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CONCEPTS & SYNTHESIS
EMPHASIZING NEW IDEAS TO STIMULATE RESEARCH IN ECOLOGY
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Abstract. Population cycles have long fascinated ecologists. Even in the most-studied
populations, however, scientists continue to dispute the relative importance of various
potential causes of the cycles. Over the past three decades, theoretical ecologists have
cataloged a large number of mechanisms that are capable of generating cycles in population
models. At the same time, statisticians have developed new techniques both for charac-
terizing time series and for fitting population models to time-series data. Both disciplines
are now sufficiently advanced that great gains in understanding can be made by synthesizing
these complementary, and heretofore mostly independent, quantitative approaches. In this
paper we demonstrate how to apply this synthesis to the problem of population cycles,
using both long-term population time series and the often-rich observational and experi-
mental data on the ecology of the species in question. We quantify hypotheses by writing
mathematical models that embody the interactions and forces that might cause cycles. Some
hypotheses can be rejected out of hand, as being unable to generate even qualitatively
appropriate dynamics. We finish quantifying the remaining hypotheses by estimating pa-
rameters, both from independent experiments and from fitting the models to the time-series
data using modern statistical techniques. Finally, we compare simulated time series gen-
erated by the models to the observed time series, using a variety of statistical descriptors,
which we refer to collectively as ‘‘probes.’’ The model most similar to the data, as measured
by these probes, is considered to be the most likely candidate to represent the mechanism
underlying the population cycles. We illustrate this approach by analyzing one of Nich-
olson’s blowfly populations, in which we know the ‘‘true’’ governing mechanism. Our
analysis, which uses only a subset of the information available about the population, un-
covers the correct answer, suggesting that this synthetic approach might be successfully
applied to field populations as well.

Key words: blowflies; density dependence; fitting mechanistic models to time-series data; inverse
problem; Lucilia cuprina; mechanistic population models; modeling population cycles; population
cycles, determining the causes of; statistical time-series analysis; structured population models; time-
series models.

INTRODUCTION

The population densities of many species can fluc-
tuate nearly periodically over time, with periods that
cannot be explained simply by seasonal variation (Fig.

Manuscript received 14 July 1997; revised 4 June 1998;
accepted 1 September 1998; final version received 28 Sep-
tember 1998.

1). These regular, large-amplitude oscillations invite
explanation and indeed these data sets and others like
them have fascinated generations of ecologists. How

7 Present address: Donald Bren School of Environmental
Science and Management, University of California, Santa
Barbara, California 93106 USA.

8 Present address: Department of Integrative Biology, Uni-
versity of California, Berkeley, California 94720 USA.
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FIG. 1. Examples of cyclic population dynamics. (a) Coffee leaf-miners (Leucoptera spp.) at Lyamungu, Tanzania (Bigger
1973). (b) Pine looper (Bupalus piniarius) in Germany (Schwerdtfeger 1941). (c) Voles (Microtus and Clethrionomys) at
Kilpisjärvi, northern Finland (Laine and Henttonen 1983, Hanski et al. 1993). (d) Red Grouse (Lagopus lagopus scotius) in
Scotland (Middleton 1934).

can we uncover the mechanisms that drive cycles in
population density?

A common approach to studying population cycles
has been to perform short-term experimental and ob-
servational studies that look directly at population pro-
cesses that might cause the cycles. This approach has
been used intensively, for example, in studies of Ca-
nadian hares (Krebs 1996) and British grouse (Watson
et al. 1984, Hudson et al. 1992, Moss et al. 1996). This
work is invaluable for building up a list of biologically
plausible causes of cycles in a population, as was sum-
marized for many species of outbreaking forest insects
in Berryman (1988). Often the empirical evidence sug-
gests that some aspect of fecundity or mortality varies
with the population’s density, and each such result is
put forward as a potential governing factor. Neverthe-
less, these hypotheses are rarely tested rigorously, and
the number of competing hypotheses tends to grow
through time. A decisive test can be difficult. Although
some kind of density dependence is required for pop-
ulation cycles to arise, not all density-dependent in-
teractions will do the job; it is almost impossible to
determine the effect of the interaction from verbal mod-
els of the population. Only mathematical population
models can show which factors are even capable of
generating cyclic dynamics; without such models the
experimental approach will not be able to solve the
question of population cycles.

At the same time, ecologists have been accumulating
empirical data of another sort: long time series of pop-
ulation abundances. There are a few dozen ‘‘classic’’
time series, such as those in Fig. 1, that are widely

known, but recent work has produced a deluge of new
series. For example, a project collecting published time
series of 10 or more years has passed the 5000 mark
and is still going strong (J. Prendergast, personal com-
munication). 700 of these series are longer than 25 yr,
and 30% of those have periodic oscillations (Kendall
et al. 1998). These data allow us to go beyond merely
characterizing a population as ‘‘cyclic,’’ and quantify
aspects of the cycle such as the period, amplitude, and
maximum growth rate.

How can we employ mathematical models to best
use both the above-detailed information on population
processes and any long-term population time series,
and reach stronger conclusions about the causes of pop-
ulation cycles? We believe that the time is right to bring
together two complementary quantitative approach-
es—time-series statistics and mechanistic population
modeling. Four major features distinguish the two ap-
proaches: (1) the goals of the analysis; (2) the way in
which the time series is treated; (3) the kinds of models
that are developed; and (4) the methods used for judg-
ing the models’ explanatory power. These approaches
are now highly developed, and each has been applied
individually to the problem of population cycles, but
they have rarely been used in concert. Our purposes in
this paper are to demonstrate that much is to be gained
by bringing these traditions together, to outline a series
of steps to achieve that end, and to show a successful
case study.

The primary aims of time-series statisticians are to
describe the data and extrapolate the time series into
the future. This approach analyzes the time series di-



September 1999 1791UNDERSTANDING POPULATION CYCLES

C
o
nc

epts
&

S
ynth

esis

rectly to produce descriptors of the dynamics such as
period, amplitude, and Lyapunov exponent. The mod-
els used are usually non-mechanistic—they either ex-
plicitly include statistical features of the data, such as
the autocorrelation structure or the spectrum of periodic
tendencies, or they use flexible ‘‘nonparametric’’ func-
tions, such as splines or neural networks, to relate fu-
ture population size to current and past abundances.
There are well-understood quantitative assessments of
model fit, such as the mean squared prediction error,
which are used both for parameter estimation and to
compare the fit of different models to a particular data
set.

An example of a statistical model that is commonly
used with population cycles is the linear autoregressive
(AR) model (Royama 1992). This is used both to quan-
titatively characterize the period and strength of the
cycle, and to look for correlations with other oscillatory
variables. A well-known application of the latter is the
search for the putative correlation between Canadian
lynx and hare populations and the sunspot cycle (Moran
1949, Keith 1963, Sinclair et al. 1993, Ranta et al.
1997, Sinclair and Gosline 1997).

Nonlinear models of varying complexity have also
been used, both to describe time series (Lindström et
al. 1995) and to estimate whether the fluctuations in
various populations are chaotic (Hassell et al. 1976,
Turchin 1993, Ellner and Turchin 1995).

The statistical handling of time series has several
strengths: the techniques are well developed (and in
particular the notion of ‘‘goodness of fit’’ is quantita-
tively defined); the sampling properties of the statistics
are well understood; and the approach makes relatively
few assumptions about the data. However, the approach
treats the time series simply as a string of numbers,
ignoring any qualitative and quantitative information
about the ecological system that generates the time
series. Hence the models tend to be biologically naive.
Furthermore, statistical analyses provide no informa-
tion about the underlying ecological mechanisms, for
there is not a unique relationship between statistical
patterns and mechanisms. Indeed, a particular pattern
can often be generated by a variety of different mech-
anisms.

