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Abstract

We reformulate the following mixed type quadratic and additive functional equation
with n-independent variables

2f

(
n∑
i=1

xi

)
+

∑
1 ≤ i, j ≤ n

i �= j

f (xi − xj) = (n + 1)
n∑
i=1

f (xi) + (n − 1)
n∑
i=1

f (−xi)

as the equation for the spaces of generalized functions. Using the fundamental
solution of the heat equation, we solve the general solution and prove the Hyers-
Ulam stability of this equation in the spaces of tempered distributions and Fourier
hyperfunctions.
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1. Introduction
In 1940, Ulam [1] raised a question concerning the stability of group homomorphisms

as follows:

Let G1 be a group and let G2 be a metric group with the metric d(·,·). Given ε > 0,

does there exist a δ > 0 such that if a function h : G1 ® G2 satisfies the inequality

d(h(xy), h(x)h(y)) <δ for all x, y Î G1, then there exists a homomorphism H : G1 ®
G2 with d(h(x), H(x)) <ε for all x Î G1?

In 1941, Hyers [2] firstly presented the stability result of functional equations under

the assumption that G1 and G2 are Banach spaces. In 1978, Rassias [3] generalized

Hyers’ result to the unbounded Cauchy difference. After that stability problems of var-

ious functional equations have been extensively studied and generalized by a number

of authors (see [4-7]). Among them, Towanlong and Nakmahachalasint [8] introduced

the following functional equation with n-independent variables
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2f

(
n∑
i=1

xi

)
+

∑
1 ≤ i, j ≤ n

i �= j

f (xi − xj) = (n + 1)
n∑
i=1

f (xi) + (n − 1)
n∑
i=1

f (−xi),
(1:1)

where n is a positive integer with n ≥ 2. For real vector spaces X and Y, they proved

that a function f : X ® Y satisfies (1.1) if and only if there exist a quadratic function q

: X ® Y satisfying

q(x + y) + q(x − y) = 2q(x) + 2q(y)

and an additive function a : X ® Y satisfying

a(x + y) = a(x) + a(y)

such that

f (x) = q(x) + a(x)

for all x Î X. For this reason, equation (1.1) is called the mixed type quadratic and

additive functional equation. We refer to [9-14] for the stability results of other mixed

type functional equations.

In this article, we consider equation (1.1) in the spaces of generalized functions such

as the space S ′(R) of tempered distributions and the space F ′(R) of Fourier hyperfunc-
tions. Making use of similar approaches in [15-20], we reformulate equation (1.1) and

the related inequality for the spaces of generalized functions as follows:

2u ◦ A +
∑

1 ≤ i, j ≤ n,
i �= j

u ◦ Bij = (n + 1)
n∑
i=1

u ◦ Pi + (n − 1)
n∑
i=1

u ◦ Qi,
(1:2)

∥∥∥∥∥∥∥∥∥∥∥
2u ◦ A +

∑
1 ≤ i, j ≤ n,

i �= j

u ◦ Bij − (n + 1)
n∑
i=1

u ◦ Pi − (n − 1)
n∑
i=1

u ◦ Qi

∥∥∥∥∥∥∥∥∥∥∥
≤ ε, (1:3)

where A, Bij, Pi and Qi are the functions defined by

A(x1, ..., xn) = x1 + · · · + xn,

Bij(x1, ..., xn) = xi − xj, 1 ≤ i, j ≤ n, i �= j,

Pi (x1, ..., xn) = xi, 1 ≤ i ≤ n,

Qi(x1, ..., xn) = −xi, 1 ≤ i ≤ n.

Here ○ denotes the pullback of generalized functions and the inequality ||v|| ≤ ε in

(1.3) means that |〈v,ϕ〉| ≤ ε||ϕ||L1 for all test functions �.
In order to solve the general solution of (1.2) and prove the Hyers-Ulam stability of

(1.3), we employ the heat kernel method stated in section 2. In section 3, we prove

that every solution u in F ′(R) (or S ′(R), resp.) of equation (1.2) is of the form

u = ax2 + bx
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for some a, b Î ℂ. Subsequently, in section 4, we prove that every solution u in

F ′(R) (or S ′(R), resp.) of the inequality (1.3) can be written uniquely in the form

u = ax2 + bx + μ(x),

where µ is a bounded measurable function such that ‖μ‖L∞ ≤ n2+n−3
n2+n−2ε.

