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Abstract
In this paper, we investigate the existence and multiplicity of periodic solutions for a
class of p-Laplacian systems with impulses. By using variational methods and critical
point theory, we obtain that such a system possesses at least one, two periodic
solutions generated by impulses under different conditions, respectively. Recent
results in the literature are generalized and significantly improved.
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1 Introduction
Consider the following p-Laplacian system with impulsive condition:

⎧⎪⎪⎨
⎪⎪⎩
(|u′(t)|p–u′(t))′ +Vu(t,u(t)) = μFu(t,u(t)), t ∈ (sk–, sk),

�(|u′(sk)|p–u′(sk)) = gk(u(sk)),

u() – u(T) = u′() – u′(T) = ,

(Pp,μ)

where p > , sk , k = , , . . . ,m, are instants inwhich the impulses occur and  = s < s < s <
· · · < sm < sm+ = T , �u′(sk) = u′(s+k ) – u′(s–k ) with u′(s±k ) = limt→s±k

u′(t), gk(u) = gradu Gk(u),
Gk ∈ C(RN ,R), V ∈ C([,T]×R

N ,R), Vu(t,u(t)) = gradu V (t,u), F ∈ C([,T]×R
N ,R),

Fu(t,u(t)) = gradu F(t,u), μ ≥  is a parameter.
Impulsive differential equations can be used to describe the dynamics of processeswhich

possess abrupt changes at certain instants. Up to now, impulsive differential systems have
been widely applied in many science fields such as control theory, biology, mechanics and
so on; see [–] and references therein. For general theory of impulsive differential equa-
tions, we refer the readers to the monographs as [–].
The existence of solutions is one of the most important topics of impulsive differential

systems. Many classical methods and tools, such as coincidence degree theory, fixed point
theory and the method of upper and lower solutions, have been used to study them; see
[–] and references therein.
Recently, some authors creatively applied the variational method to deal with impulsive

problems, see [–]. The variational method is opening a new approach to dealing with
discontinuity problems such as impulses. However, when the problems studied in [–
] degenerate to the cases without impulses, plenty of the corresponding results can also
be obtained under the same conditions. Therefore, the effect of impulses was not seen
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evidently. Due to this point, in [–], the existence of solutions generated by impulses
is investigated.

Definition . ([]) A solution is called a solution generated by impulses if this solution
is non-trivial when impulsive terms are not zero, but it is trivial when impulsive term is
zero.

For example, if problem (Pp,μ) does not possess a non-zero solution when gk ≡  for all
≤ k ≤m, then the non-zero solution for problem (Pp,μ) is called a solution generated by
impulses. In detail, Zhang and Li [] obtained the following theorem.

Theorem A ([]) Assume that V ,W satisfy the following conditions:

(V) V is continuously differentiable and there exist positive constants b,b >  such that
b|u| ≤ –V (t,u) ≤ b|u| for all (t,u) ∈ [,T]×R

N ;
(V) –V (t,u) ≤ –Vu(t,u)u≤ –V (t,u) for all (t,u) ∈ [,T]×R

N ;
(g) There exists θ >  such that gk(u)u≤ θGk(u) <  for all u ∈ R

N \{} and k = , , . . . ,m.

Then the problem

⎧⎪⎪⎨
⎪⎪⎩
u′′(t) +Vu(t,u(t)) = , t ∈ (sk–, sk),

�(u′(sk)) = gk(u(sk)),

u() – u(T) = u′() – u′(T) = ,

(P,)

possesses at least one non-zero solution generated by impulses.

For p-Laplacian systems with impulsive condition, there are many excellent results by
using the variational method, see [–]. In particular, Han et al. [] obtained the ex-
istence of solutions for p-Laplacian systems generated by impulses.
Motivated by the facts mentioned above, in this paper, we further study the existence

of a solution for problem (Pp,μ) generated by impulses under more general conditions. In
addition, we investigate the multiple solutions generated by impulses. First, we give the
following new definition of the solution generated by impulses.

Definition . A solution for problem (Pp,μ) is said to be generated by impulses if this
solution emerges when impulsive terms are not zero, but disappears when impulsive terms
are zero.

Remark . Definition . contains Definition .. In addition, if problem (Pp,μ) possesses
at most one solution when gk ≡  for all  ≤ k ≤ m, but it possesses three solutions when
impulsive terms are not zero, then problem (Pp,μ) has at least two solutions generated by
impulses.

Now, we state our results.