The approach of theoretical population ecologists,
which dates back to Lotka and Volterra, typically dif-
fers in all four regards. The goal of this approach is
typically to understand the causes of a generic phe-
nomenon, such as ‘‘the 3–4 yr rodent cycle,’’ rather
than a particular time series. Thus the time series is
abstracted to its period, for example, rather than being
modeled directly. The models that are constructed are
explicitly biological and contain the major mechanisms
or processes that are believed to generate the dynamic
behavior. The model’s explanatory power is rarely
judged on the basis of statistical goodness of fit, but
rather on a grosser level of agreement, such as the

model’s capacity to generate cycles of approximately
the right period.

The theoretical literature on population models that
can produce cycles is too vast to review here in any
detail. Cycles can be caused by direct and delayed den-
sity dependence (May 1974, Gurney et al. 1983; these
terms are used differently in reference to continuously
and discretely breeding organisms), a variety of con-
sumer–resource interactions, such as predator–prey,
host–parasitoid, and host–pathogen interactions (Lotka
1925, Volterra 1926, Nicholson and Bailey 1935, Ro-
senzweig and MacArthur 1963, Anderson and May
1981), and periodic variation in the environment, which
can cause population cycles with a period longer than
that of the driving environmental variable (Aron and
Schwartz 1984, Rinaldi et al. 1993). Furthermore, when
one of the above factors is present but too weak to
cause deterministic cycles, random exogenous forcing
can cause cycles to appear (Royama 1992, Kaitala et
al. 1996.

Godfray and Hassell (1989) illustrate the approach
commonly taken by theoretical ecologists. They sought
to explain cycles in continuously breeding tropical pest
insects in which the period is roughly equal to the pest’s
generation time. They developed a model of the inter-
action between a host, in which only the juveniles are
vulnerable to attack, and a parasitoid that displays den-
sity dependence in its attack rate. The similarities in
the form and period of the cycles between the model
output and the real populations were used as evidence
that parasitoids may be driving the generation cycles
often observed in tropical insect populations. This is
the degree of interface between data and models found
in most theoretical ecology studies.

Gurney et al. (1980) went one step further in their
attempt to explain the oscillations in one of Nicholson’s
blowfly populations. They constructed a model incor-
porating a likely mechanism, estimated the parameters
mainly from other available data, and showed that the
model output ‘‘looked like’’ the data, including cap-
turing the ‘‘double-humped peak’’ of the cycle. This
study is unusual in theoretical ecology in that some
parameter estimation was done from the time series
itself but, as is typical, the goodness of fit was not
measured statistically.

The mechanistic modeling approach has several
strengths: mechanistic factors controlling the dynamics
are explicitly included, enhancing our understanding
and allowing predictions to be made about the con-
sequences of environmental change; it uses information
from other experiments and observations beyond the
time series; and in principle the approach provides a
theoretical framework for recognizing that dynamical
behavior seen in different ecological systems may be
manifestations of the same underlying dynamical pro-
cess. However, the statistical properties of mechanistic
models are not, in general, well understood—any part
of the model that does not have independent supporting
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FIG. 2. A laboratory population of the sheep blowfly (Lu-
cilia cuprina). This is ‘‘population I’’ from Fig. 8 of Nich-
olson (1957); the data are tabulated in Brillinger et al. (1980).
Adults are counted every 2 d. Other data are available for
this population (e.g., time series of eggs and adult mortality),
but we want to illustrate this process with the sort of data
one might have from a field population.

evidence requires possibly arbitrary assumptions about
functional form, and there is no sharp notion of good-
ness of fit.

The statistical and mechanistic modeling approaches
are clearly complementary, but we have found re-
markably few examples of them being used in com-
bination. As noted above, Gurney et al. (1980) did this
in part when analyzing Nicholson’s blowflies. Royama
(1992) used a match to the autocorrelation structure of
the Canadian lynx data to estimate parameters for a
mechanistic predator–prey model, which matched the
time-series data better than did a simple phenomeno-
logical model. Schaffer and his colleagues (Olsen and
Schaffer 1990, Schaffer et al. 1990, Tidd et al. 1993)
used the Lyapunov exponent and nonlinear forecast
accuracy (both nonlinear time-series statistics) to show
that a simple mechanistic model of measles epidemics
gave a better fit to the time-series data than did a variety
of phenomenological models, and did as well as a more
detailed mechanistic model.

The main goal of this paper is to formulate, and
illustrate through an example, how the statistical and
mechanistic modeling approaches can be combined to
give both deeper insight into biological mechanisms
and more-rigorous testing of the models that embody
these mechanisms. After giving an overview of the
process, we apply our approach to the population of
blowflies shown in Fig. 2. The data come from a lab-
oratory study of the sheep blowfly (Lucilia cuprina)
performed by A. J. Nicholson (1957), and will be fa-
miliar to most readers from introductory ecology text-
books. Why have we dredged up Nicholson’s blowflies
yet again? A statistician would say that we should use
simulated data, in which we know the ‘‘truth’’ exactly,
to check the reliability of this approach. A field ecol-
ogist would say this is all hot air unless it works with
field populations. The blowflies are a compromise: be-
ing real animals, they present far more of a challenge
than any simulated population could; but being a lab-
oratory population, we know the true limiting factor.

During this analysis we pretend to know less than we
actually do, limiting our knowledge to the adult time
series, the general structure common to all of Nich-
olson’s experimental populations, and various quanti-
tative estimates of generic life-history parameters (such
as maximum fecundity). This is typical of the data
available for well-studied field populations.

INFERRING THE CAUSES OF POPULATION CYCLES

The biological question we wish to answer is: Which
interaction (or interactions) causes the population to
cycle? We rephrase this in a more quantitative form:
Which interaction can generate population dynamics
similar to the observed time series? Thus we must move
from a qualitative hypothesis (such as ‘‘the observed
population cycles are caused by density-dependent fe-
cundity’’) to explicit predictions about population dy-
namics. This is not a trivial process. The population
interactions in question will typically be nonlinear, and
theoretical analyses have repeatedly shown that non-
linear interactions have nonintuitive dynamical con-
sequences. The solution is to construct a mechanistic
population model that embodies the hypothesis as ap-
plied to the population, use the model to generate sim-
ulated time series, and quantitatively compare the sim-
ulated time series to the data. Each of these steps is a
well-established process (although new techniques are
being rapidly developed), but to our knowledge they
have never before been combined in this way to quan-
titatively evaluate hypotheses about population dynam-
ics.

Construct mechanistic models

There are two phases to the model construction. The
first phase involves writing down the mathematical
equations. These must incorporate information about
general population structure, such as the organism’s life
history and trophic interactions, that are thought to be
important. Indeed, even the mathematical framework
to be used (for example, discrete vs. continuous time)
will depend on the population structure. Functional
forms must be specified for all of the vital processes.
The hypothesis for the cause of the population cycles
will usually show up as density dependence in one or
more of these processes. There are many subtleties to
building mathematical population models; for example
see Nisbet and Gurney (1982) and Tuljapurkar and Cas-
well (1997).

Mathematical analysis of the model may give in-
sights into whether the hypothesis is worth pursuing
further. The model may be fundamentally incapable of
generating cycles, or can only do so for biologically
implausible parameter values. The latter is often true
for simple discrete-time density-dependent models
such as the logistic map. Alternatively, the model may
not be capable of generating cycles of the correct pe-
riod. For example, many simple discrete-time consum-
er–resource models seem unable to produce cycles with
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a period of less than about six generations (Lauwerier
and Metz 1986, Ginzburg and Taneyhill 1994). Nev-
ertheless, many models will be capable of producing
qualitatively correct cycles with reasonable parameter
values.

Parameterize model

The second phase of model construction is to narrow
the parameter values to a range that is appropriate to
the population at hand. There are two sources of in-
formation for this—independent experiments and ob-
servations, and the population time series itself. Each
source of parameter estimates has advantages and dis-
advantages.