2. Preliminaries
In this section, we introduce the spaces of tempered distributions and Fourier hyper-

functions. We first consider the space of rapidly decreasing functions which is a test

function space of tempered distributions.

Definition 2.1. [21]The space S(R)denotes the set of all infinitely differentiable func-

tions � : ℝ ® ℂ such that

‖ϕ‖α,β = sup
x

|xαDβϕ(x)| < ∞

for all nonnegative integers a, b.
In other words, �(x) as well as its derivatives of all orders vanish at infinity faster

than the reciprocal of any polynomial. For that reason, we call the element of S(R) as
the rapidly decreasing function. It can be easily shown that the function �(x) = exp

(−ax2), a > 0, belongs to S(R), but ψ(x) = (1 + x2)−1 is not a member of S(R). Next we

consider the space of tempered distributions which is a dual space of S(R).
Definition 2.2. [21]A linear functional u on S(R)is said to be a tempered distribu-

tion if there exists constant C ≥ 0 and nonnegative integer N such that

|〈u,ϕ〉| ≤ C
∑

α,β≤N

sup
x

|xαDβϕ| (2:1)

for all ϕ ∈ S(R). The set of all tempered distributions is denoted by S ′(R).
For example, every f Î Lp(ℝ), 1 ≤ p < ∞, defines a tempered distribution by virtue of

the relation

〈f ,ϕ〉 =
∫

f (x)ϕ(x)dx, ϕ ∈ S (R) .

Note that tempered distributions are generalizations of Lp-functions. These are very

useful for the study of Fourier transforms in generality, since all tempered distributions

have a Fourier transform, but not all distributions have one. Imposing the growth con-

dition on || · ||a,b in (2.1) a new space of test functions has emerged as follows.

Definition 2.3. [22]We denote by F(R)the set of all infinitely differentiable functions

� in ℝ such that

‖ϕ‖A,B = sup
x,α,β

|xαDβϕ(x)|
A|α |B|β |

α!β!
< ∞ (2:2)

for some positive constants A, B depending only on �.

It can be verified that the seminorm (2.2) is equivalent to

‖ϕ‖h,k = sup
x,α

|Dαϕ(x)| exp k|x|
h|α |α! < ∞

for some constants h, k > 0.
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Definition 2.4. [22]The strong dual space of F(R)is called the Fourier hyperfunctions.

We denote the Fourier hyperfunctions by F ′(R).
It is easy to see the following topological inclusions:

F(R) ↪→ S(R), S′(R) ↪→ F ′(R). (2:3)

Taking the relations (2.3) into account, it suffices to consider the space F ′(R). In
order to solve the general solution and the stability problem of (1.2) in the space

F ′(R), we employ the fundamental solution of the heat equation called the heat kernel,

Et(x) = E(x, t) =
{
(4π t)−1/2 exp(−x2

/
4t) , x ∈ R, t > 0,

0 , x ∈ R, t ≤ 0.

Since for each t > 0, E(·, t) belongs to the space F(R), the convolution

ũ(x, t) = (u ∗ E)(x, t) = 〈uy,Et(x − y)〉, x ∈ R, t > 0

is well defined for all u ∈ F ′(R). We call ũ as the Gauss transform of u. Semigroup

property of the heat kernel

(Et ∗ Es)(x) = Et+s(x)

holds for convolution. It is useful to convert equation (1.2) into the classical func-

tional equation defined on upper-half plane. We also use the following famous result

called heat kernel method, which states as follows.

Theorem 2.5. [23]Let u ∈ S ′(R). Then its Gauss transform ũis a C∞-solution of the

heat equation

(∂
/
∂t − 	)ũ(x, t) = 0

satisfying

(i) There exist positive constants C, M and N such that∣∣ũ(x, t)∣∣ ≤ Ct−M(1 + |x|)NinR × (0, δ). (2:4)

(ii) ũ(x, t) → uas t ® 0+ in the sense that for every ϕ ∈ S(R),

〈u,ϕ〉 = lim
t→0+

∫
ũ(x, t)ϕ(x)dx.

