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Abstract

As the penetration of wireless networks increase, number of neighboring networks contending for the limited
unlicensed spectrum band increases. This interference between neighboring networks leads to large systems of
locally interacting networks. We investigate whether the short-term fairness of this system of networks degrades with
the system size and density if transmitters employ random spectrum access with carrier sensing (CSMA). Our results
suggest that (a) short-term fair capacity, which is the throughput region that can be achieved within the acceptable
limits of short-term fairness, reduces as the number of contending neighboring networks, i.e., degree of the conflict

graph, increases for random regular conflict graphs where each vertex has the same number of neighbors, (b)
short-term fair capacity weakly depends on the network size for a random regular conflict graph but a stronger
dependence is observed for a grid deployment. We demonstrate the implications of this study on a city-wide Wi-Fi
network deployment scenario by relating the short-term fairness to the density of deployment. We also present
related results from the statistical physics literature on long-range correlations in large systems and point out the
relation between these results and short-term fairess of CSMA systems.

1 Introduction

Popularity of wireless access technologies manifests itself
in the form of ever increasing penetration of wireless local
area networks. For example, it is estimated that household
penetration of Wi-Fi networks is 61% in the USA, 73% in
the UK, and 80% in South Korea as of 2011 [1].

This trend has a number of profound implications, par-
ticularly for densely populated urban areas. First, as more
Wi-Fi networks that are in close physical proximity share
a common spectrum, the amount of spectrum per net-
work drops due to interference. This effect cannot be
controlled in unlicensed bands, but its extent may be
bounded by estimating the maximum number of neigh-
boring networks that is possible in view of the limited
Wi-Fi transmission range.

Second, and more subtly, dense deployment of Wi-
Fi networks leads to large systems of weakly interacting
networks. That is, while each network contends with
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its immediate neighbors to access the spectrum, it also
interacts obliviously with further away networks through
intermediaries that form chains of neighbors. In that case,
whether or not the performance of individual networks
depend on the size of the alluded system is of critical
importance: Because while this latter effect cannot be
controlled either, in contrast to the former effect, the
system size cannot easily be estimated and tends to be
very large in metropolitan areas. Hence, if performance of
individual networks indeed degrades persistently with the
aggregate system size, then the resulting operating regime
would essentially be practically unacceptable under dense
deployment of such networks.

The objective of this article is to investigate key
parameters that delineate practically relevant regimes of
dense spectrum usage. Our focus is on delay-sensitive
applications and random spectrum access with carrier
sensing (CSMA). Specifically, we seek succinct condi-
tions that predict excessive dependence between channel
access delay and system size. Our ultimate interest is
in understanding the relationship among throughputs,
access delays, and system size; and thereby in identifying
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throughput levels that entail admissible access delay
regardless of the system size.

Using a Markov model, it was recently shown that
randomized CSMA is throughput-optimal. That is, if a
collection of per-network throughputs in a given system
topology can be attained by some transmission schedul-
ing algorithm, then it can also be attained by a ran-
domized CSMA algorithm that operates with appropriate
parameters [2,3]. Such feasible throughputs are coined
the throughput region for that system topology. It was
also observed that in certain parts of the throughput
region CSMA displays short-term unfairness [4]: Namely,
theoretically computed throughputs emerge as time aver-
ages only if such averages are computed over long-time
intervals. Over short-time intervals, however, one con-
stellation of networks in the system tends to enjoy vir-
tually unobstructed channel access whereas the remain-
ing networks starve. Hence, in the short term, channel
access is unfair among constituent networks of the system.
Although different constellations take effect in the long
term interval, this operational regime leads to high tem-
poral variation in access delay. When it exists, this vari-
ation becomes more pronounced with increasing system
size [5].

This phenomenon is related to the mixing time of the
underlying system dynamics, and in turn to the concept
of phase transitions. In statistical physics, phase transition
refers to the existence of multiple equilibrium distribu-
tions in a graphical model of infinite size. In a finite,
pre-limit graphical model, a phase transition typically
manifests itself in the form of a unique equilibrium distri-
bution that has multi-modal nature. That is, most of the
probability measure is concentrated around several quasi-
stable states. Transitions between such states become rare
as the system size increases, leading to multiple distinct
equilibrium distributions in the limit.

Alternatively, such short-term behavior is suggested by
existence of long-range dependence in a graphical system
model. In more specific terms, if states of distant nodes
in the graph are strongly correlated (either negatively
or positively), then such correlation is indicative of the
constellations that take effect over short-time horizons.