Independent parameter estimates can be based on
experimental manipulations of factors such as density
or on observational studies such as those leading to
life-table analyses (e.g., Klomp 1966, McCauley et al.
1996). This allows the model evaluation that follows
to be statistically independent of the model parame-
terization. However, many parameters can be difficult
to estimate directly from available data, and the esti-
mates may not be entirely appropriate: the experimental
setting might not be strictly analogous to the natural
population (especially if the experiments are performed
in the laboratory).

An alternative approach to parameter estimation is
to fit the model directly to the time series, using a
variety of statistical approaches. Until recently this was
difficult to do with complex models, but modern com-
puter-intensive techniques are rapidly being developed.
We describe three such approaches below; for appli-
cations to population biology see Jones and Perry
(1978), Harrison (1995), Dennis et al. (1995, 1997),
and Higgins et al. (1997). All parameters can be esti-
mated simultaneously with these techniques, and they
are unequivocally relevant to the population. However,
this precludes a fully independent assessment of the
model.

The parameterized model represents a fully specified
quantitative representation of the hypothesis as applied
to the population. It also represents a hypothesis about
the aspects of the general population structure that are
important; this constraint is unavoidable, and reflects
the contingency inherent in applying ecological prin-
ciples to specific systems. This process should be re-
peated for the various hypotheses to be evaluated, pro-
ducing a suite of quantitative hypotheses, each of which
can be compared to the data.

Compare model predictions to time series

Each parameterized model makes predictions about
the dynamics. These predictions are revealed by sim-
ulating the model to generate synthetic time series, to
which the empirical time series can be compared. We
quantify this comparison with a suite of statistical time-
series descriptors, such as the period, amplitude, au-
tocorrelation function, and spectral density function,

that we refer to collectively as ‘‘time-series probes.’’
Each of these probes quantifies some aspect of the pat-
tern in the dynamics. We compute these probes both
for the data and for the simulated time series, and ask
which simulated time series has probe values most sim-
ilar to the data (Olsen and Schaffer 1990, Schaffer et
al. 1990, Royama 1992, Hanski et al. 1993, Tidd et al.
1993, Turchin and Hanski 1997). If the models are
stochastic (as most reasonable models will be), then
we can generate a large number of simulated time series
for each model and look at the distribution of probes
for each model (each synthetic time series should be
the same length as the data). Then we can ask under
which model are the data most probable.

If we have parameterized the models by fitting them
to the time series, this would appear to be blatant cir-
cularity. After all, we are taught to test our models
against novel data! There are three reasons why this
may not be as much of a problem as it appears. First,
the comparison of the different models is in some sense
a second round of model selection (the first was the
parameterization exercise); it is not really a ‘‘test’’ of
the models. The outcome is not a true model, but a
plausible one (probably more than one!). Second, the
fitting procedures typically try to maximize fit at either
very short or very long time scales; many of the fea-
tures measured by the probes are of an intermediate
scale and may not have been selected by the fitting
procedure. Third, the models will not in general be free
to fit the data arbitrarily well. Because of the constraints
imposed by the population structure and the functional
forms, there may be a trade-off, for example, between
period and amplitude of the oscillations that cause the
model to perform poorly even with the ‘‘best’’ param-
eter values.

The outcome of this exercise will be one or more
dynamically plausible mechanisms for the observed
population cycles. Even if there is no clear-cut winner,
some hypotheses are likely to have been eliminated,
and this alone will be a great contribution in many
systems. Furthermore, the results can be used to guide
future focussed tests of the remaining plausible hy-
potheses, and make predictions of future dynamics,
both in unmanipulated populations and in the presence
of deliberate environmental change.

AN EXAMPLE: NICHOLSON’S BLOWFLIES

Construct mechanistic models

In the blowfly population, the qualitative life-history
and ‘‘environmental’’ information (i.e., Nicholson’s
[1957] experimental protocols: a single species with
non-dynamic food, constant environment, continuous
breeding, relatively constant juvenile development
time) suggest that a simple, single-species stage-struc-
tured model with two stages (juvenile and adult) could
describe the population. The basic formulation of this
type of model is as follows:
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dJ(t)
5 B(t) 2 R(t) 2 M (t)Jdt

dA(t)
5 R(t) 2 M (t) (1)Adt

where J and A are the densities of juveniles and adults,
B is the birth rate, t is time, R is the recruitment rate
of juveniles to adults, and MJ and MA are the death
rates of juveniles and adults. The constant development
time (which we denote t) implies that R(t) is related
to B(t 2 t), leading us to the formalism of the delay-
differential equation (Nisbet 1997). Models with this
structure are in fact capable of displaying cycles (Gur-
ney and Nisbet 1985), indicating that this hypothesis
of the population structure is plausible.

The next step is to identify the dependencies that go
into the individual processes. For example, ‘‘density-
dependent per capita fecundity’’ translates into

B(t)/A(t) 5 f(A(t)).

We must also come up with functional forms for all of
these processes. Ideally we would have information
from independent experiments to suggest this. If not,
we can either guess plausible forms, or use flexible
functions such as splines (Wood 1994a, b, Ellner et al.
1997, Bjørnstad et al. 1998). All of the processes must
be spelled out in this way, so that instead of ‘‘cycles
are caused by density-dependent fecundity,’’ the hy-
pothesis is really ‘‘cycles are caused by density-de-
pendent fecundity (plus a bunch of other assumptions
about population structure).’’ Indeed, the model may
be used to explore joint hypotheses, such as the com-
bination of predation and intrinsic density dependence
(Stenseth et al. 1996).

There are a number of models fitting into the struc-
ture of Eq. 1 that might be applied to blowflies. In
some of these models the effect of the density depen-
dence is instantaneous, as when the larval death rate
is a function of current larval density. These direct-
feedback models only produce cycles with a period less
than twice the juvenile development time (Gurney and
Nisbet 1985). The blowfly development time is 12–16
d (Nicholson 1957) and the cycle period (from spectral
analysis) is 40 d, so we can reject these direct-feedback
mechanisms out of hand. In models where the effect
of the density dependence is delayed, the cycle period
is between 2 and 4 times the development time (Gurney
and Nisbet 1985), consistent with the blowfly data.
Thus we need to examine these delayed-feedback mod-
els in detail. Our goal in this blowfly analysis is to be
illustrative rather than exhaustive, so we only present
two models (other hypotheses and models can be eval-
uated in an analogous fashion):

(1) Adult-competition (AC) model.—Adult blowflies
need to eat a protein meal in order to produce eggs; if
the food supply is limited, then fecundity will be den-
sity dependent. We represent this mechanism with a

model in which the per capita fecundity is an expo-
nentially declining function of adult density (based on
Gurney et al. 1980, 1983, Readshaw and Cuff 1980;
see Appendix for details).
(2) Larval-competition (LC) model.—Larvae require
food to grow; if the food supply is limited then they
will grow more slowly at high density. Since the de-
velopment time is constant, these slow-growing flies
will be smaller at maturity, which in turn will reduce
their per capita fecundity as adults (based on the AF
model of Gurney and Nisbet 1985; see Appendix for
details).

In both the AC and LC models, the remaining pro-
cesses in Eq. 1 are taken in their simplest forms: the
juvenile development time is constant and per capita
mortality is independent of density.

Parameterize models

The above models embody the hypotheses qualita-
tively, but we must still adapt them quantitatively to
the population at hand by estimating parameter values.
Some of the parameters can be estimated from inde-
pendent data, such as the life tables in Nicholson (1957)
and Readshaw and van Gerwen (1983) (Table 1). How-
ever, no information is available about many parame-
ters, especially in the LC model. Thus we must estimate
the parameters by fitting the models to the time series.
There is a variety of techniques, differing in their def-
inition of ‘‘fit’’ and in their assumptions about the data;
we illustrate three that we have found particularly use-
ful in the context of strong nonlinearities and popu-
lation oscillations (banishing the technical details to
the Appendix), and summarize the resulting parameter
estimates in Table 1.

