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ABSTRACT
In the data warehouse environment, the concept of a ma-
terialized view is nowadays common and important in an
objective of efficiently supporting OLAP query processing.
Materialized views are generally derived from select-project-
join of several base relations. These materialized views need
to be updated when the base relations change. Since the
propagation of updates to the views may impose a signifi-
cant overhead, it is very important to update the warehouse
views efficiently. Though various view maintenance strate-
gies have been discussed so far, they typically require too
much access to base relations, resulting in the performance
degradation.

In this paper we propose an efficient incremental view main-
tenance strategy called delta propagation that can minimize
the total size of base relations accessed by analyzing the
properties of base relations. We first define the delta expres-
sion and a delta propagation tree which are core concepts of
the strategy. Then, a dynamic programming algorithm that
can find the optimal delta expression are proposed. We also
present various experimental results that show the useful-
ness and  efficiency of the strategy.
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1. INTRODUCTION
The concept of a data warehouse as a common technology
has been utilized to provide analysts and managers with
strategic information about the key figures of the under-
lying business. Data warehouses, therefore, periodically ex-
tract and store the data needed for analytical purposes from
remote information sources. Since each specific data content
is of no interest at this level, almost all queries on data ware-
houses are related to statistics involving aggregates in sup-
port of on-line analytical processing (OLAP). These kinds
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of query patterns generally include entire table scans and/or
relation joins which incur the high cost of query processing.
In this regard, materialized views should be very effective
in speeding up the OLAP queries as well as update process-
ing, and are increasingly supported by commercial database
systems.

The main objective of a materialized view is to improve
query performance. However, when a warehouse is updated
especially due to the changes of remote information sources,
the materialized views must also be updated. While queries
calling for up-to-date information are growing and the amount
of data reflected to data warehouses has been increasing, the
time window available for making the warehouse up-to-date
has been shrinking. Hence, an efficient view maintenance
strategy is one of the outstanding issues in the data ware-
house environment. This can improve the performance of
query processing by minimizing OLAP queries’ down time
and interference.

There can be roughly two different methods in reflecting
data changes to materialized views: recomputation and in-
cremental maintenance. Here, incrementally maintaining a
materialized view includes computing and propagating only
its changes. Compared to the sizes of base relations and
views, their changes are generally very small. Hence, it is
cheaper to compute only the changes of a view rather than
to recompute it from scratch. In line with this, many poss i -
ble strategies that allow incremental view maintenance have
been  proposed PI PI KWWI  PI [71Pl  PI.

1.1 Related Work
Various kinds of materialized views can be formed over the
base and/or view relations, i.e., projection views, select-
project-join (SPJ) views, aggregation views, and so on. [1][2]
[lo]  proposed formal expressions through which we can in-
crementally maintain the SPJ views. The incremental view
maintenance expressions which can additionally support the
aggregation views were proposed in [3]  [4]  [7]  [9]. How to main-
tain views correctly using the previous maintenance expres-
sions were discussed in [11][12][13]  when multiple data sources
are distributed and their changes occur concurrently. How-
ever, all these works did not mention how to select an effi-
cient maintenance expression of many candidate expressions
being able to be applied to the view maintenance.

There are two noticeable and comparable methods to incre-
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mentally maintain a SPJ materialized view, the major form
of a view in a data warehouse. For a n-way join view V over
base relations & (1 5 i 5 n), i.e., V = RI W R2 W . . . W &,
[l] proposed the following expression to compute the change
of view V, which is denoted by AV, and proved its correct-
n e s s .

