n � and their
associated errors �dg 0

n �. Further research is required to
elucidate the general case.

6.2 Graphical presentation of results
for the general axisymmetric case

The theoretical methods described in Sect. 6.1 are
illustrated in this section by presenting histograms of
the monotonic increasing sequences fdrA

g and fdrB
g,

obtained by solving the 510 polynomials defined by Eqs.
26 and 27 according to Methods A and B. Histograms
are presented for the same two illustrative cases as
considered in Sect. 5, namely those for which the
geomagnetic field line crosses the geomagnetic equator
�h � p=2� at a nominal dipolar distance of either 2 or
6 RE. Figures 1 and 2 present histograms for the cases
r1 � 2 RE and r1 � 6 RE, respectively. Note that dr can
be either positive or negative, as indicated in Sect. 4.2.
In each figure the continuous curve represents a normal
(or Gaussian) distribution with the same mean and
variance as the corresponding histogram. For the case
r1 � 2 RE, Fig. 1a presents the histogram of the
monotonic increasing sequence fdrA

i g in which the
elements drA

i �1 � i � 510
� are determined by solving

the 510 tenth-degree polynomials associated with all
possible permutations of the sample coefficients g 0

n ; g 0
n �

�1=2�dg 0
n ; g 0

n � dg 0
n �1 � n � 10�, as outlined in Method

A. Similarly, Fig. 1b presents the histogram of the
monotonic increasing sequence fdrB

i g in which the
elements drB

i �1 � i � 510
� are determined by solving

the 510 tenth-degree polynomials arising from 510

selections of the ten random errors Dg 0
n in g 0

n that are
located randomly in the ten corresponding error
intervals �ÿdg 0

n ;�dg 0
n �, as outlined in Method B. The

histograms presented in Fig. 2a,b are calculated in
exactly the same way but with r1 � 6 RE.

Figures 1a and 2a give the actual numerical values of
drA

max and drA
min as well as the mean and standard

deviation (std) of the histogram derived by Method A.
Similarly, Figs. 1b and 2b give the actual numerical
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values of drB
max and drB

min as well as the mean and
standard deviation of the histogram derived by Method
B. The means in Figs. 1 and 2 differ from zero because
the geomagnetic field decreases non-linearly with geo-
centric distance. Moreover, since the geomagnetic field
decreases less rapidly with increasing geocentric dis-
tance, drmax > j drmin j and the statistical mean is always
greater than zero. It is clear, both by visual inspection of
the histograms in Figs. 1 and 2 and by comparison of
the actual numerical values, that drA

max > drB
max and

drA
min < drB

min. Moreover, drA
max � drmax and

drA
min � drmin, where drmax and drmin denote the maximum

and minimum values of dr derived by repeating Method
A for the situation in which each interval of real
numbers �g 0

n ÿ dg 0
n ; g 0

n � dg 0
n � is represented by just the

two (sample) end-points g 0
n � dg 0

n , rather than by all five
sample points g 0

n ; g
0

n ��1=2�dg 0
n ; g

0
n � dg 0

n �1 � n � 10�.

The veracity of this last statement can be confirmed by
comparing the numerical values of drA

max presented in the
top right-hand corners of Figs. 1a and 2a with the
corresponding numerical values of drmax presented in
Table 4. Since drmax and drmin are always associated with
particular permutations of the end-points of the
coefficient intervals �g 0

n ÿ dg 0
n ; g 0

n � dg 0
n �, internal

points in these coefficient intervals do not yield values
of dr that lie outside the uncertainty interval
�drmin; drmax�. Therefore, the credibility of Conjecture 1
is established.

7 Summary and conclusions

The goal of this investigation is to begin a systematic
study of the uncertainties in magnetic-field-line tracing
in the magnetosphere that arise from uncertainties in the
specification of the six main sources of magnetic field in
the magnetosphere, namely: (1) currents flowing in the
Earth’s liquid metallic outer core; (2) ionospheric
currents; (3) field-aligned (or Birkeland) currents; (4)
ring currents; (5) magnetopause currents; and (6)
magnetotail currents (Stern and Tsyganenko, 1992). It

Fig. 1a,b. Histograms of the uncertainties �dr� in the geocentric
distance at which a magnetic field line crosses the geomagnetic
(geographic) equator in the general axisymmetric case nmax � 10 for
r1 � 2 RE: a drA calculated by Method A, which involves solving the
510 tenth-degree polynomials associated with all permutations of the
sample coefficients g 0

n ; g
0

n � �1=2�dg 0
n ; g

0
n � dg 0

n �1 � n � 10�: b
drB calculated by Method B, which involves solving the 510 tenth-
degree polynomials arising from 510 selections of ten (random) errors
Dg 0

n in g 0
n �1 � n � 10�, located randomly in the ten corresponding

error intervals �ÿdg 0
n ;�dg 0

n �

Fig. 2a,b. Same as Fig. 1, but for r1 � 6 RE
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seems sensible to commence such a systematic study
with a detailed examination of the uncertainties in field-
line tracing in the magnetosphere produced solely by
possible errors in the specification of the geomagnetic
field of internal origin (Sect. 2). The primary purpose of
this initial investigation is to estimate these uncertainties
by using one of the few published models of the
geomagnetic field that presents both the spherical
harmonic coefficients and their standard errors (Langel
et al., 1989, 1992). Because of the considerable complex-
ity in computing these uncertainties in field-line tracing
for the complete geomagnetic field of internal origin,
attention is focused in this preliminary paper on the
uncertainties that result from the standard errors in just
the axisymmetric part of the internal geomagnetic field
(Sect. 3).