Direct fit.—The most obvious way to proceed is to
attempt to fit the models directly. The models describe
a relationship between current and future values of the
state variables. If we have estimates of all the relevant
state variables then we can do a nonlinear least-squares
regression to find the set of parameters that best fit the
data. The residuals from such regressions are typically
autocorrelated; this can be accounted for directly in the
regression (Carpenter et al. 1994).

To apply this approach to the AC model, we need
estimates of A(t), dA(t)/dt, and A(t 2 t). We have direct
observations of A(t); if we smooth the time series (see
for example Green and Silverman 1994) then we can
estimate dA(t)/dt and A(t 2 t) by differentiating and
interpolating, respectively, the smoothed time series.

This approach is not possible, however, with the LC
model, because we do not have estimates of juvenile
density and adult mass. Thus we will not discuss this
approach further.

Trajectory matching.—If we believe that there is lit-
tle process noise, then a correct model should be able
to duplicate exactly the observed time series, with de-
viations only due to measurement errors. Model pa-
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TABLE 1. Empirical parameter estimates (‘‘independent estimates’’) and best-fit parameter estimates and goodness-of-fit
values (r2) for the adult-competition (AC) and larval-competition (LC) models, from the three fitting methods. Data are
from Nicholson (1957) and Readshaw and van Gerwen (1983).

Model t† (d) qsJ‡ b§ mA\ A0¶ J0# G†† r2

Independent
estimates 12–16 5.1 n.a. 0.08–0.14 n.a. n.a. n.a. ···

Direct fitting
AC
LC

12.0
n.a.

4.37
···

···
n.a.

0.079
n.a.

438
···

···
n.a.

···
n.a.

0.69
n.a.

Trajectory matching
AC
LC

14.0
13.5

4.77
···

···
50.0

0.16
0.125

573
···

···
4.98 3 105

···
0.98

0.70
0.60

Nonlinear forecasting, NLF
AC
LC

14.1
12.0

5.93
···

···
24.3

0.212
0.144

463
···

···
97.9

···
0.097

0.67
0.61

Note: The designation n.a. indicates ‘‘possible, but not available.’’
† Development time.
‡ The product of maximum per capita fecundity and juvenile survival. For the independent estimates a 50:50 sex ratio is

assumed. In the AC model q and sJ cannot be separated.
§ Fecundity per unit mass.
\ Adult per capita death rate.
¶ Density at which total fecundity is maximum.
# Density at which the uptake rate is half its maximum.
†† Maintenance cost.

rameters (including initial values of the state variables)
are then chosen by minimizing the mean squared dif-
ference between the numerical solution of the model
and the data. This process finds the parameter values
for which the deterministic-model time series most
closely follows the data; it is usually called ‘‘model
calibration.’’ This is the approach used by Jones and
Perry (1978) and Harrison (1995).

We fit both the AC and LC models to the data using
nonlinear least squares. The residuals from the fits of
both models are strongly autocorrelated. Ordinarily,
measurement errors are assumed to be independent, and
such autocorrelation would be evidence of an inade-
quate model. However, the time series of adult blow-
flies was obtained from running counts of the number
of pupating and dying individuals, so any measurement
errors (such as a miscount of the number of dead flies)
would propagate through time, generating such auto-
correlations.

Nonlinear forecasting.—The direct fitting failed on
the LC model because of the problem of unobserved
state variables. We introduce a technique that allows
us to fit a process-error model even when all state vari-
ables are not available; derived from the field of non-
linear dynamics, it is called ‘‘nonlinear forecasting’’
(NLF) (Farmer and Sidorowich 1987, Casdagli 1989).
This uses the Takens embedding theorem (Takens
1981) to substitute lagged values of the observed vari-
able for the missing state variables. In essence, given
a model time series and the data time series, NLF takes
each segment of the data time series, finds segments
of the model time series that are ‘‘similar’’ (close in
the reconstructed state space; see Appendix), and
makes predictions based on the subsequent values of

the model time series. These predictions can then be
compared with the observed values from the data. The
fitting algorithm searches for the set of parameters that
minimizes the mean forecast error from these predic-
tions. Since both process and measurement noise enter
the procedure at the step of generating the model time
series, either type of noise can be added in any way
that is biologically and dynamically plausible, and need
not be linear. In this example, we made the per capita
fecundity into a lognormally distributed, autocorrelated
random variable; the variance and correlation coeffi-
cient were free parameters to be fit.

Compare model predictions to time series

We now have quantitative hypotheses of the causes
of the cycles. How do we assess their absolute or rel-
ative abilities to explain the observed population dy-
namics? We could use the criteria that we maximized
to obtain the parameter estimates (Table 1), but com-
paring structurally different models in this way can be
difficult, and we have no independent assessment of
what constitutes ‘‘significant difference.’’ Because our
true interest is in the ability of the different models to
reproduce the observed dynamics, we proceed by gen-
erating simulated time series from the models and com-
paring them directly to the observed time series with
a number of time-series probes.

For the blowfly models, the deterministic time series
generated by the trajectory-matching method are much
more regular than the data. To generate more realistic
series, we added measurement noise, based on the mean
and variance of the residuals from the fits. The resulting
time series have maximum values that are much greater
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FIG. 3. Simulated time series from (a) the
adult-competition (AC) model and (b) the lar-
val-competition (LC) model using the parame-
ter estimates and noise structure from the tra-
jectory-matching fits (Table 1). Compare with
Fig. 2. The dashed line depicts the deterministic
time series; the solid line shows the stochastic
realization with measurement error.

FIG. 4. Simulated time series from (a) the adult-competition
(AC) model and (b) the larval-competition (LC) model using
the parameter estimates and noise structure from the nonlinear-
forecasting (NLF) fits (Table 1). Compare with Fig. 2.

than those seen in the data, but they otherwise look
qualitatively correct (Fig. 3).

The NLF fitting process incorporated dynamic noise
into the model, and the variance and autocorrelation of
that noise were estimated along with the other model
parameters. We simply iterated the models to obtain

simulated time series. The AC time series looks qual-
itatively correct, but the LC time series seems to have
too short a period, too low an amplitude, and too little
variation in peak height (Fig. 4).

Figs. 3 and 4 show single realizations of the sto-
chastic models. These time series are short (by sto-
chastic simulation standards), so we expect that other
realizations will look somewhat different, and indeed
they do. Rather than compare a single realization with
the data, we compared 100 realizations from each mod-
el. The variation among these realizations allowed us
to estimate confidence intervals, and ask how likely the
data are under each model.

The probes fall into two groups. The first simply
describes the distribution of the state variable: mean,
variance, and quantiles. The other group addresses the
nature and intensity of the cycles: the standard devi-
ation of log N (a measure of variability), the period
and amplitude of the cycle, the first few autocorrelation
coefficients, and the Lyapunov exponent.

For each of the probes, Table 2 shows the single
value for the data and the means and 90% confidence
intervals (based on the 100 synthetic time series) for
each of the models with each of the fitting procedures.
If one of the models were ‘‘true’’ we would expect that
the data value should fall within the confidence interval
of that model for most or all of the probes. However,
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the pattern is not so simple. For some probes (such as
the 25% quantile of the distribution of densities) the
AC model is correct and the LC model is incorrect,
while for others (such as the Lyapunov exponent) the
opposite is true. Other probes (such as period) are ac-
curately captured by both models, but with several
probes (such as the autocorrelation coefficients) both
models miss entirely. In the last situation, the AC mod-
el is almost always closer to the data value than is the
LC model.

We could simply count up how many probes favor
each model: this gives a tie if only those probes where
at least one model ‘‘fits’’ are considered, and favors
the AC model if all probes are considered. However,
the different probes are not fully independent of one
another. For example, the variability and the maximum
density are very strongly correlated. To make a fair
comparison we need a set of independent probes of the
data. We can account for the correlations among the
time-series probes and create orthogonal probes using
multivariate statistics (Manly 1986), such as principal-
component analysis (PCA). PCA finds a set of linear
combinations (called principal components) of the
original measurements such that the principal com-
ponents are independent of one another. In addition,
the first principal component (PC1) captures as much
of the variability among observations as possible (the
different measurements are scaled to each have a unit
variance), the second principal component captures the
most variation in the residuals about PC1, and so on.
The hope is that the first few principal components will
capture most of the variability in the data set. This
accomplishes a dual purpose of simplifying the analysis
by lowering the number of variables and ensuring that
the variables are independent.