Conversely, every C∞-solution U(x, t) of the heat equation satisfying the growth condi-

tion (2.4) can be uniquely expressed as U(x, t) = ũ(x, t)for some u ∈ S ′(R).
Similarly, we can represent Fourier hyperfunctions as initial values of solutions of the

heat equation as a special case of the results as in [24]. In this case, the condition (i) in

the above theorem is replaced by the following:

For every ε > 0 there exists a positive constant Cε such that∣∣ũ(x, t)∣∣ ≤ Cε exp(ε(|x| + 1
/
t)) inR × (0, δ).

3. General solution in F ′(R)
We are now going to solve the general solution of (1.2) in the space of F ′(R) (or
S ′(R), resp.). In order to do so, we employ the heat kernel mentioned in the previous

section. Convolving the tensor product Et1 (x1) . . .Etn (xn) of the heat kernels on both
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sides of (1.2) we have[
(u ◦ A) ∗ (Et1 (x1) . . .Etn (xn))

]
(ξ1, . . . , ξn)

= 〈u ◦ A, Et1 (ξ1 − x1) . . .Etn (ξn − xn)〉

=
〈
u,

∫
· · ·

∫
Et1 (ξ1 − x1 + x2 + · · · + xn)Et2 (ξ2 − x2) . . . Etn(ξn − xn) dx2 . . . dxn

〉

=
〈
u,

∫
· · ·

∫
Et1 (ξ1 + · · · + ξn − x1 − · · · − xn)Et2(x2) . . . Etn(xn) dx2 . . . dxn

〉
= 〈u, (Et1 ∗ . . . ∗ Etn)(ξ1 + · · · + ξn − x1)〉
= 〈u,Et1+···+tn(ξ1 + · · · + ξn)〉
= ũ(ξ1 + · · · + ξn, t1 + · · · + tn),

[(u ◦ Bij) ∗ (Et1 (x1) . . .Etn (xn))](ξ1, . . . , ξn) = ũ(ξi − ξj, ti + tj),

[(u ◦ Pi) ∗ (Et1 (x1) . . .Etn (xn))](ξ1, . . . , ξn) = ũ(ξi, ti),

[(u ◦ Qi) ∗ (Et1 (x1) . . .Etn (xn))](ξ1, . . . , ξn) = ũ(−ξi, ti),

where ũ is the Gauss transform of u. Thus, (1.2) is converted into the following clas-

sical functional equation

2ũ

(
n∑
i=1

xi,
n∑
i=1

ti

)
+

∑
1 ≤ i, j ≤ n,

i �= j

ũ(xi − xj, ti + tj)

= (n + 1)
n∑
i=1

ũ(xi, ti) + (n − 1)
n∑
i=1

ũ(−xi, ti)

for all x1, . . . , xn Î ℝ, t1, . . . , tn > 0. We here need the following lemma which will

be crucial role in the proof of main theorem.

Lemma 3.1. A continuous function f : ℝ × (0, ∞) ® ℂ satisfies the functional equa-

tion

2f

(
n∑
i=1

xi,
n∑
i=1

ti

)
+

∑
1 ≤ i, j ≤ n

i �= j

f (xi − xj, ti + tj)

= (n + 1)
n∑
i=1

f (xi, ti) + (n − 1)
n∑
i=1

f (−xi, ti)

(3:1)

for all x1, . . . , xn Î ℝ, t1, . . . , tn > 0 if and only if there exist constants a, b, c Î ℂ

such that

f (x, t) = ax2 + bx + ct

for all x Î ℝ, t > 0.