Theorem . Assume that V , G satisfy the following conditions:

(V) V is continuous differentiable and there exist positive constants b > , b >  such that
b|u|p ≤ –V (t,u) ≤ b|u|p for all (t,u) ∈ [,T]×R

N ;

http://www.advancesindifferenceequations.com/content/2013/1/347
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(V) –V (t,u) ≤ –Vu(t,u)u for all (t,u) ∈ [,T]×R
N ;

(G) There exist  < ν < p,  < τ < p, b > , b ≥  such that b – b|u|ν ≤ Gk(u) ≤  for
all u ∈ R

N \ {} and k = , , . . . ,m. Moreover, there exist i ∈ {, , . . . ,m} and b > ,
b >  such that Gi(u) ≤ –b|u|τ for |u| ≤ b.

Then problem (Pp,) possesses at least one non-zero solution generated by impulses.

Example . Assume that p = , V (t,u) = –|u|, G(u) = –|u|, m = , τ = ν = . All the
conditions of Theorem . can be satisfied.

Remark . In [, ], the impulses are all superquadratic. However, when p = , here
we consider the case of subquadratic impulses. Moreover, since the impulsesGk(u)≥  in
[], so our results are also different from those in [].

Theorem . Assume that the following conditions hold:

(G) There exists θ > p such that gk(u)u≤ θGk(u) <  for all u ∈ R
N \{} and k = , , . . . ,m;

(V′
) V is continuous differentiable and there exist positive constants b > ,  < γ ≤ p such

that b|u|γ ≤ –V (t,u) for all (t,u) ∈ [,T]×R
N ;

(V′
) There exists a constant p ≤ � < θ such that –V (t,u) ≤ –Vu(t,u)u ≤ –�V (t,u) for all

(t,u) ∈ [,T]×R
N .

Then problem (Pp,) ( < p < ) possesses at least one non-zero solution generated by im-
pulses.

Remark . When p = , it is easy to see that (V′
), (V′

) are weaker than (V), (V). There-
fore, Theorem . improves Theorem A.
Indeed, taking

p = , V (t,u) = –|u|γ – |u|ς ,  < γ < ς ≤ , Gk(u) = –|u|θ .

All the conditions in Theorem . are satisfied, but conditions in Theorem A can not be
satisfied.

Theorem . Assume that (V), (V) hold and the following conditions are satisfied:

(V) Vu(t,u – u) = Vu(t,u) –Vu(t,u);
(G) max{lim supu→

–Gk (u)
|u|p , lim sup|u|→+∞

–Gk (u)
|u|p } < A for any k ∈ {, , . . . ,m},  <mACp

 <
b′
, where b′

 =min{ 
p ,b}, C is a constant which will be defined in Section ;

(G) There exists a constant vector ξ = (ξ , ξ , . . . , ξN ) ∈ R
N \ {} such that

∑m
k=Gk(ξ ) <∫ T

 V (t, ξ )dt;
(F) (Fu(t,u) – Fu(t,u),u – u) ≥  for all u,u ∈R

N .

Then there exist δ > , B >  such that, for each μ ∈ [, δ], problem (Pp,μ), p ≥ , possesses
at least two solutions generated by impulses;moreover, their norms are less than B.

Remark . Compared with Theorem A, Theorem . deals with the multiple solutions
generated by impulses. Moreover, we do not need Fu ≡  as that in Theorem A.

http://www.advancesindifferenceequations.com/content/2013/1/347
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Example . Let p =  and V (t,u) = –|u|. It is easy to see that conditions (V), (V) and
(V) hold. Let T = ,m = , ξ = (, , . . . , ) and

G(u) =

{
–|u|, |u| < ,
–(|u| – ), |u| ≥ .

(.)

Then we have

lim sup
u→

–G(u)
|u| = lim sup

|u|→+∞
–G(u)

|u| = 

and

– =G(ξ ) <
∫ T


V (t, ξ )dt = –.

Hence, conditions (G) and (G) in Theorem . can be satisfied for sufficiently small
A > . Let F(t,u) = u, then it satisfies (F).

The paper is organized as follows. In Section , we present some preliminaries. In Sec-
tion , we give the proof of our main results.

2 Preliminaries
In order to prove our main results, we give some definitions and lemmas that will be used
in the proof of our main results. Let

H =
{
u : [,T]→ R

N |u is absolutely continuous,

u() = u(T),u′ ∈ Lp
(
[,T],RN)}

. (.)