We analyzed the NLF and trajectory-matching fits
separately. In each case, we considered the 12 probes
in Table 2 to be the measurements, and each of the 200
synthetic time series to be the observations. In both
cases PC1 captured more than half of the variance in
probe values among the synthetic time series; the first
two principal components described 66% of the vari-
ance for trajectory-matching and 76% of the variance
for NLF. In both analyses PC1 is primarily an amplitude
and autocorrelation axis (Table 3). For the trajectory-
matching time series, PC2 is dominated by the Lya-
punov exponent and the 75% quantile, suggesting that
it involves the shapes of the cycles. With NLF, the
strongest contributions to PC2 are from the mean and
median.

For both NLF and trajectory matching the first prin-
cipal component clearly separates the AC and LC mod-
els, whereas both models have overlapping variation
along PC2 (Fig. 5). We can plot the data in the same
principal-component space as the models (indicated by
the large ‘‘D’’ in Fig. 5), and see which model is most
consistent with it. For the trajectory-matching analysis,
the data are on the edge of the AC model values. For

the NLF analysis, the data are outside both model
regions, but far closer to the AC model.

Overall, these results suggest that the AC model bet-
ter describes the data than does the LC model, es-
pecially when it is fit with measurement error (trajec-
tory matching) rather than process error (NLF).

Nicholson’s blowflies revisited?

What is the right answer? Nicholson provided an
unlimited supply of food to the larvae in his experi-
ment, and while adults received an unlimited supply
of sugar water (which they need for survival) they re-
ceived a fixed amount of protein (which they require
to produce eggs) every 2 d. It seems clear from this
that the ‘‘true’’ mechanism is fecundity limited by adult
competition for food. It is conceivable that some aspect
of larval density other than food availability might have
an impact, but independent experiments have shown
that with limited food the per capita fecundity declines
with density even when the adults came from a common
larval pool (Readshaw and van Gerwen 1983). We also
have some direct checks on the assumptions of the
models. Nicholson recorded time series of eggs and
recruits, and so we can check the development time
and juvenile mortality. The cross-correlation between
eggs and recruits has a maximum at 12 d; the rela-
tionship between the two series at that lag is nearly
linear, confirming the assumption of density-indepen-
dent larval mortality.

Nevertheless, the AC model does not predict the data
perfectly. There are a number of confounding factors.
Independent experiments indicate that adult mortality
is not constant, but depends on both density and age
(Readshaw and van Gerwen 1983). When individuals
recruit into the adult stage, they take several days to
produce their first batch of eggs, so there is an ‘‘im-
mature adult’’ stage that competes for food but does
not lay eggs. We have explored the consequences of
putting both these factors into the AC model; they have
no qualitative effect on the dynamics, and the quan-
titative effects seem small, but they could account for
some of the errors.

Another problem is that the population was evolving.
The population was maintained for another year fol-
lowing the data we analyze here, and the time series
changed qualitatively; at the end of the experiment
Nicholson found that the flies had an enhanced ability
to reproduce at high density at the expense of a lowered
maximum fecundity. However, an analysis that applied
direct fits of the AC model to the data indicated that
the parameters were changing systematically even dur-
ing the part of the experiment we analyzed (Stokes et
al. 1988). This results in ‘‘noise’’ with long autocor-
relation times that we did not take into account.

DISCUSSION

The question we asked at the beginning of this paper
was, how can we uncover the mechanisms that drive
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TABLE 2. Univariate time-series ‘‘probes’’ (i.e., statistical descriptors) of the data and the simulated time series from the
adult-competition (AC) and larval-competition (LC) models. For the models we report the means over 100 simulated time
series, with the 5% and 95% quantiles in parentheses.

Model Minimum

25%

quantile Median Mean

75%

quantile Maximum

Data 60 762 1760 2480 3870 8920

Trajectory matching
AC 60

(60; 60)
860

(620; 1090)
2260

(2010; 2530)
2560

(2430; 2670)
4050

(3790; 4320)
7620

(6750; 8650)

LC 60
(60; 60)

1600
(1360; 1830)

2830
(2620; 3060)

2910
(2760; 3060)

4080
(3850; 4330)

8330
(7210; 9680)

Nonlinear forecasting, NLF
AC 268

(228; 314)
842

(712; 983)
2090

(1850; 2350)
2460

(2310; 2610)
3990

(3530; 4360)
6510

(5670; 7980)

LC 518
(490; 553)

1090
(988; 1190)

2240
(2070; 2460)

2320
(2200; 2510)

3570
(3410; 3960)

4360
(4110; 4650)

† Standard deviation of log10 N.
‡ The first two coefficients of the autocorrelation function.
§ From spectral decomposition.
\ Calculated using LENNS (Ellner et al. 1992); see Ellner and Turchin (1995). LENNS parameters: l 5 3, d 5 7, k 5 3.

regular oscillations in population density? This entails
inferring processes from the empirical patterns they
produce. Statisticians call this the ‘‘inverse problem’’
and it is typically difficult to solve, as many processes
might produce similar patterns (Wood 1997). Using
Nicholson’s blowfly data as an example of a cyclic
population, we addressed this question with a synthetic
approach that combines statistical time-series methods
with mechanistic population models. We quantified hy-
potheses about the causes of population cycles by writ-
ing and parameterizing mathematical models embody-
ing the putative mechanisms. We then generated sim-
ulated time series from these models, and used a variety
of probes (time-series statistics) to quantitatively com-
pare the model time series to the data. The blowfly
models produced qualitatively similar dynamics, but
we found that a model incorporating adult competition
for food produced dynamics more like the data than
did one incorporating larval competition. In particular,
the data were nearly distinguishable from time series
generated by the adult-competition model with obser-
vation error. The strong confirmation of this model was
satisfying, for the population was in fact limited by the
adult food supply and, being in a laboratory, was free
from environmental variation.

Our experience with the blowfly analyses raises the
hope that applying this synthetic approach to data from
field populations (where the correct answer is not
known beforehand) may similarly result in a rejection
of at least some of the hypotheses and confirmation of
others. We think that our analysis of blowfly data is a
fair test of the ability of this approach to distinguish
between rival hypotheses because of the constraints
that we imposed on ourselves during this exercise. Spe-
cifically, we limited ourselves to the analysis of adult
numbers only, since in most field case studies we will

have a time series of only a single life stage. In addition,
we used a model that grossly simplified the dynamical
processes governing blowfly oscillations (for example,
we did not incorporate the density and age dependen-
cies that are known to affect adult mortality). In other
words, our models were similar to the ones that we are
likely to apply to field case studies, both being sim-
plified caricatures of reality. Finally, our analysis was
ignorant of the details of Nicholson’s experimental set-
up—the information we used to check on whether or
not we obtained the correct answer. Thus, success was
by no means assured. The fact that our results did de-
cisively point to one of the postulated mechanisms is
grounds for optimism. On the other hand, the blowfly
example also had several features that made our job
easier: only one species was involved, the environment
was relatively invariant, the population estimates were
relatively precise, and there was only one major ‘‘lim-
iting factor’’ (finite food supply).

Why are we asking simple population models to
make quantitative predictions about specific popula-
tions? After all, many of these models were originally
designed to answer qualitative questions about popu-
lation dynamics, and there is no way that they can
encompass all the factors affecting a population. How-
ever, population models are becoming increasingly so-
phisticated, to the point where we find it reasonable to
challenge them quantitatively at least with model sys-
tems. Laboratory populations such as the blowflies an-
alyzed here are clearly model systems, but so are cyclic
field populations. The large amplitude and regularity
of the oscillations indicate that only a few factors or
interactions are dominating the population dynamics,
and so populations like the ones in Fig. 1 are inter-
mediate in complexity between the laboratory and an
arbitrarily chosen field population.
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TABLE 2. Extended.