Proof. Putting (x1, . . . , xn) = (0, . . . , 0) in (3.1) yields

f

(
0,

∑
i=1n

ti

)
+

∑
1≤i<j≤n

f (0, ti + tj) = n
n∑
i=1

f (0, ti) (3:2)

for all t1, . . . , tn > 0. In view of (3.2) we see that

c := lim
t→0+

f (0, t)
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exists. Letting t1 = · · · = tn ® 0+ in (3.2) gives c = 0. Setting (x1, x2, x3, . . . , xn) = (x,

y, 0, . . . , 0) and letting t1 = t, t2 = s, t3 = · · · = tn ® 0+ in (3.1) we have

2f (x + y, t + s) + f ( x − y, t + s) + f (−x + y, t + s)

= 3f (x, t) + 3f (y, s) + f (−x, t) + f (−y, s)
(3:3)

for all x, y Î ℝ, t, s > 0. Replacing x and y with −x and −y in (3.3) yields

2f (−x − y, t + s) + f (−x + y, t + s) + f (x − y, t + s)

= 3f (−x, t) + 3f (−y, s) + f (x, t) + f (y, s)
(3:4)

for all x, y Î ℝ, t, s > 0. We now define the even part and the odd part of the func-

tion f by

fe(x, t) =
f (x, t) + f (−x, t)

2
, fo(x, t) =

f (x, t) − f (−x, t)
2

for all x Î ℝ, t > 0. Adding (3.3) to (3.4) we verify that fe satisfies

fe(x + y, t + s) + fe(x − y, t + s) = 2fe(x, t) + 2fe(y, s) (3:5)

for all x, y Î ℝ, t, s > 0. Similarly, taking the difference of (3.3) and (3.4) we see that

fo satisfies

fo(x + y, t + s) = fo(x, t) + fo(y, s) (3:6)

for all x, y Î ℝ, t, s > 0. It follows from (3.5), (3.6) and given the continuity that fe
and fo are of the forms

fe(x, t) = ax2 + c1t, fo(x, t) = bx + c2t

for some constants a, b, c1, c2 Î ℂ. Finally we have

f (x, t) = fe(x, t) + fo(x, t) = ax2 + bx + ct,

where c = c1 + c2.

Conversely, if f (x, t) = ax2 + bx + c for some a, b, c Î ℂ, then it is obvious that f

satisfies equation (3.1). □
According to the above lemma, we solve the general solution of (1.2) in the space of

F ′(R) (or S ′(R), resp.) as follows.
Theorem 3.2. Every solution u in F ′(R)(or S ′(R), resp.) of equation (1.2) has the

form

u = ax2 + bx,

for some a, b Î ℂ.

Proof. Convolving the tensor product Et1 (x1) . . .Etn (xn) of the heat kernels on both

sides of (1.2) we have

2ũ

(
n∑
i=1

xi,
n∑
i=1

ti

)
+

∑
1 ≤ i, j ≤ n,

i �= j

ũ(xi − xj, ti + tj)

= (n + 1)
n∑
i=1

ũ(xi, ti) + (n − 1)
n∑
i=1

ũ(−xi, ti)

(3:7)
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for all x1, . . . , xn Î ℝ, t1, . . . , tn > 0. It follows from Lemma 3.1 that the solution ũ
of equation (3.7) has the form

ũ(x, t) = ax2 + bx + ct (3:8)

for some a, b, c Î ℂ. Letting t ® 0+ in (3.8), we finally obtain the general solution of

(1.2). □

4. Stability in F ′(R)
In this section, we are going to state and prove the Hyers-Ulam stability of (1.3) in the

space of F ′(R) (or S ′(R), resp.).
Lemma 4.1. Suppose that f : ℝ × (0, ∞) ® ℂ is a continuous function satisfying∣∣∣∣∣∣∣∣∣∣∣

2f

(
n∑
i=1

xi,
n∑
i=1

ti

)
+

∑
1 ≤ i, j ≤ n

i �= j

f (xi − xj, ti + tj)

−(n + 1)
n∑
i=1

f (xi, ti) − (n − 1)
n∑
i=1

f (−xi, ti)

∣∣∣∣∣ ≤ ε

(4:1)

for all x1, . . . , xn Î ℝ, t1, . . . , tn > 0, then there exists the unique function g : ℝ × (0,

∞) ® ℂ satisfying equation (3.1) such that

|f (x, t) − g(x, t)| ≤ n2 + n − 3
n2 + n − 2

ε

for all x Î ℝ, t > 0.