A V  =  (A&WRzW...WR,)
U (RI W  AR2 W  ... W  Rn)

U . . .

u(AR1  WARzW...WA&) (1)

Here, A&  denotes the change of base relation R+  For up-
dating view V, it is sufficient to compute its changes AV
such as expression (1) and propagate AV to V. Expres-
sion (1) consists of (2” - 1) terms, each of which is a n-way
join form of base and/or delta relations. For example, the
changes AV of a 3-way join view V over base relation RI,
R2 and R3 can be obtained by the expression:

A V = (AR1 W  R2 W  R3) U (RI W AR2  W R3) U

(RI W  R2 W  ARs)  U (AR1 W AR2  W R3) U
(AR1  W  R2 W AR3)  u (RI W AR2  W AR3)  U

(AR1  W AR2  W ARs)

Since expression (1) requires too many terms in computing
the change of a view, [3] proposed a new maintenance ex-
pression with only n terms in achieving the same goal as [I].
Namely,

A V  =  (ARlWRzW...WR,)

u (R; WARzW...WRn)
U . . .

u (R; W  R; W . . . w&w,  WA&) (2)

Here, k means the relation fi to which the change of &,
A&,  is reflected, that is, R; = Ri  U ARi.  This propagation
strategy also computes AV correctly using only n terms [3].

Recently, [14]  presented an incremental maintenance algo-
rithm that computes the change of view as  a series of asyn-
chronous steps. And, [15]  proposed a maintenance algorithm
that exploit common subexpressions between different view
maintenance expressions. The algorithms developed in [14]
and [15]  are both based on the expression (2).

In general, there can be many possible expressions which can
compute the change of a view according to the incremental
view maintenance strategies such as [l] and [3].  Thus, it is
important that we decide an efficient maintenance expres-
sion in order to improve the performance of view mainte-
nance. For this point, [16]  showed that the maintenance
expression proposed in [3] has built the most efficient main-
tenance strategy so far.

1.2 Motivation
In the area of an incremental view maintenance, one of
the most important factors as  the performance measure is
closely related to the total amount of access to base rela-
tions. As we mentioned in Section 1.1, a general vew main-
tenance expression is composed of base relations and their
changes occurred by the changes of the remote information

sources. Because the size of a base relation is commonly
much bigger than that of its changes, it is critical to se-
lect an efficient maintenance expression which accesses as
small amount of base relations as possible. With a view
comprised of n base relations, the expression proposed in
[l] has  (2n  - 1) terms as described in expression (1) and
hence each base relation is accessed (2”-’  - 1) times. On
the other hand, [3] presented an expression with n terms
in which each base relation is accessed (n - 1) times. This
expression has been known to be the most efficient among
all strategies developed until now [16].

Note that the above two expressions consist of the terms
identically formed to the view definition. In other words,
when a view is defined as a join of n base relations fi (1 5
i 5 n), each term in the expressions is also a join form of
corresponding n relations, i.e., Ri,  ARi,  or k, as you can
see in expression (1) and (2). In this point, previous view
maintenance strategies have inherently a serious limitation
that each base relation in the expressions must be xcessed
at least (n - 1) times. If we can efficiently utilize the charac-
teristics of a propagation order and  the size of base relations,
we can minimize the total amount of access to base relations
in an objective of high performance view maintenance.

The following example motivates the need for different view
maintenance policies. For a view V over base relation RI,
R2 and R3,  an expression to compute the changes of the
view by [3] may be formed as

A V = (AR1 W R2 W R3) u (R; W AR2  W R3)

U (RI,  W R; W  ARs) (3)
If base relation R3 is very large compared to RI and R2,  we
can reduce the cost of computing AV considerably by min-
imizing the accesses of base relation R3 using the following
form:

A V = (((AR1 W R2)  U (RI,  W AR2))  W R3)

U (R; W R; W  AR3) (4)
In the comparison of expression (3) and (4),  expression (4)
makes base relation R3 accessed only once by adjusting ex-
pression (3) with reflecting the size of base relations. This
is because the propagation order of the changes of base re-
lations is altered according to the view maintenance expres-
sion. The propagation order greatly affects  the total amount
of relations accessed, which will be substantially explained
in Section 3. However, the choice of an optimal propagation
order is not as straightforward as the above example may
indicate. In this paper we propose an efficient incremental
view maintenance strategy which guarantees high perfor-
mance view maintenance. A algorithm that can find out an
optimal maintenance expression are also presented.