Then H is a separable and reflexive Banach space with the norm defined by

‖u‖ =
(∫ T



[∣∣u′(t)
∣∣p + ∣∣u(t)∣∣p]dt)/p

, ∀u ∈ H . (.)

Let ‖·‖p = (
∫ T
 |u(t)|p)/p denote the normof Banach space of Lp([,T],RN ). Since (H ,‖ · ‖)

is compactly embedded in C([,T],RN ) (see []), we claim that there exists a positive
constant C such that

‖u‖∞ ≤ C‖u‖, (.)

where ‖u‖∞ =maxt∈[,T] |u(t)|.
To study problem (Pp,μ), we consider the functional I defined by

I(u) =
∫ T



[

p
∣∣u′∣∣p –V (t,u) +μF(t,u)

]
dt +

m∑
k=

Gk
(
u(sk)

)
. (.)

Similar to the proof of Lemma  of [] (see also [–]), we can easily prove the following
lemma.

http://www.advancesindifferenceequations.com/content/2013/1/347
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Lemma . Suppose V ,F ∈ C([,T] × R
N → R), Gk ∈ C(RN ,R), k = , , . . . ,m. Then I

is Frechét differentiable with

I ′(u)v =
∫ T



[∣∣u′∣∣p–u′v′ –Vu(t,u)v +μFu(t,u)v
]
dt +

m∑
k=

gk
(
u(sk)

)
v(sk) (.)

for any u and v in H . Furthermore, u is a solution of (Pp,μ) if and only if u is a critical point
of I in H .

Lemma . ([, ]) Let E be a real Banach space, and let I ∈ C(E,R) satisfy the (P.S.)
condition. Suppose I() =  and

(I) there are constants ρ,β >  such that I|∂Bρ ≥ β , where Bρ = {x ∈ E|‖x‖ < ρ},
(I) there is e ∈ E \ Bρ such that I(e) ≤ .

Then I possesses a critical value c ≥ β .

If E is a real Banach space, denote by WX (see []) the class of all functionals � : E →
R possessing the following property: if {un} is a sequence in E converging weakly to u
and lim infn→∞ �(un) ≤ �(u), then {un} has a subsequence converging strongly to u. For
example, if E is uniformly convex and g : [, +∞) → R is a continuous, strictly increasing
function, then, by classical results, the functional u→ g(‖u‖) belongs to the classWX .

Lemma . ([]) Let E be a separable and reflexive real Banach space; let � : E → R

be a coercive, sequentially weakly lower semicontinuous C functional, belonging to WX ,
bounded on each bounded subset of E and whose derivative admits a continuous inverse
on E∗; J : E →R a C functional with compact derivative. Assume that � has a strict local
minimum u with �(u) = J(u) = . Finally, setting

α′ =max

{
, lim sup

‖u‖→+∞
J(u)
�(u)

, lim sup
u→u

J(u)
�(u)

}
,

β ′ = sup
u∈�–(,+∞)

J(u)
�(u)

,

assume that α′ < β ′. Then, for each compact interval [a,b] ⊂ ( 
β ′ , 

α′ ) (with the conventions

 = +∞, 

+∞ = ), there exists B >  with the following property: for every λ ∈ [a,b] and
every C, the functional � : E → R with compact derivative, there exists δ >  such that,
for each μ ∈ [, δ], the equation

�′(x) = λJ ′(x) +μ� ′(x)

has at least three solutions in E whose norms are less than B.

3 Proof of themain results
In this section, we give the proof of our main results in turn. Ci, i = , , . . . , denotes differ-
ent constants.

http://www.advancesindifferenceequations.com/content/2013/1/347
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Proof of Theorem . Since we consider problem (Pp,), then μ ≡ . In view of (V), (G)
and (.), we have

I(u) =
∫ T



[

p
∣∣u′∣∣p –V (t,u)

]
dt +

m∑
k=

Gk
(
u(sk)

)

≥
∫ T



[

p
∣∣u′∣∣p + b|u|p

]
dt – b

m∑
k=

∣∣u(sk)∣∣ν +C

≥ min

{

p
,b

}
‖u‖p –C‖u‖ν

∞ +C

≥ min

{

p
,b

}
‖u‖p –C‖u‖ν +C.

Since ν < p, this implies that lim‖u‖→∞ I(u) = ∞, i.e., I is coercive.
If {uk}k∈N ⊆ H , uk ⇀ u, then we have that {uk}k∈N converges uniformly to u in [,T].