An exact analytic equation exists for the magnetic
field lines of an arbitrary linear combination of
axisymmetric multipoles (Sect. 3.1). This equation is
used to derive accurate numerical estimates of the
uncertainties in magnetic-field-line tracing that are due
to the standard errors in the axisymmetric spherical
harmonic coefficients (i.e. g 0

n � dg 0
n ) published by

Langel et al. (1992). In the special axisymmetric case
arising from the addition of just the first four axisym-
metric multipoles (nmax � 4 and hence 1 � n � 4),
namely a dipole �g 0

1 �, a quadrupole �g 0
2 �, an octupole

�g 0
3 � and a sedecimupole �g 0

4 �, the resulting quartic
equation can be solved algebraically (Sect. 3.2). How-
ever, the roots of this quartic equation are extremely
complicated and therefore the discussion is restricted to
the solution of the simpler cubic equation for the
geocentric distance at which an individual magnetic
field line crosses the geomagnetic equatorial plane (Sect.
4.1). In the general axisymmetric case (nmax � 10 and
hence 1 � n � 10�, the uncertainties in the geocentric
distance at which a field line crosses the geomagnetic
equator are determined numerically by solving the
corresponding tenth-degree polynomial equation (Sect.
4.3). Even in the general axisymmetric case, an
approximate algebraic solution can be obtained if it is
assumed that jg 0

n =g 0
1 j � 1 for 2 � n � 10 and

jdg 0
n =g 0

1 j � 1 for 1 � n � 10 (Sect. 4.2). Finally, it is
also possible to calculate the uncertainties in magnetic-
field-line tracing in the magnetosphere by using a
stepwise numerical integration procedure to trace along
magnetic field lines (Sect. 4.4).

The various methods of determining the uncertainties
in magnetic-field-line tracing for the axisymmetric part
�m � 0� of the internal geomagnetic field are compared
quantitatively (Sect. 5). Numerical results are presented
for two illustrative cases in which the magnetic field line
crosses the geomagnetic equator at a nominal dipolar
distance of either 2 or 6 RE (Tables 3 and 4). All these
numerical estimates of the maximum uncertainty �drmax�

in field-line tracing in the magnetosphere are based on
the NASA GSFC 1990D model (Langel et al., 1992) of
the internal geomagnetic field (Sect. 2.3 and Table 2). It
is clear from the actual numbers in Tables 3 and 4 that
the various methods of estimating the uncertainties drmax
give results that are in excellent agreement. For just the

axisymmetric part of the internal geomagnetic field
�nmax � 10�, the maximum characteristic uncertainty in
the geocentric distance of a field line that crosses the
magnetic equator at a nominal dipolar distance of 2 RE
is typically �10 km (Table 4). The corresponding
characteristic uncertainty for a field line that crosses
the equator at a nominal dipolar distance of 6 RE is
typically � 70 km (Table 4).

Numerical estimates of the uncertainties in magnetic-
field-line tracing in the magnetosphere, which are
calculated in this paper for just the axisymmetric part
of the internal geomagnetic field, should be regarded as
‘‘first approximations’’, in the sense that such estimates
are only as accurate as the published standard errors in
the set of axisymmetric spherical harmonic coefficients
(Langel et al., 1989, 1992). However, all the procedures
developed in this preliminary paper can be applied to the
derivation of more realistic estimates of the uncertainties
in magnetic-field-line tracing in the magnetosphere,
following further progress in the determination of more
accurate standard errors in the spherical harmonic
coefficients.

Finally, it should be emphasized that the values of
drmax derived by stepwise numerical integration along
magnetic field lines are essentially identical to those
derived independently by the iterative numerical proce-
dure for finding the roots of the polynomial equation
due to Backus (1988). The excellent agreement between
results derived by these two different techniques
confirms that the computer program used for stepwise
numerical integration along magnetic field lines is very
accurate. This conclusion is of critical importance in the
following paper (Paper II), which considers the un-
certainties in magnetic-field-line tracing in the magneto-
sphere for the complete geomagnetic field of internal
origin. In the general non-axisymmetric case �m 6� 0�, no
analytic equation exists for the magnetic field lines and
uncertainties in field-line tracing can only be estimated
by using stepwise numerical integration along magnetic
field lines, as discussed in detail in Paper II.
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Appendix A. Approximate solution of Eq. 20

It is shown in Sect. 4.2 that, in the general axisymmetric
case 2 � n � nmax, the geocentric distance at which an
individual magnetic field line crosses the equatorial
plane �h � p=2� is defined by Eq. 20, namely
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r � r1