In Section 2, we present our materialized view model and
its cost model under which the performance of various view
maintenance strategies can be evaluated. Our proposed view
maintenance method called delta propagation is described
with in-depth analyses in Section 3. The algorithm for an
optimal view maintenance expression is proposed in Section
4. Section 5 gives results from performance experiments. Fi-
nally, we conclude our work by summarizing it with further
work in Section 6.
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2. PRELIMINARIES
In this section we first specify the view definition model in
a data warehouse considered in the paper. And then, we
discuss the cost model which is used for the performance
estimation of view maintenance expressions.

2.1 View Definition Model
In data warehouse systems, the operational data are stored
as  fact tables or dimension tables through data extraction
and integration from remote data sources [17][18].  In order
to speed up query processing, data warehouses usually in-
troduce the concept of a summary table defined over fact
tables and dimension tables. Some summary tables can also
be defined over other summary tables. With these summary
tables, we can form some useful analytical information in
advance and efficiently support relevant OLAP queries. In
this paper the fact tables and dimension tables are called
as base relations, and the summary tables as materialized
views. If a summary table is used to define other summary
table, the summary table can also be called a base relation.
When remote information sources are changed, the changes
are propagated to the warehouse periodically. The period
has been usually daily or weekly so that updates are per-
formed in a batch manner. But, nowadays the cycle of the
change propagation is getting shorter and the time window
available for making the warehouse up-to-date is required
to be shrunken more and more. Hence, the study on the
efficient view maintenance mechanisms is being vigorously
performed. In the procedure of the change propagation, the
base relations in a data warehouse are first updated and
then the materialized views have to be maintained to reflect
the updates done against the base relations.

A materialized view can be variously defined over base re-
lations and/or other materialized views. In this paper we
consider materialized views defined by the select-project-
join (SPJ) expression. The SPJ views as a general form of
a view definition can cover the most part of materialized
views in a data warehouse environment. Moreover, a SPJ
view can be easily extended to accommodate one with ag-
gregation using generalized projections [7].  A view V over
n base relations (RI, Rz, . . , &)  is defined as  follows:

V=l-bc(R~  W  RzW...W&)

where L is a list of project attributes and C is a selection
condition.

For a base relation R, the notation AR means the changes of
R. In AR, there are additional count information indicating
the occurrence of each tuple. The positive count value for
each tuple of AR represents the insertion of so many copies
of the tuple into the base  relation R. The negative count
value, on the contrary, means the deletion of so many copies
of the tuple from the base relation R. The union operator,
U, unifies two relations with the count information. The
details are described in [3]. R’ represents the relation R
to which AR are reflected. Hence, R’  can be denoted as:
R’  = R U AR. Especially, the propagation of AR to R will
be denoted by the expression R t R U AR. For exampl:,  if
the changes of a view V is computed as (AR1  W  Rz) U (RI W
ARz),  then the update of V can be expressed as follows:

V t VU (AR1  W Rz) U (R; W  ARz)

2.2 Cost Model
In this paper we adopt the linear work metric developed in
[16]  as a cost model to compare many applicable view main-
tenance expressions. Although the linear work metric is rel-
atively simple, it can estimate the cost of processing complex
maintenance expressions very well [16].  In the linear work
metric, the cost of processing a maintenance expression is
the sum of the costs of processing each term of the expres-
sion. Because each term is a join of relations, the processing
cost of a term is proportional to the total size of the relations
included in the term. Let Cost(E) be the cost of processing
the expression E. If a view V is defined as RI W  Rz  and its
changes AV is given as (AR1  W R2)  U (RI1 W  ARz),  then the
cost of processing AV can be computed as follows:

Cost(AV) = Cost((AR1  W  Rz) u (R; W  ARz))

= Cost(AR1  W R2)  + Cost(R;  W  ARz)

= c. (IARlI + IR2l) +c.  (lR;l + lAR21)(5)

Here, c is a proportionality constant and [RI  is the size of re-
lation R. Thus an  efficient maintenance expression must be
one that can reduce the cost of processing AV, Cost(AV),
by minimizing the accesses of base relations.