By the continuity of V , Gk , we can easily know that I is weakly lower semi-continuous. By
Theorem . of [], I has a minimum point on H , which is a critical point of I .
In the following, we show that the critical point obtained above u �= . Choose v ∈ H

such that v(si) �= . By (V), (G) and (.), we have

I(ξv)≤ ξpmax

{

p
,b

}
‖v‖p – bξ τ

∣∣v(si)∣∣τ

for ξ >  small enough such that ξ |v(si)| ≤ b. Since τ < p, we can choose ξ >  small
enough such that I(ξv) < . This implies that the critical point obtained above is non-
trivial.
Finally, we verify that the solution is generated by impulses. Suppose gk ≡  and u is a

solution for problem (Pp,). By (.), (V), (V), we have

 =
∫ T



[∣∣u′∣∣p –Vu(t,u)u
]
dt

≥ min{,b}‖u‖p.

This means u ≡ . Therefore, problem (Pp,) possesses at least one non-zero solution gen-
erated by impulses. �

Proof of Theorem . We firstly show that I satisfies the P.S. condition. Assume that
{uj}j∈N ⊂H is a sequence such that {I(uj)}j∈N is bounded and I ′(uj) →  as j → +∞. Then
there exists a constant C >  such that

∣∣I(uj)∣∣ ≤ C,
∣∣I ′(uj)∣∣ ≤ C, ∀j ∈N. (.)

By (.), (.), (.), (.), (V′
), (V′

) and (G), we have

pC +C‖uj‖ ≥ pI(uj) –
p
θ
I ′(uj)uj

=
(
 –

p
θ

)∫ T



∣∣u′
j
∣∣p dt

http://www.advancesindifferenceequations.com/content/2013/1/347
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+
∫ T



[
p
θ
Vu(t,uj)uj – pV (t,uj)

]
dt

+ p
m∑
k=

Gk
(
uj(sk)

)
–
p
θ

m∑
k=

gk
(
uj(sk)

)
uj(sk)

≥
(
 –

p
θ

)∫ T



∣∣u′
j
∣∣p dt + p

(
 –

�

θ

)∫ T


b|uj|γ dt

≥
(
 –

p
θ

)∫ T



∣∣u′
j
∣∣p dt

+ p
(
 –

�

θ

)
bCγ–p

 ‖uj‖γ–p
∫ T


|uj|p dt

≥ min

{(
 –

p
θ

)
,p

(
 –

�

θ

)
bCγ–p

 ‖uj‖γ–p
}
‖uj‖p

≥ min

{(
 –

p
θ

)
‖uj‖p,p

(
 –

�

θ

)
bCγ–p

 ‖uj‖γ

}
. (.)

It follows from (.) that {uj}j∈N is bounded in H . In a similar way to Lemma . in [],
we can prove that {uj}j∈N has a convergent subsequence in H . Hence, I satisfies the P.S.
condition.
Second, we verify (I) of Lemma .. By (G) and (.), there exists δ >  such that for

any ‖u‖∞ ≤ δ,

∣∣Gk(u)
∣∣ ≤ 

mC
|u|p. (.)

By (.), there exists  < δ <  such that for any ‖u‖ ≤ δ, the inequality ‖u‖∞ ≤
δ holds. Then, for u ∈ H with ‖u‖ = δ and  < p < , δ small enough ( < δ <
min{(pbCγ–p

 )/p–γ , δ}) such that

I(u) ≥ 
p

∫ T



∣∣u′(t)
∣∣p dt + b

∫ T



∣∣u(t)∣∣γ dt – 
C

‖u‖p∞

≥ min

{

p
‖u‖p,bCγ–p

 ‖u‖γ

}
–



‖u‖p

≥ 
p
‖u‖p – 


‖u‖p

≥ 


‖δ‖p. (.)

Similar to [] and [], by (V′
), there exist C,C >  such that

–V (t,u) ≤ C|u|� +C for all (t,u) ∈ [,T]×R
N . (.)

By (G), there exist C,C >  such that

Gk(u)≤ –C|u|θ +C for all u ∈R
N ,k ∈ {, , . . . ,m}. (.)

http://www.advancesindifferenceequations.com/content/2013/1/347
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To verify (I) of Lemma ., choose v ∈ H such that v(sk) �=  for some k ∈ {, , . . . ,m}.
Hence, we obtain

I(ηv)≤ ηp

p

∫ T



∣∣v′(t)
∣∣p dt +C|η|�

∫ T



∣∣v(t)∣∣� dt –C|η|θ
m∑
k=

∣∣v(sk)∣∣θ +C. (.)