Period
Variability

(s)†

Autocorrelation function‡

AR1 AR2
Mean

amplitude§
Lyapunov
exponent\

20 0.487 0.873 0.675 2530 0.169

19.7
(18; 20)

0.629
(0.573; 0.68)

0.671
(0.599; 0.724)

0.55
(0.487; 0.606)

2320
(2120; 2490)

0.0644
(20.0193; 0.145)

18.5
(18; 20)

0.486
(0.427; 0.536)

0.466
(0.373; 0.559)

0.397
(0.303; 0.487)

1610
(1320; 1850)

0.07
(20.0061; 0.153)

18.7
(18; 20)

0.386
(0.353; 0.413)

0.915
(0.9; 0.927)

0.733
(0.707; 0.753)

2330
(2110; 2550)

0.0697
(0.0216; 0.117)

20
(20; 20)

0.294
(0.285; 0.309)

0.934
(0.927; 0.939)

0.762
(0.744; 0.776)

1750
(1670; 1960)

0.0999
(0.0269; 0.194)

TABLE 3. Loadings of the probes on the first two principal components. Each value represents the correlation between the
probe and the principal component; large absolute values indicate that the probe is strongly represented in the component.

Minimum
25%

quantile Median Mean
75%

quantile Maximum Period
Variability

(s)

Autocorrelation
function

AR1 AR2
Mean

amplitude
Lyapunov
exponent

Vari-
ance
ex-

plained
(%)

Trajectory matching
PC1
PC2

0†
0†

0.37
20.03

0.35
0.06

0.36
0.17

0.04
0.84

0.2
0.1

20.24
20.23

20.36
0.13

20.36
0.07

20.34
0.10

20.36
0.19

0.03
20.36

56
10

Nonlinear forecasting, NLF
PC1
PC2

0.35
20.03

0.32
20.16

0.15
20.62

20.27
20.51

20.30
20.40

20.33
20.02

0.26
20.11

20.35
20.04

0.29
20.18

0.27
20.27

20.35
20.14

0.12
20.16

62
14

† The minimum was the same for all runs of the trajectory-matching models.

Analysis of field populations will be more difficult
in several ways, even if we seek less detailed expla-
nations for processes governing oscillations. There will
be more random environmental fluctuation in the time
series and probably less precise population estimates.
There will likely be more candidate mechanisms to
contrast against each other. Consider, for example, the
spectrum of hypotheses that has been advanced to ex-
plain cycles in small mammal populations: herbivore–
plant and predator–prey interactions, weather, stress,
behavior, and genetics (reviews in Krebs and Myers
1974, Batzli 1992, Stenseth and Ims 1993). On the
other hand, field case studies are also potentially rich
in life-history and natural-history information, which
as we showed in this paper can serve both to delineate
likely processes and to reject other postulated mech-
anisms. We have been working to apply these ap-
proaches to field populations of the pine looper moth
(Schwerdtfeger 1941, Broekhuizen et al. 1993). As ex-
pected, this is more challenging than the blowflies, for
the populations have many more factors impinging on
them and the cycles are not as regular. We will probably
not be able to find a single best hypothesis, but we have
succeeded in rejecting some biologically plausible hy-

potheses, such as variation in plant quality in response
to herbivory (Straw 1996). Furthermore, by requiring
the models to make quantitative predictions we have
uncovered some novel features in the data. For ex-
ample, the population growth rate appears to be de-
pressed at extremely low densities, which might be
caused by an Allee effect or a generalist predator (Tur-
nock 1969). This factor cannot produce population cy-
cles on its own, but it can modify the structure of cycles
arising from other sources. These are valuable contri-
butions, even for such a well-studied species, for direct
analysis of the data (even detailed life tables) without
reference to dynamical models yields few strong con-
clusions (Royama 1997).

Often the most compelling evidence for the causes
of cycles comes from long-term experimental manip-
ulations of entire populations. Recent examples of this
include predator manipulations in hares (Krebs et al.
1995) and density manipulations in grouse (Moss et al.
1996). These experiments are expensive and time con-
suming, and so should be designed to maximize the
chance of getting a decisive answer. This design is best
done by using population models to make quantitative
predictions about the population’s response to the ma-
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FIG. 5. Principal-component analyses of the blowfly mod-
els, based on the time-series probes of the synthetic time
series. A 5 AC model; L 5 LC model; D 5 data, plotted
with the same PC scores (not included in the original anal-
ysis). (a) Models based on trajectory-matching fits; (b) mod-
els based on nonlinear-forecasting (NLF) fits.

nipulation, as is being done with laboratory populations
of Tribolium (Constantino et al. 1995). The approaches
we have advocated in this paper can play this role, as
well as reducing the number of hypotheses that need
to need to be considered experimentally.

If this approach is to be useful it needs to work well
with systems more complex than an isolated popula-
tion. Our work with pine looper suggests that it will
work with multiple interacting species; an important
methodological issue is how best to incorporate spo-
radic data about the other state variables. In the anal-
yses described here we have treated environmental
variability as ‘‘noise,’’ but we could incorporate in-
formation about environmental variables into the mod-
els, and examine the structure of the residuals around
the fits, to assess the importance of exogenous forcing
in driving the cycles. Spatially structured populations
will be a challenge, partly because the mechanistic

models for such populations are not as fully developed.
Often even a ‘‘failed’’ analysis can be useful. For ex-
ample, we have been analyzing a spatially structured
mite predator–prey system (Janssen et al. 1997), and
found that without a detailed understanding of dispersal
it is almost impossible to get a biologically sophisti-
cated model to fit the data. This information does not
exist, but our difficulties will guide future empirical
research in this system.

Some of the techniques described in this paper can
be applied to noncyclic populations, but we suspect
that the overall approach will not work well with such
populations. Certainly, the model-fitting techniques do
not rely on the cyclic nature of the data (trajectory
matching was originally developed for flatfish popu-
lations, and other techniques have been developed for
fitting models to generic time-series data, especially in
fisheries applications [e.g., Schnute 1994]). However,
it is difficult to detect and accurately quantify the non-
linearities underlying the dynamics unless the popu-
lation varies through a wide range of densities (Schaffer
et al. 1986); this is more likely to be found in cyclic
populations than those fluctuating erratically around an
equilibrium. If the data are not cyclic there will be
fewer probes available, so it will be more difficult to
discriminate among the fitted models. Finally, the rel-
ative simplicity of the dynamical patterns in cyclic pop-
ulations suggests that the dynamics might be caused
by a few fairly simple processes, whereas the patterns
in populations with irregular fluctuations might be the
result of so many interacting processes that there is
little hope of distinguishing among them.

What have we learned from the blowfly analysis that
could help us in our long-term goal of uncovering
mechanisms underlying cyclic dynamics in natural
populations? One important lesson is that we cannot
rely on a single measure of the match between model
predictions and the data (such as cycle period), and
should instead use a suite of probes. Multiple probes
allow us to overcome the ‘‘many-to-one’’ problem:
many different processes may cause a particular pattern
observed in the data (such as a cycle with a given
period). This problem is pervasive and must be re-
membered whenever a match between model and data
is taken as evidence that the model is mechanistically
valid. Indeed, we found that both the AC and LC mod-
els predict approximately the same cycle period. Ad-
ditionally, both models predicted a correlation between
adult density and fecundity (also observed in the data),
even though in one model this was the mechanism driv-
ing the cycles, while in the other the correlation was
a side effect of a completely separate process.