3. DELTA PROPAGATION STRATEGY
We present an efficient view maintenance method called
delta propagation which can minimize the cost of computing
the changes of a view. Because a view is built by joining
several base relations and its changes can be computed by
propagating the changes of each base relation, the change
propagation order has close relation to the total size of relax
tions accessed during computing the changes of a view. In
general, the change propagation order can be decided by the
delta propagation tree defined in the following. As a result,
our method finds out an optimal delta propagation tree.

3.1 Delta Expression
For a set of base relations P = {R,,  Rt  , . . . , &},  we define
two notations W  P, W  P’ as follows:

W  P = R, W  Rt  W  . . . W  I?.,,
W  P’ = I$:,  W  f$;  W  . . . W  d,

Using these notations, the definition of the delta expression
can be stated as:

Definition 1. For a join expression of n base relations, i.e.,
RlWRzW... W  R,,  DeZta({Rl,Rz,~~~  ,a})  meaningthe
changes of this join expression, i.e., A(R1  W  R2  W . . . W R,)
occurred by the changes of some base relations is defined  as:

DeZta({&})  = A&
DeZta({R1,Rz,...  ,a}) =

DeZta(P1)  W  (W P2)  W (W P3) Cd ...  W (W Pm)

U (W Pi) W  DeZta(P2)  W  (W P3) W ...  W (W Pm)

. .

u (W PI) w (W Pi) w ...  W  (W PL-,)  W  Delta(P,),

where {PI,  Pz,...  , Pm} is a partition of {Rl,Ra,...  ,a}
such that 1 < m 5 n, UE,  pi  = {RI, Rz, . . . . Rn},  pi #
C#I  (1 5 i 5 m) and Pi fI  Pj = 4 (i # j).
0
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For each delta expression, there exists a unique delta prop-
agation tree corresponding to it. For a view V = RI W
R2  W  .,. W R,,,  the root node of its delta propagation
tree is A(R1  W RZ  W . . . W Rn).  Assume that for each
node A(R, W Rt W ...RZL)  a partition {PI,&,...  ,Pk} of
{%,Rt,...  ,&} is given. Then the children of the node
A(%  cd Rt W ...&)  are A(Pl),  A(Pz),  ..., A(Pk)  with
A(P;) being the ith child from the left. Here, each node
A(R, W Rt W . . . R,) means the delta expression DeZta(%  W
Rt  W . . . &).  For example, Figure 1 shows two delta expres-
sions, each of which is defined as follows:

THEOREM 1. The delta expression  Delta({Rl,  Rz,  . . . , Rn))
computes the changes of view V = RI W Rz  W . ‘. W Rn car-
rectly.

PROOF. The proof is straightforward and trivial. 0

Especially, when PI  = {RI}, Pz  = {Rz), ... , and P, =
{a}, Delta((R1,  Rz,...  ,&})  is resolved into the same
expression as expression (1) in Section 1.1. Suppose that
a view V is defined as RI W  R2  W Rs.  With 4 = {RI, R2)

and P2  = {Rs},  an expression of AV using the delta expres-
sion can be specified as:

A V  =  Delta((R1,  Rz,  R3))

= Delta((R1,  Rz})  W  R3  U R; W Ri  W DeZta({Rs})

= (DeZta({Rl})  W R2  U R: W DeZta({Rz})) W R3

uR;WR;WARz

= (AR1WR2uR;WAR2)WRs

u R: W  R; W  AR3 (6)

As you can notice in expression (6),  the base relation R3  is
accessed only once in computing AV. If we use an expression
like expression (3),  R3  must be accessed two times for the
same work. Hence, we can reduce the cost of computing
AV considerably, especially, in csse  that relation Rs is very
large compared to relation RI and Rz.