Since θ > p, � ∈ [p, θ ), (.) implies I(ηv) → –∞ as η → ∞. So, for sufficiently large η,
e = ηv satisfies condition (I). By the mountain pass lemma (Lemma .), I possesses at
least one non-zero critical point. Then, by Lemma ., problem (Pp,) has at least one
non-zero solution.
Finally, we verify that the solution is generated by impulses. Suppose gk ≡  and u is a

solution for problem (Pp,). Then, by (.), (V′
) and (V′

),

 =
∫ T



[∣∣u′∣∣p –Vu(t,u)u
]
dt

≥
∫ T



[∣∣u′∣∣p + b|u|γ ]
dt

≥
∫ T



∣∣u′∣∣p dt + b‖u‖γ–p
∞

∫ T


|u|p dt

≥
∫ T



∣∣u′∣∣p dt + bCγ–p
 ‖u‖γ–p

∫ T


|u|p dt

≥ min
{
,bCγ–p

 ‖u‖γ–p}‖u‖p

= min
{‖u‖p,bCγ–p

 ‖u‖γ
}
. (.)

This implies that u≡ , i.e., problem (Pp,) does not possess any non-zero solutions when
impulses are zero. Hence, by Definition . or Definition ., the non-zero solution ob-
tained above is generated by impulses. �

Proof of Theorem . In order to apply Lemma ., we let

�(u) =
∫ T



[

p
∣∣u′(t)

∣∣p –V
(
t,u(t)

)]
dt, (.)

J(u) = –
m∑
k=

Gk
(
u(sk)

)
, �(u) = –

∫ T


F
(
t,u(t)

)
dt.

By Lemma ., the critical points of the functional �– J –μ� are exactly the solutions for
problem (Pp,μ). Hence, to prove our result, it is enough to apply Lemma . and show that
we can choose λ =  ∈ [a,b]⊂ ( 

β ′ , 
α′ ). We divide our proof into four steps as follows.

Step . We show that some fundamental assumptions are satisfied. Obviously, E = H is
a separable and uniformly convex Banach space. By (V), we have

b′
‖u‖p ≤ �(u) ≤ b′

‖u‖p, (.)

where b′
 = min{ 

p ,b}, b′
 = max{ 

p ,b}, Hence, by (.) and Lemma ., we can obtain
that �(u) is a coercive C functional bounded on each bounded subset of E. For a se-
quence {un} ⊂ H , if un ⇀ u ∈ H and lim infn→∞ �(un) ≤ �(u), then un → u ∈ C[,T].

http://www.advancesindifferenceequations.com/content/2013/1/347
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This means
∫ T
 [– 

p |u(t)|p – V (t,u(t))]dt is weakly continuous. Hence, we have �(u) =

p‖u‖p +

∫ T
 [– 

p |u(t)|p – V (t,u(t))]dt is sequentially weakly lower semicontinuous and
lim infn→∞ ‖un‖p ≤ ‖u‖p. Therefore, {un} has a subsequence converging strongly to u, i.e.,
�(u) belongs toWX . For any u ∈H \ {}, we have

〈
�′(u),u

〉
=

∫ T



[(∣∣u′(t)
∣∣p–u′(t),u′(t)

)
–

(
Vu

(
t,u(t)

)
,u(t)

)]
dt

≥
∫ T



[(∣∣u′(t)
∣∣p–u′(t),u′(t)

)
+ b

∣∣u(t)∣∣p]dt
≥ min{,b}‖u‖p. (.)

So, lim‖u‖→∞〈�′(u),u〉/‖u‖ = +∞, that is, �′ is coercive. Recall the following well-known
inequality (see []): for any x, y ∈R

N , there exists a constant Cp >  such that

(|x|p–x – |y|p–y,x – y
) ≥ Cp|x – y|p, p≥ .

Hence, in view of (V)-(V), for any u, v ∈H , one has

〈
�′(u) –�′(v),u – v

〉
=

∫ T



(∣∣u′(t)
∣∣p–u′(t) –

∣∣v′(t)
∣∣p–v′(t),u′(t) – v′(t)

)
dt

–
∫ T



(
Vu

(
t,u(t)

)
–Vu

(
t, v(t)

)
,u(t) – v(t)

)
dt

≥ Cp

∫ T



∣∣u′ – v′∣∣p dt
+

∫ T


b

∣∣u(t) – v(t)
∣∣p dt

≥ min{Cp,b}‖u – v‖p. (.)