Proof. Putting (x1, . . . , xn) = (0, . . . , 0) in (4.1) yields∣∣∣∣∣∣f
(
0,

n∑
i=1

ti

)
+

∑
1≤i<j≤n

f (0, ti + tj) − n
n∑
i=1

f (0, ti)

∣∣∣∣∣∣ ≤ ε

2
(4:2)

for all t1, . . . , tn > 0. In view of (4.2) we see that

c : = lim sup
t→0+

f (0, t)

exists. Letting t1 = · · · = tn ® 0+ in (4.2) gives

|c| ≤ ε

n2 + n − 2
. (4:3)

Setting (x1, x2, x3, . . . , xn) = (x, x, 0, . . . , 0) and letting t1 = t2 = t, t3 = · · · = tn ® 0
+ in (4.1) we have∣∣∣∣f (2x, 2t) + f (0, 2t) − 3f (x, t) − f (−x, t) − c(n2 + n − 6)

2

∣∣∣∣ ≤ ε

2
(4:4)

for all x Î ℝ, t > 0. Replacing x by - x in (4.4) yields∣∣∣∣f (−2x, 2t) + f (0, 2t) − 3f (−x, t) − f (x, t) − c(n2 + n − 6)
2

∣∣∣∣ ≤ ε

2
(4:5)
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for all x Î ℝ, t > 0. Let fe and fo be even and odd part of f defined in Lemma 3.1,

respectively. Using the triangle inequality in (4.4) and (4.5) we get the inequalities∣∣∣∣ge(2x, 2t)4
− ge(x, t) +

ge(0, 2t)
4

∣∣∣∣ ≤ ε

8
, (4:6)

∣∣∣∣ fo(2x, 2t)2
− fo(x, t)

∣∣∣∣ ≤ ε

4
(4:7)

for all x Î ℝ, t > 0, where ge(x, t) := fe(x, t) +
c(n2+n−6)

4 .

We first consider the even case. Using the iterative method in (4.6) we obtain∣∣∣∣∣∣
ge(2kx, 2kt)

4k
− ge(x, t) +

k∑
j=1

ge(0, 2jt)
4j

∣∣∣∣∣∣ ≤ ε

6
(4:8)

for all k Î N, x Î ℝ, t > 0. Letting t1 = t, t2 = s, t3 = · · · = tn ® 0+ in (4.2) we have

∣∣ge(0, t + s) − ge(0, t) − ge(0, s)
∣∣ ≤ ε

4
(4:9)

for all t, s > 0. We verify from (4.9) that

h(t) := lim
k→∞

ge(0, 2kt)
2k

converges and is the unique function satisfying

h(t + s) = h(t) + h(s), (4:10)

|h(t) − ge(0, t)| ≤ ε

4
(4:11)

for all t, s > 0. Combining (4.10) and (4.11) we get∣∣∣∣∣(1 − 2−k)h(t) −
k∑
i=1

ge(0, 2kt)
4k

∣∣∣∣∣ ≤ ε

12
(4:12)

for all k Î N, t > 0. Adding (4.8) to (4.12) we have∣∣∣∣g̃e(x, t) − g̃e(2kx, 2kt)
4k

∣∣∣∣ ≤ ε

4
(4:13)

for all k Î N, x Î ℝ, t > 0, where g̃e(x, t) := ge(x, t) − h(t). From (4.1) and (4.13) we

verify that

Ge(x, t) := lim
k→∞

g̃e(2kx, 2kt)
4k

is the unique function satisfying equation (3.1) and the inequality

|g̃e(x, t) − Ge(x, t)| ≤ ε

4
(4:14)

for all x Î ℝ, t > 0. If we define a function q(x, t) := Ge(x, t) + h(t), then q also satis-

fies (3.1). By Lemma 3.1 and evenness of q we have
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q(x, t) = ax2 + c1t

for some a, c1 Î ℂ. It follows from (4.3) and (4.14) that

|fe(x, t) − ax2 − c1t| ≤ n2 + n − 4
2(n2 + n − 2)

ε (4:15)

for all x Î ℝ, t > 0.