Definition 2.  An incremental view maintenance strategy
based on the delta expression is called the delta propa-
gation strategy. For a view V = RI W  Rz W  ...  W  Rn,
the delta propagation strategy maintains the view with the
following expression.

V t VUDeZta({R1,Rz,~~.  ,a})

3.2 Cost Analyses of the Delta Propagation
Strategy

In this section, we analyze our delta propagation strategy
in the basis of the cost model specified in Section 2.2. As
we mentioned, [16]  showed that the propagation strategy
of [3] forms the most efficient maintenance expression of the
expressions proposed so far. Thus, we will compare our delta
propagation strategy with it.

Any delta expression can be represented as a tree like Fig-
ure 1 which we call a delta propagation tree in the paper.

G-4
DeZta({Rl,Rz,R3,&,R5,fi}6))  =

DeZta({Rl,  R2,  R3,  Rq,  R5))  w  %

u R;  w Ri  W  Rj W  Rk W Rk  W Delta({Rs))

Delta((R1,  R2,  &, fi, R5)) =

Delta((R1,  Rz})  W  R 3  W  R4  W  R5

u Rl  W Ri W Delta({Rs})  ~4  E14  W R5

u Ri W Ri W  RI?  W  Delta((R4,  Rs})
Delta((R1,  Rz})  =

DeZta({Rl})  W  R2  U Ri W  DeWiRzl)

Delta({fi,  R5)) =

DeZta({&})  W  R5  U  Ri w  DeW{Rsl)

@I

DeZta({Rl,  R2, R3, R4, Rsr  Iz6))  =

DeZta((R1))  W  R2 W  R 3  W  R4 W  R5  ~4  a

U R I 1 W DeZta({Rz})  W  R3  w  % w  R5  w  h

U R; W  Ri W  Delta({Rs})  W  & W  R5  w  %

u Rl W Ri W Ri W  DeZta({%})  W R5  w  R6

u R; W R', W Ri W  Ri W Delta((R5))  W %

u RI1  w R’,  W Ri W  Rk W  Rk  W Delta({Rs})

As you can notice, Figure l-(b) is a delta propagation tree
derived from the view maintenance expression (2) proposed
in [3]. Our delta propagation tree, therefore, can cover all
possible propagation strategies in the incremental mainte-
nance problem. We can estimate how many base relation
& or Ri  is accessed in a delta propagation tree. By infer-
ence from the definition of the delta expression, if a delta
expression is composed of n terms, the number of access to
each base relation would be (n - 1). Here, n terms is to be
siblings in the same depth of a delta propagation tree. Be-
cause the delta expression is resolved to relations &,  Ri, or
A&  by recursively applying Definition 3.1, its delta propa-
gation tree can be a tree with height h (h 2 1) and subtrees
of the tree are also to be other delta expression. Hence,
each node in the tree is corresponding to delta expression
defined in the paper and its k children, who are siblings one
another, are to be terms of the expression specified by the
delta expression. Thus, the figure stated in the upper left
corner of a node in Figure 1 is the number of siblings except
itself and means that base relations included in the delta
expression of the node are accessed so many times during
the incremental view maintenance procedure. With a delta

3 5 2



propagation tree, the access number of base relation fi dur-
ing the view maintenance is equal to the sum of the figures
from the leaf node A(&) to the root node.

In case of Figure l-(a), base relation RI, Rz,  R3,  R4,  R5,
and Rs are accessed 4, 4, 3, 4, 4, and 1, respectively, during
the view maintenance. In Figure l-(b), all base  relations are
accessed 5 times. Note that we can reduce the number of
access to base  relation Rg  to one time. In consequence, the
cost of accessing base relations can be reduced considerably
if we use the delta propagation strategy proposed in the
paper and can find  out an optimal delta propagation tree.

THEOREM 2. For any delta propagation tree generated by
the delta expression, the number of access to base relation
& (1 < i 5 n), denoted by Ai, is less than equal to (n - 1)
where n as  the number of base relations participating in the
view definition, i.e., 1 5 Ai  5 (n - 1).