The use of multiple probes may be contrasted with
a more conventional statistical approach in which com-
peting models are evaluated using a single goodness-
of-fit criterion (e.g., likelihood ratios). Any approach
based on a single aggregate measure of how badly a
model’s output departs from the data is discarding a
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tremendous amount of information about the structure
of the model’s errors. Multiple probes, each getting at
different features of the time series, offer the possibility
of finding structural differences that a summary good-
ness-of-fit measure (such as r2) glosses over. The un-
resolved difficulty in this approach is how to combine
results from the different probes (apart from the ideal
situation where all probes favor the same model). In
this paper we have found that principal-component
analysis is a useful tool for combining probes. We have
successfully used this approach in other analyses, but
do not yet know how generally applicable it will be.
Another approach is to use probes that are inherently
multi-valued, such as the spectral density function
(Bjørnstad et al. 1996) or the distribution of ‘‘local
Lyapunov exponents’’ (Ellner and Turchin 1995). In-
deed, the latter proved to be the only probe that could
reliably distinguish among competing models of mea-
sles epidemics (Bailey et al. 1997).

The second lesson of this case study is the value of
general theory. We were able to reject immediately a
large class of hypotheses that could cause cycles in
blowflies only because the dynamical theory of single-
species populations has matured to the point where
there is a clear mapping between the dynamical mech-
anisms underlying cycles and some gross features of
the fluctuation pattern. As far as we are aware, this sort
of model synthesis has been done for only one other
class of models. In populations with non-overlapping
generations, feedback with a delay of one generation
can produce cycles with a two-generation period,
whereas feedback with a two-generation delay can gen-
erate cycles with a period of six or more generations
(Royama 1977, Berryman 1996; unfortunately, these
are commonly called ‘‘direct’’ and ‘‘delayed’’ density
dependence, although the former is analogous to the
delayed feedback discussed here). The former mech-
anism can arise, for example, from density-dependent
fecundity, whereas the latter is typically caused by
some sort of consumer–resource interactions (it can
also result from maternal effects, Ginzburg and Ta-
neyhill 1994). We would really like to see a general
theory on how specific consumer–resource mechanisms
map to a multidimensional space in which each axis is
a specific probe (period, amplitude, stability, etc). Hav-
ing such theory, and time-series data for a specific pop-
ulation, we would be able to quickly narrow down the
spectrum of potential explanations by rejecting those
that do not produce the correct quantitative measures.
An additional benefit of such a theory would be a better
understanding of which probes are most useful in dis-
criminating among various explanations. This would
provide guidance on the features of data that should
be reported in empirical papers, or recorded in the first
place. As we begin to analyze various field populations,
we are frequently finding that, despite decades of field
research, a critical piece of information was not re-
corded, or at least not reported.

Although we have learned much from the analysis
of the blowfly data, many issues, especially technical
ones, remain to be resolved (for the general issues of
modeling population data, see Nisbet and Gurney
[1982], Royama [1992], and Hilborn and Mangel
[1997]). The fitting process can be improved by de-
veloping likelihood functions that incorporate our best
information on the structure of the measurement and
dynamic noise. We need a modeling framework that
incorporates the possibility of long-term parameter
drift (whether environmental or evolutionary). We also
would like to know how long a time series need be to
give a reasonable chance of success: How does the
discriminatory power increase with series length, for
example, and can many short time series substitute for
one long one?

We single out one particular direction for future in-
vestigation. In the introduction we emphasized the con-
trast between phenomenological statistical models (no
biological mechanisms specified) and mechanistic the-
oretical models (all relevant processes specified). These
are actually two ends of a continuum. A fully mech-
anistic model must contain all important interactions,
and must specify an explicit function for each of them;
only parameter values are left to be estimated from the
data. However, not all of our choices of functional
forms may have a basis in data. To avoid an arbitrary
choice of a functional form, we may wish to construct
a model that is intermediate between the fully mech-
anistic and the completely phenomenological ends of
the spectrum (Wood 1994a); we call this a ‘‘semi-
mechanistic model’’ (Ellner et al. 1998). The idea is
to build into the model all that we know about the
biology, both quantitative and qualitative, and no more.
Where a mechanistic model would require that the re-
maining unknown functions be guessed or chosen ar-
bitrarily, in a semi-mechanistic model these factors
would be replaced by flexible nonparametric functions,
such as splines or neural networks, that would be free
to find the shape that is most consistent with the time
series (Ellner et al. 1997, 1998, Bjørnstad et al. 1998).
Although we have not attempted such a semi-mecha-
nistic approach in this paper, we think that this general
superset of the current synthesis has great promise in
helping us understand the mechanisms that cause cy-
cles in natural populations. We hope soon to find out
whether this promise is fulfilled, by applying this ap-
proach to such field case studies as cycles in forest
insects and small mammals.
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Schwerdtfeger, F. 1941. Über die Ursachen des Massen-
wechsels der Insekten. Zeitschrift für angewandte Ento-
mologie 28:254–303.

Sinclair, A. R. E., and J. M. Gosline. 1997. Solar activity
and mammal cycles in the Northern Hemisphere. American
Naturalist 149:776–784.

Sinclair, A. R. E., J. M. Gosline, G. Holdsworth, C. J. Krebs,
S. Boutin, J. N. M. Smith, R. Boonstra, and M. Dale. 1993.
Can the solar cycle and climate synchronize the snowshoe
hare in Canada? Evidence from tree rings and ice cores.
American Naturalist 141:173–198.

Statistical Sciences. 1993. S-plus guide to statistical and
mathematical analysis, version 3.2. MathSoft, Seattle,
Washington, USA.

Stenseth, N. C., O. N. Bjørnstad, and W. Falck. 1996. Is
spacing coupled with predation causing the microtine den-
sity cycle? A synthesis of current process-oriented and pat-
tern-oriented studies. Proceedings of the Royal Society of
London B 263:1423–1435.

Stenseth, N. C., and R. A. Ims. 1993. Population dynamics
of lemmings: temporal and spatial variation—an intro-
duction. Pages 61–96 in N. C. Stenseth and R. A. Ims,
editors. The biology of lemmings. Linnean Society, Lon-
don, UK.

Stokes, T. K., W. S. C. Gurney, R. M. Nisbet, and S. P. Blythe.
1988. Parameter evolution in a laboratory insect popula-
tion. Theoretical Population Biology 34:248–265.

Straw, N. A. 1996. The impact of pine looper moth, Bupalus
piniaria L. (Lepidoptera; Geometridae) on the growth of



1804 Ecology, Vol. 80, No. 6BRUCE E. KENDALL ET AL.

C
o
nc

ep
ts

&
S
yn

th
es

is

Scots pine in Tentsmuir Forest, Scotland. Forest Ecology
and Management 87:209–232.

Takens, F. 1981. Detecting strange attractors in turbulence.
Pages 366–381 in D. A. Rand and L. S. Young, editors.
Dynamical systems and turbulence. Springer-Verlag, Ber-
lin, Germany.

Tidd, C. W., L .F. Olsen, and W. M. Schaffer. 1993. The case
for chaos in childhood epidemics. II. Predicting historical
epidemics from mathematical models. Proceedings of the
Royal Society of London B 254:257–273.

Tuljapurkar, S., and H. Caswell, editors. 1997. Structured-
population models in marine, terrestrial, and freshwater
systems. Chapman & Hall, New York, New York, USA.

Turchin, P. 1993. Chaos and stability in rodent population
dynamics: evidence from nonlinear time-series analysis.
Oikos 68:167–172.

Turchin, P., and I. Hanski. 1997. An empirically based model
for latitudinal gradient in vole population dynamics. Amer-
ican Naturalist 149:842–874.

Turnock, W. J. 1969. Predation by larval Elateridae on pupae

of the pine looper, Bupalus piniarius (L.). Netherlands Jour-
nal of Zoology 19:393–416.

Volterra, V. 1926. Fluctuations in the abundance of a species
considered mathematically. Nature 118:558–560.

Watson, A., R. Moss, P. Rothery, and R. Parr. 1984. De-
mographic causes and predictive models of population fluc-
tuations in Red Grouse. Journal of Animal Ecology 53:
639–662.

Wood, S. N. 1994a. Obtaining birth and mortality patterns
from structured population trajectories. Ecological Mono-
graphs 64:23–44.