1�
P

nmax

n�2
��n� 1�=2n�1=2

�g 0
n =g 0

1 ��RE=r�nÿ1P 1
n �0�

� �� �

1�
P

nmax

n�2
��n� 1�=2n�1=2

�g 0
n =g 0

1 �P
1

n �cos h0�= sin h0

� �� �

:

�A1�

Assume that jg 0
n =g 0

1 j � 1 for 2 � n � nmax, which is
certainly valid for the contemporary geomagnetic field
of internal origin because the dipole term �g 0

1 �

predominates. Then, to a first approximation, the
solution of Eq. A1 is r � r1, which is otherwise clear
from Eq. 5 with h � p=2:

If r is replaced by r1 on the right-hand side of Eq. A1,
the second approximation for r is given by

r � r1 1�
X

nmax

n�2

anGn

" #

1�
X

nmax

n�2

bnGn

" #

ÿ1

; �A2�

where, for n � 2;

Gn � g 0
n =g 0

1 ; �A3�

an � ��n� 1�=2n�1=2
�RE=r1�

nÿ1P 1
n �0� �A4�

and

bn � ��n� 1�=2n�1=2P 1
n �cos h0�= sin h0: �A5�

Equation A2 can be written in the form

r � r1 1�
X

nmax

n�2

�an ÿ bn�Gn

" #

1�
X

nmax

n�2

bnGn

" #

ÿ1
2

4

3

5

2

4

3

5: �A6�

On the assumption that
P

nmax

n�2
bnGn

�

�

�

�

�

�

�

�

< 1, the binomial

theorem can be used to expand the second term in
square brackets on the right-hand side of Eq. A6; this
gives

r � r1

""

1�
X

nmax

n�2

�an ÿ bn�Gn

" #

X

1

N�

�1

�ÿ1�N�

ÿ1

"

�

X

nmax

n�2

bnGn

( )N�

ÿ1###

; �A7�

where N�

2 I�.
It is now necessary to allow for the uncertainties

(‘‘error bars’’) dg 0
n in the axisymmetric spherical

harmonic coefficients g 0
n �1 � n � nmax�: Contrary to

the convention adopted in Sect. 2.3, it is assumed here
that each dg 0

n can be positive or negative; this
assumption eliminates the need to use � signs through-
out the analysis. If dr denotes the uncertainty in the
geocentric distance at which an individual magnetic field
line crosses the equatorial plane, arising from the

uncertainties dg 0
n �1 � n � nmax�; then Eq. A7 implies

that

r � dr � r1

""

1 �
X

nmax

n�2

�an ÿ bn�Gn�1� dGn=Gn�

" #

�

"

X

1

N �

�1

�ÿ1�N�

ÿ1

(

X

nmax

n�2

bnGn

� �1� dGn=Gn�

)N �

ÿ1###

; �A8�

where, from Eq. A3,

Gn�1 � dGn=Gn� � Gn �1� dg 0
n =g 0

n ��1� dg 0
1 =g 0

1 �
ÿ1
;

�n � 2�: �A9�

Since jdg 0
n =g 0

n j � 1 for 1 � n � nmax, it follows from Eq.
A9 that

dGn=Gn � �dg 0
n =g 0

n ÿ dg 0
1 =g 0

1 � ÿ �dg 0
1 =g 0

1 �

� �dg 0
n =g 0

n ÿ dg 0
1 =g 0

1 �; �A10�

to second order in the small terms dg 0
1 =g 0

1 and dg 0
n =g 0

n :

If the binomial theorem is used to expand the ex-

pression
P

nmax

n�2
bnGn �

P

nmax

n�2
bndGn

� �N�

ÿ1

up to the third te-

rm, Eq. A8 can be expressed in the form

r � dr � r1

""

1 �

"

X

nmax

n�2

�an ÿ bn�Gn�1� dGn=Gn�

#

�

"

X

1
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�1

�ÿ1�N�

ÿ1
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X
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!N�

ÿ1

� �N�

ÿ 1�

 

X
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!N�

ÿ2 
X
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!

�
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ÿ 1��N�

ÿ 2�
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X

nmax

n�2

bnGn

!N�

ÿ3 
X

nmax

n�2

bndGn

!2)###

;

�A11�

which is accurate to second-order terms in dGn, viz.
dGni :dGnj �2 � ni � nmax� and �2 � nj � nmax�, but ne-
glects all higher-order terms. Using Eq. A7 and
neglecting the third-order term in dGn, it can be shown
after some algebraic manipulation that

dr � r1

X

N �

max

N�

�1

�ÿ1�N�

ÿ1

""

�N �

ÿ 1�
�

X

nmax

n�2

bnGn
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ÿ3
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�
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�

X

nmax

n�2

bnGn

��

�

�

X

nmax

n�2

bnGn

�N �

ÿ1
 

�

�

X

nmax

n�2

�an ÿ bn�dGn;

# ##

; �A12�

where the summations over the infinite range
1 � N�

<1 are now restricted to the finite range
1 � N�

� N �

max, by analogy with the summations over
the finite range 2 � n � nmax:
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