PROOF. We assume that  the number of access to a base
relation is equal to frequencies that the base relations ap-
pears in the maintenance expression. From the Definition
3.1 of the delta expression, the access to the base relation
&(l 5 i 5 n) can only occur in the term that includes
Delta(&)  where & @ Pk.  Thus, the frequencies that &
appears in any delta expression can  not exceed the number
of all possible forms of Delta(&).  Because Pk  is a subset
of {RI, Rz,  . . . , &}  and any two P, are disjoint each other,
the number of all possible forms of Delta(S)  is at most
[{RI,  Rz,  . . . . Rn} - {Ri}I = (n - 1). Hence, this corollary
may follow. 0

Let us consider the delta propagation strategy under the lin-
ear work metric which is the cost model specified in Section
2.2. When a view V is defined as RI  W  Rz W  Rs,  the cost,
of computing the changes of V, denoted by Cost(AV)  or
Cost(A(R1  W R2  W R3)),  can be as follows:

In case of applying the view maintenance strategy proposed
in  131,

Cost(A(R1  W  R2 W  R3)) = Cost(AR1  W  R2  W  R3)

+ Cost(R; W  AR2  W R3)

+ Cost(R; W  R; W  ARs)

= 21R;  1 + lRzl+ I&I

+21&l  + [AR11

+ lAR2I  + IARsI (7)
In case of applying our delta propagation strategy  with the
following delta expressions:

DeZta((R1,  Rz,  Rs}) =

DeZta((R1,  R2)) W  Rs  U RI1 W  R;  W  DeZta({Rs})
DeZta((R1,  R2)) =

DeZta((R1))  W R2  U R: W  DeZta({Rg})

Cost(DeZta((R1,  Rz,  Rs})) = 2lRll  + lR2l  + lR:l  + lRs1

+ lA(R, W  Rz)l+  IARlI
+ IARzI  + IARsI (8)

(a)  DI”b

(cl  DF& Cd)  DlT,

Figure 2: Possible Delta Propagation Trees of
DeZta((R1,  R2,  R3))

While expression (7) includes 21Rs  1,  expression (8) has I Rs  I+
lA(R,  W  R2)l  instead of 21R3  I. This means that in expres-
sion (7) relation R3 is accessed once more and the temporal
relation A(R1  W  R2)  is additionally accessed in expression
(8). If we assume that relation R3 is very large compared to
RI and R2,  we can consider that lR31  is bigger than  IARl  I
and lAR2I  so that lR31  is to be bigger than IA(R1  W R2)l,
because the change relations can be assumed to be gener-
ally much smaller than their base relations. Thus, the cost
of expression (2) is less than that of expression (1) under the
assumption that relation R3 is much bigger than RI and R2.
As we mentioned in the paper, the major limitation of [31’s
strategy is that every base relation must equally be accessed
(n - 1) times regardless of its size. In contrast to this, the
delta propagation strategy can reduce the number of access
to such large relations like R3 as in expression (8),  resulting
in reducing the linear work metric cost.

Now, the problem of how to find out, an optimal delta ex-
pression (or delta propagation tree) which can minimize the
view maintenance cost remains to us. In the next section,
we will discuss methods to find the optimal delta expression.

4. OPTIMAL DELTA EXPRESSION
In this paper, the optimal delta expression means one that
requires the minimal maintenance cost in the aspect of the
cost, model defined in Section 2.2. We now present a dynamic
programming algorithm that can find the optimal delta ex-
pression.