. 1994b. Spline models of biological population dy-
namics: how to estimate mortality rates for stage struc-
tured populations with dimorphic life histories. IMA Jour-
nal of Mathematics Applied in Medicine & Biology 11:
61–78.

. 1997. Inverse problems and structured-population
dynamics. Pages 555–586 in S. Tuljapurkar and H. Caswell,
editors. Structured-population models in marine, terrestrial,
and freshwater systems. Chapman & Hall, New York, New
York, USA.

APPENDIX

Details of the models for Nicholson’s blowflies

Adult competition (AC) model.—We represent density-de-
pendent fecundity by setting B(t) 5 , where q is2A(t)/A0qA(t)e
the maximum per capita fecundity and A0 is the density at
which total fecundity is maximum. Assuming that the de-
velopment time (t) and the egg-to-adult survival (sJ) are con-
stant, the recruitment rate is given by

R (t) 5 sJB (t 2 t ) 5 sJqA (t 2 t ) 2A(t2t)/A0e

where t 5 time, A(t) 5 adult density. Finally, assuming a con-
stant adult mortality rate (mA) allows us to reduce Eq. 1 to

dA(t)
2A(t2t)/A05 s qA(t 2 t )e 2 m A(t).J Adt

Larval competition (LC) model.—We assume that the ju-
veniles gain mass at a density-dependent rate

1
g(t) 5 max 0, 2 G ,5 61 1 J(t)/J0

where G is a maintenance cost and J0 is the density at which
the uptake rate is half its maximum. Again assuming a con-
stant development time, the per capita mass at maturity is
given by

t

G(t) 5 g(x) dx.E
t2t

Assuming that fecundity is directly proportional to mass and
mortality is density independent, we have

dA(t)
5 bW(t 2 t )s 2 m A(t)J Adt

dJ(t)
5 bW(t) 2 m J(t) 2 bW(t 2 t )sJ Jdt

dW(t)
5 G(t)bW(t 2 t )s 2 m W(t)J Adt

where W(t) is the total mass of the adult population at time
t, b is the fecundity per unit mass of adults, and mJ and mA

are the density-independent per capita death rates of juveniles
and adults, respectively; . Notice that the dynamic2m tJs 5 eJ

state variables are J and W; the equation for A is included
only to facilitate comparison with the observed adult densi-
ties.

Model implementation details

The deterministic implementation of the models (used for
trajectory matching) was done with a second-order Runge-
Kutta numerical integrator, using cubic interpolation to get
the lagged values of the state variables. The stochastic im-
plementation (for parameter estimation by nonlinear fore-
casting) used a simple Euler integration scheme with a short-
enough time step that lagged values could be obtained without
any interpolation. Stochasticity was introduced as noise in
the fecundity parameter q, which was modeled by treating
log q as a first-order Gaussian autoregressive process. Both
the variance and the autocorrelation of log q were fitted pa-
rameters.

Fitting details

Direct fits.—The AC model was fitted by nonparametrically
smoothing the observed time series, using a LOESS smooth
(Green and Silverman 1994). Such a smooth yields derivative
estimates for each state-variable sample, as well as a
smoothed estimate of the variable itself. We now have all the
relevant variables, as we can estimate A(t 2 t) at times be-
tween the sample times using the smooth. For each of a close-
ly spaced range of t values we got the best fit to the AC
model, using the nonlinear least-squares optimizer in S-plus
(Statistical Sciences 1993), and chose the value of t that gave
the best overall fit. For further details see Ellner et al. (1997).

Trajectory matching.—Model parameters (including the
initial values of the state variables) were chosen by mini-
mizing the sum of squared differences between the numerical
solution of the model and the data. Iteratively re-weighted
least squares were used to obtain maximum-likelihood pa-
rameter estimates for non-normal error models.

Care must be taken in the numerical solution of the model
for this to work reliably. The models were solved by an adap-
tive stepping routine in order to avoid numerical instability
in the solution for any trial parameters. With delay-differ-
ential models it is important to ensure that the order of ap-
proximation of lagged variables is better than the order of
the integration scheme; failure to do so can lead to a non-
smooth objective function. For moderately complicated mod-
els derivatives of the model with respect to parameters are
usually obtained numerically by finite differencing. This is
only reliable in general if the truncation and approximation
errors of the approximations are monitored and the differ-
ences adjusted accordingly. Additionally, model runs used
for differencing should use the integration mesh implied by
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the current parameter set, and not adjust the integration mesh
by adaptive stepping, if accuracy in the derivatives is not to
be thrown away.

Parameter estimation should be done by constrained meth-
ods, both to include biologically sensible parameter bounds
and to ensure that impossible parameter values are not passed
to the model integration method. For most ecological analyses
a constrained Quasi-Newton method is an appropriate way of
minimizing the least-squares objective, since the residual
variability will tend to be far too large for Gauss-Newton
methods to perform efficiently; at present it is unclear whether
sequential quadratic programming or a more traditional ap-
proach will be faster.

Nonlinear forecasting.—Nonlinear forecasting accuracy
(NLF) is closely related to what statisticians call a ‘‘gener-
alized method of moments’’ (Hansen and Singleton 1982). A
‘‘moment’’ in this context is any quantity that describes (and
can be computed directly from) the times series; all of the
probes discussed in this paper are moments in this sense. The
selected moments pi are computed for the model and for the
data, the differences between pi(data) and pi(model) are com-
bined into an overall measure of difference, and model pa-
rameters are chosen to minimize this measure of difference.
The ‘‘method of simulated moments’’ (McFadden 1989; see
Monfort and van Dijk [1995] for a thorough review) refers
to the situation in which model moments are estimated by
simulation, as in the current analysis. The choice of moments
is typically ad hoc. In NLF, moments are the conditional mean
of the observed state variable x(t) given past values, which
we obtain by constructing a nonlinear forecasting model for
the observed state variables. We used the sum of squared
forecasting errors as our overall measure of difference, which
is equivalent to the conventional least-squares fitting criterion
for regression or time-series models.

This procedure is implemented numerically as follows (see
Ellner et al. [1998] for full details). First, a time-delay state
vector is created from the data:

Xt 5 (xt, xt 2 L, . . . , xt 2 mL)

where L is the lag interval and m is the number of lags, and
a similar vector Yt is made from the model output. In order
to make a forecast prediction for x at some time in the future,
t 1 Tp, we find the distance between the data point Xt and
each model point Yi. Our prediction of is the weightedxt 1 Tp

mean of , with the weighting being a function of theyi 1 Tp

distance between Xt and Yi. In statistical jargon, we are fitting
a kernel regression to the model output, and using the re-
gression to predict the data. A kernel regression has only one
fitted parameter, namely the bandwidth h, which controls how
rapidly more distant Yi are down-weighted in computing the
weighted average. Here we selected h by cross-validation,
which is a standard method for kernel regression (see e.g.,
Green and Silverman 1994).

Before applying NLF we must choose the prediction in-
terval (Tp), the lag interval (L), and the number of lags (m).
We chose these on the basis of the data, using the method of
Cheng and Tong (1992), which uses kernel regression to find
values for which the data are best able to predict themselves
(i.e., the vectors Yi described above are constructed from the
data themselves rather than from model output, with suitable
care that there is no overlap between the components of the
X’s and Y’s). An exhaustive search was run over all possible
combinations of these parameters, with the result that the best
predictions overall were obtained with a lag of L 5 6 d, and
just one lag. After an initial drop-off the prediction r 2 was
nearly constant over a range of prediction intervals up to ;20
d, so we used the average prediction r 2 at 6, 12, and 20 d as
the fitting criterion.

Minimization of the nonlinear forecasting error (the fitting
criterion) was carried out numerically using Powell’s method
(Press et al. 1992) for nonlinear minimization. To allow the
minimization algorithm to converge we used the same ran-
dom-number seed for all simulations of the model; this makes
the estimated forecasting error a continuous function of model
parameters.