So, �′ is uniformly monotone. By [, Theorem .A(d)], we have that (�′)– exists and is
continuous. For any u, v ∈ H ,

〈
J ′(u), v

〉
= –

m∑
k=

gk
(
u(sk)

)
v(sk),

〈
� ′(u), v

〉
= –

∫ T


Fu

(
t,u(t)

)
v(t)dt.

Let un ⇀ u ∈H , then un → u ∈ C[,T]. Hence, J ′(un)→ J ′(u),� ′(un) → � ′(u) as n → ∞.
Therefore, we have J ′, � ′ are compact operators by [, Proposition .]. In addition, �
has a strict local minimum  with �() = J() = .
Step . We show that α′ < , β ′ > . In view of (G), there exist  < τ < τ such that

–Gk(u) ≤ A|u|p (.)

for any |u| ∈ [, τ) ∪ (τ, +∞) and k ∈ {, , . . . ,m}. By the continuity of Gk , –Gk(u) is
bounded for any |u| ∈ [τ, τ]. We can choose C >  and σ > p such that

–Gk(u) ≤ A|u|p +C|u|σ (.)

http://www.advancesindifferenceequations.com/content/2013/1/347
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for any u ∈R
N . Hence, by (.), we have

J(u) = –
m∑
k=

Gk
(
u(sk)

)

≤
m∑
k=

[
A

∣∣u(sk)∣∣p +C
∣∣u(sk)∣∣σ ]

≤ mA‖u‖p∞ +Cm‖u‖σ
∞

≤ mACp
 ‖u‖p +mCCσ

 ‖u‖σ (.)

for all u ∈H . By (.) and (.), we obtain

lim sup
u→

J(u)
�(u)

≤ mACp


b′


< . (.)

On the other hand, if |u(sk)| ≤ τ, we have –Gk(u(sk)) ≤ C; if |u(sk)| > τ, we have
–Gk(u(sk)) ≤ A|u(sk)|p. Then it follows that –Gk(u(sk)) ≤ C + A|u(sk)|p for all k ∈
{, , . . . ,m}. Hence, we obtain

J(u) ≤ C +mACp
 ‖u‖p. (.)

Therefore, we have

lim sup
‖u‖→∞

J(u)
�(u)

≤ mACp


b′


< . (.)

Combining (.) with (.), one has

α′ =max

{
, lim sup

‖u‖→+∞
J(u)
�(u)

, lim sup
u→u

J(u)
�(u)

}
< .

By (G), we obtain

β ′ = sup
u∈�–(,+∞)

J(u)
�(u)

≥ –
∑m

k=Gk(ξ )
–

∫ T
 V (t, ξ )dt

> .

Step . We show that problem (Pp,μ) has at least three solutions.
We can choose a compact interval [a,b]⊂ ( 

β ′ , 
α′ ) such that λ =  ∈ [a,b]. By Lemma .,

there exists B >  with the following property: for every F , there exists δ >  such that, for
each μ ∈ [, δ], the equation

�′(x) = J ′(x) +μ� ′(x),

i.e., problem (Pp,μ), p≥ , has at least three solutions in E whose norms are less than B.
Step . We show that problem (Pp,μ) has at least two solutions generated by impulses.

First, we verify that problem (Pp,μ), p ≥ , has at most one solution when gk ≡ . On the

http://www.advancesindifferenceequations.com/content/2013/1/347
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contrary, assuming that problem (Pp,μ), p≥ , has at least two distinct solutions u, u and
gk ≡ , we have

 =
〈
I ′(u) – I ′(u),u – u

〉
=

∫ T



(∣∣u′
(t)

∣∣p–u(t) – ∣∣u′
(t)

∣∣p–u(t),u′
(t) – u′

(t)
)
dt

–
∫ T



(
Vu

(
t,u(t)

)
–Vu

(
t,u(t)

)
,u(t) – u(t)

)
dt

+μ

∫ T



(
Fu

(
t,u(t)

)
– Fu

(
t,u(t)

)
,u(t) – u(t)

)
dt

≥ min{Cp,b}‖u – u‖p. (.)

Hence, we get ‖u – u‖ = , i.e., problem (Pp,μ), p ≥ , has at most one solution when
impulses are zero. By Remark ., we can obtain that problem (Pp,μ), p ≥ , has at least
two solutions generated by impulses. �
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