For a set, {RI, Rz,... ,&},  the number of possible parti-
tions is B(n), which is the nth Bell number [19].  Thus,
for DeZta((R1,  R2,. . . ,&}),  there can be B(n) delta ex-
pressions based on the partition of {RI, R2,  . . . , Rn}. For
a large value n, B(n) is approximately nn [20].  Therefore,
we need to find the optimal delta expression among these
expressions to minimize the maintenance cost. For exam-
ple, Figure 2 shows some possible delta propagation trees
of DeZta((R1,  R2,  R3)).  Each delta propagation tree repre-
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sents the corresponding delta expression. Based on the delta
expression of Definition 3.1, the maintenance cost for each
delta propagation tree can generally be computed by the fol-
lowing form when we assume the proportionality constant c
with 1 in the cost model defined in Section 2.2.

Cost(Delta((R1,  Rz,...  , Rn}))  =

f:  Cost(DeZta(Pi))
i=l

+ (]A@  A)] + (Pz]  +...+ ]Pml)

+ (lpi1  + IA@  pz)l+...+  Ipml)
+ . . .
+ (IP;I  + lP;I  + ...  + (A@  Pm)l) (9)

For Pi = {Rs,Rt,... ,&}  (1 5 i 5 m), the notation IPil,

lP;l, and IA@  pi)1  d enote lRsl  + lRtl+  ...+ IR%I, IRll  +
I%]+. . . + I&] and ]A(R,  W Rt  W  ... W  &)I, respectively.
The optimal cost of the delta expression is the cost of an
optimal propagation tree, i.e., the minimum cost of all delta
propagation trees. Hence, an optimal delta expression is one
with constructed by an optimal propagation tree.

Because dynamic programming is typically applied to op-
timization problems, we define the value of an optimal so-
lution in finding an optimal delta expression as the mini-
mum cost value in expression (9). In the computation of
expression (9) in dynamic programming, a way to compute
]A(W  Pi)1 needs, while IPi I and IPi I can be easily computed.
When JS(R1,  Rz) denotes the join selectivity of relation RI
and Rz, i.e., the expected size of the join result divided by
the maximum size lR11  x IRzl,  then IR1 W R2J  is equal to
JS(  RI,  R2)  x I RI I x I Rz  I. We can easily extend this to any
number of relations as  follows:

[RI  W  R2  W . ..WR.I =

l-I JS(Ri,  Rj)  x IRll  x lR2l  x ..+ x IRnI

(l<i,j<,)A(i<j)

If we assume that [(AR  W  S) U (R’ W  AS)] is equal to
[AR  W  S]  + IR’  W AS], then we have

]A(R,  W Rz W  ...  W  &)I  =

rI JS(&,Rj)  x
(l<i,j<n)/\(i<j)

{(IW  PII x n IRkI  x ...x n IRkI)
RkEP2 RkEPm

+( n IR;I  x lA(wP2)l  x...x  n IRkI)
R;EP; RzsEPm

+ . . .

+ ( n IR;I  x n If&I  x ... x IW  J’mNI
R;EP; R;EP;

From the above expressions, we can easily obtain the cost
value of expression (9).

Our dynamic programming algorithm named as  FindOp-
timalDeltaExpression  based on the above observations is
presented in Figure 3. FindOptimalDeltaExpression  tlnds
out an optimal delta expression for a given view, based on

1 Procedure FindOntimalDeltaExmession
Input:  view V = k~ W  R2  W . . . i  %

/* Initialize */
- Find n optimal delta expression for each base

relation.

For (i = 2 to n) do
- Find out an optimal delta expression for a subset

with size i of {Rl,Rz,...  ,&},
using already obtained optimal delta expression
for the subsets of size 1 to (i - 1).
(There exist C,,i  subsets.)

End For

/* As a result, we can obtain an optimal delta
expression for the input view V ‘/

End Procedure

Figure 3: Dynamic Programming Algorithm

the bottom-up approach. The algorithm first finds the opti-
mal delta expression for each base relation, which is unique
as you expect. Then, it iteratively finds an optimal delta ex-
pression for each  subset of {RI, R2,  . . . , Rn} from size 2 to
n. When we try to search an optimal delta expression for a
subset of size i, the algorithm uses optimal delta expressions
already computed for the subsets of size 1 to (i - 1). Eventu-
ally, the algorithm can find out an optimal delta expression
for the view defined over n base relations.