Next, we consider the odd case. From (4.7), in the similar manner, we verify that

Fo(x, t) := lim
k→∞

fo(2kx, 2kt)
2k

is the unique function satisfying equation (3.1) and the inequality

∣∣Fo(x, t) − fo(x, t)
∣∣ ≤ ε

2
(4:16)

for all x Î ℝ, t > 0. By Lemma 3.1 and oddness of Fo we have

Fo(x, t) = bx + c2t

for some b, c2 Î ℂ.

Therefore, from (4.15) and (4.16), we obtain

|f (x, t) − (ax2 + bx + ct)|
≤ |fe(x, t) − (ax2 + c1t)| + |f0(x, t) − (bx + c2t)|

≤ n2 + n − 3
n2 + n − 2

ε

for all x Î ℝ, t > 0, where c = c1 + c2. □
From the above lemma we immediately prove the Hyers-Ulam stability of (1.3) in the

space of F ′(R) (or S ′(R), resp.) as follows.
Theorem 4.2. Suppose that u in F ′(R)(or S ′(R), resp.) satisfies the inequality (1.3),

then there exists the unique quadratic additive function q(x) = ax2 + bx such that

∥∥u − q(x)
∥∥ ≤ n2 + n − 3

n2 + n − 2
ε. (4:17)

Proof. Convolving the tensor product Et1 (x1) . . .Etn (xn) of the heat kernels on both

sides of (1.3) we verify that the inequality (1.3) is converted into∣∣∣∣∣∣∣∣∣∣∣
2ũ

(
n∑
i=1

xi,
n∑
i=1

ti

)
+

∑
1 ≤ i, j ≤ n

i �= j

ũ(xi − xj, ti + tj)

−(n + 1)
n∑
i=1

ũ(xi, ti) − (n − 1)
n∑
i=1

ũ(−xi, ti)

∣∣∣∣∣ ≤ ε

for all x1, . . . , xn Î ℝ, t1, . . . , tn > 0. According to Lemma 4.1, there exists the

unique function g(x, t) = ax2 + bx + ct such that
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|ũ(x, t) − g(x, t)| ≤ n2 + n − 3
n2 + n − 2

ε (4:18)

for all x Î ℝ, t > 0. Letting t ® 0+ in (4.18) finally we have the stability result

(4.17). □
Remark 4.3. The above norm inequality

∥∥u − q(x)
∥∥ ≤ n2+n−3

n2+n−2ε implies that u − q(x)

belongs to (L1)’ = L∞. Thus, every solution u of the inequality (4.17) in F ′(R) (or
S ′(R), resp.) can be rewritten uniquely in the form

u = q(x) + μ(x),

where µ is a bounded measurable function such that ‖u‖L∞ ≤ n2+n−3
n2+n−2ε.

Competing interests
The author declares that they have no competing interests.

Received: 18 November 2011 Accepted: 16 February 2012 Published: 16 February 2012

References
1. Ulam, SM: Problems in Modern Mathematics. Wiley, New York (1964)
2. Hyers, DH: On the stability of the linear functional equation. Proc Natl Acad Sci USA. 27, 222–224 (1941). doi:10.1073/

pnas.27.4.222
3. Rassias, ThM: On the stability of the linear mapping in Banach spaces. Proc Am Math Soc. 72, 297–300 (1978).

doi:10.1090/S0002-9939-1978-0507327-1
4. Czerwik, S: Functional Equations and Inequalities in Several Variables. World Scientific Publishing Co., Inc., River Edge

(2002)
5. Hyers, DH, Isac, G, Rassias, ThM: Stability of Functional Equations in Several Variables. Birkhäuser, Boston (1998)
6. Jung, S-M: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer Optimization and Its