To find out an optimal delta expression for a subset P of
{RI,  Rz,.  . . , R,,},  the algorithm traces all possible parti-
tions of P. Because the number of possible partitions for
the subset of size i is equal to B(i)[19],  the total number of
partitions the algorithm needs to consider is

2G.i  x B(i),
i=l

where C,Q  is the number of combinations of size i from n
distinct relations and so means the number of subsets of
size i. Therefore, the time complexity of the algorithm is
approximately

O(k C,,i  x B(i)) M O(2” x B(4).
i=l

For a large value n, 0(2n  x B(n)) is approximately 0(2n  x
n”). We know that this algorithm’s time complexity is very
high due to its exhaustive search space. However, since
many materialized views in a data warehouse may be de-
fined over less than 10 base relations in practice, the algo-
rithm can be utilized properly in finding out the optimal
delta expression for these kinds of views.

5. EXPERIMENTS
We show in this section various performance experimental
results among several view maintenance mechanisms. In the
experiments, we used the TPC-D benchmark schema and
data [21].  And, Oracle7 database system running on a Sun
Ultra-Enterprise with 256MB RAM is used as the data ware-
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Figure 4: The performance evaluation by varying
the size of changes

house environment. We assume that the view used in the
experiments is defined as  the join of six base relations, i.e.,
CUSTOMER, ORDERS. LINEITEM. SUPPLIER.
NATION, a& REGION  from [Zl].  T&s,  the view v is
represented as follows:

V = CUSTOMER W  ORDERS W LJNEITEM
W  SUPPLIER W  NATION W  REGION

In the experiments, we compare our  delta propagation strat-
egy with the recomputation method and the maintenance
strategy proposed in 131.  Let us call [31’s  view maintenance
strategy n-term in this paper. As we mentioned in Section
1.1, [16]  proved that the n-term strategy is the best strat-
egy among existing incremental strategies. When we  change
the base relations from 2% to 10% of their original size, the
time required to execute each  view maintenance strategy is
shown  in Figure 4. The changes of base relations can  be
done by inserting or  deleting tuples.  nom Figure 4, we
can see that incremental view maintenance strategies, i.e.,
the n-tam strategy and  our  delta propagation strategy are
more  efficient than  the recomputation strategy within 10%~’
change. And, our  delta propagation strategy outperforms
other strategies.

According to the cost model specified in the paper, the size
of base relations may considerably a&& the performance
of view maintenance strategies. Figure 5 shows the perfor-
mance evaluation among three different methods by scaling
the size of base relations from 50% to 200%. As a result, our
proposed method gains a performance benefit of about 100%
compared to the recomputation method and 80% compared
to the v&em method. Hence, we can confirm that our delta
propagation strategy is more efficient than existing one~  in
maintaining materialized views.

6. CONCLUSIONS AND FUTURE WORK
Data warehouses store a large amount of summarized data to
support decision making proces. These summarized data
can  be seen as materialized views defined over  some data
sources. When data sources change, these materialized views
need to be updated to reflect the changes of data sources.
Since the updates of views may impose a significant over-
head on the warehouse, it is very important to update the
warehouse views efficiently. We presented the delta propaga-
tion strategy that can  incrementally maintain materialized

Figure 5: The performance evaluation by scaling the
size of base relations

views efficiently in the data warehouse environment. The
concept of the delta expression and a delta propagation tree
with considering the size of each base relation makes it pos-
sible to minimize the cost of maintaining views. As a result,
the experimental results show the efficiency of the proposed
strategy compared to previous strategies.

In general, data warehouses have many materialized views
which may share some base relations. In this case, if we can
reuse the intermediate results generated during maintain-
ing some materialized views in updating other materialized
views, we  cau  considerably improve the overall performance
of the data warehouse system. For this purpose, we are CUT-
rently  developing a view maintenance algorithm reusing the
results of delta expressions among  views.
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