Applications. Springer, New York (2011)
7. Kannappan, Pl: Functional Equations and Inequalities with Applications. Springer, New York (2009)
8. Towanlong, W, Nakmahachalasint, P: An n-dimensional mixed-type additive and quadratic functional equation and its

stability. ScienceAsia. 35, 381–385 (2009). doi:10.2306/scienceasia1513-1874.2009.35.381
9. Eshaghi Gordji, M, Savadkouhi, MB: Stability of mixed type cubic and quartic functional equations in random normed

spaces. J Inequal Appl 2009, 9 (2009). Article ID 527462
10. Eshaghi Gordji, M, Kaboli Gharetapeh, S, Moslehian, MS, Zolfaghari, S: Stability of a Mixed Type Additive, Quadratic,

Cubic and Quartic Functional Equation. In Nonlinear Analysis and Variational Problems, vol. 35, pp. 65–80.Springer
Optimization and Its Applications. Springer, New York (2010). doi:10.1007/978-1-4419-0158-3_6

11. Jun, K-W, Kim, H-M: On the stability of an n-dimensional quadratic and additive functional equation. Math Inequal Appl.
9, 153–165 (2006)

12. Kannappan, Pl, Sahoo, PK: On generalizations of the Pompeiu functional equation. Int J Math Math Sci. 21, 117–124
(1998). doi:10.1155/S0161171298000155

13. Najati, A, Eskandani, GZ: A fixed point method to the generalized stability of a mixed additive and quadratic functional
equation in Banach modules. J Diff Equ Appl. 16, 773–788 (2010)

14. Wang, L, Liu, B, Bai, R: Stability of a mixed type functional equation on multi-Banach spaces: a fixed point approach.
Fixed Point Theory Appl 2010, 9 (2010). Article ID 283827

15. Chung, J: Stability of functional equations in the spaces of distributions and hyperfunctions. J Math Anal Appl. 286,
177–186 (2003). doi:10.1016/S0022-247X(03)00468-2

16. Chung, J, Lee, S: Some functional equations in the spaces of generalized functions. Aequationes Math. 65, 267–279
(2003). doi:10.1007/s00010-003-2657-y

17. Chung, J, Chung, S-Y, Kim, D: The stability of Cauchy equations in the space of Schwartz distributions. J Math Anal
Appl. 295, 107–114 (2004). doi:10.1016/j.jmaa.2004.03.009

18. Lee, Y-S: Stability of a quadratic functional equation in the spaces of generalized functions. J Inequal Appl 2008, 12
(2008). Article ID 210615

19. Lee, Y-S, Chung, S-Y: The stability of a general quadratic functional equation in distributions. Publ Math Debrecen. 74,
293–306 (2009)

20. Lee, Y-S, Chung, S-Y: Stability of quartic functional equations in the spaces of generalized functions. Adv Diff 2009, 16
(2009). Article ID 838347

21. Schwartz, L: Théorie des Distributions. Hermann, Paris (1966)
22. Chung, J, Chung, S-Y, Kim, D: A characterization for Fourier hyperfunctions. Publ Res Inst Math Sci. 30, 203–208 (1994).

doi:10.2977/prims/1195166129
23. Matsuzawa, T: A calculus approach to hyperfunctions III. Nagoya Math J. 118, 133–153 (1990)

Lee Advances in Difference Equations 2012, 2012:16
http://www.advancesindifferenceequations.com/content/2012/1/16

Page 10 of 11

http://www.ncbi.nlm.nih.gov/pubmed/16578012?dopt=Abstract


24. Kim, KW, Chung, S-Y, Kim, D: Fourier hyperfunctions as the boundary values of smooth solutions of heat equations.
Publ Res Inst Math Sci. 29, 289–300 (1993). doi:10.2977/prims/1195167274

doi:10.1186/1687-1847-2012-16
Cite this article as: Lee: On the stability of a mixed type functional equation in generalized functions. Advances
in Difference Equations 2012 2012:16.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Lee Advances in Difference Equations 2012, 2012:16
http://www.advancesindifferenceequations.com/content/2012/1/16

Page 11 of 11

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction
	2. Preliminaries
	3. General solution in F′(ℝ)
	4. Stability in F′(ℝ)
	Competing interests
	References