Our main contributions are as follows:

e We claim that the short-term fairness among the
interacting wireless transmitters is affected by the
degree of the conflict graph of these transmitters if
the conflict graph is a random regular graph where
each vertex has the same number of neighbors. A
denser deployment results in an increase in the
number of contending neighbors of a network and
our results suggest that the practically useful portion
of the throughput region reduces as the number of
neighboring networks increases.
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e We demonstrate the implications of our study on a
practical city-wide Wi-Fi deployment scenario. Our
results indicate that short-term fairness has to be
sacrificed to improve coverage in such a system. To
improve coverage, the density of the deployment has
to be increased which causes the nodal degree of the
system to increase. This in turn reduces short-term
fairness.

e We discuss if there is a reduction in the performance
of interacting networks as the system size increases.
Our results suggest that there is a weak dependence
on the system size if the density of deployment is kept
unchanged and the deployment has a random regular
conflict graph. On the other hand, the performance
of networks with a grid conflict graph may severely
degrade with system size if all networks operate at
high throughputs.

e We highlight the results from the statistical physics
and theoretical computer science literatures on the
long-range dependence in physical systems and
identify a relationship between CSMA systems and
physical systems. Despite the discrepancies between
the physical models and the practical networking
scenarios, we point out similarities between the
short-term fair capacity region and the phase
transition thresholds of the physical models.

The remainder of this article is organized as follows:
Section 2 surveys related work and Section 3 describes
the system model. We explain the short-term fairness
metrics that we use in Section 4. A mathematical anal-
ysis of the short-term fairness of the tree topology is
given in Section 5. Section 6 presents a simulation-
based analysis of the tree, grid, and random topolo-
gies. Section 7 illustrates the trade-off between short-
term fair capacity and coverage for a practical Wi-Fi
deployment scenario. Several observations on the rela-
tionship between the phase transitions of the hard-core
model and the CSMA network are presented in Section
8. A summary and discussion of results are given in
Section 9.

2 Related work
The studies that investigate the fairness of a CSMA
system can roughly be categorized into two classes:
First class of studies deal with the fairness of fixed
rate CSMA systems where each transmitter attempts
to access the channel at the same rate. Second class
of studies investigates the fairness of CSMA sys-
tems where the transmitters adapt their channel access
rates according to recently proposed distributed CSMA
algorithms.

For fixed-rate CSMA systems, unfairness in the long-
term average throughputs of transmitters has been
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investigated. Starvation of an intermediate node in a
multi-hop system topology was first noted in [6]. A fun-
damental cause of the long-term unfairness of CSMA was
shown to be the self-organization of transmission pat-
terns [7]. Unfairness in a large CSMA system caused by
the unfair advantage of border nodes at high access rates
was analyzed in [8]. To eliminate border effects, channel
access rates which equalize throughputs are proposed for
linear networks and 2 x N grids [9,10]. Determination of
channel access rates which achieves target throughputs is
investigated in [11].

Despite these studies that investigate long-term fair-
ness of a fixed rate CSMA system, there are not many
studies that deal with the short-term fairness problem.
Short-term fairness of long-term fair grid and line topolo-
gies were analyzed briefly in [8]. For a given topology, a
method of analysis is proposed using the Markov chain
of independent sets [12] but this analysis requires enu-
meration of all independent sets which is computationally
difficult.

Recently, adaptive CSMA algorithms that can achieve
throughput optimality have been proposed [2,3,13,14].
These algorithms solve the long-term fairness problem
of CSMA systems by adapting the channel access rate of
nodes according to their demands. In these algorithms,
nodes in an unfair position will increase their channel
access probability as their queue lengths grow. This mech-
anism balances the average throughputs of transmitters in
the long run.

However, throughput allocation among transmitters
may be unfair in the short term even when the average
throughput distribution is fair in the long run. Short-
term unfairness becomes more apparent as through-
puts increase and, as a result, variation in the chan-
nel access delay of transmitters increases. Degradation
in the short-term fairness as the throughput optimal-
ity is achieved is investigated in [4]. Several bounds for
delay are proposed [5,15-18] and methods for minimizing
the delay are devised [19-21]. To reduce delay, appro-
priate selection of the rate adaptation function is also
investigated [22-24].

In this study, we investigate the short-term fairness of
a fixed rate CSMA system and investigate the effect of
system size, density, and topology on the short-term fair-
ness. Previous studies on fixed-rate CSMA systems are
often limited to linear and grid topologies. We study here
also random regular topologies that demonstrate very dif-
ferent short-term fairness characteristics from the grid
topology. Besides, to the best of the authors’ knowledge,
the relationship between the degree of a network and
its short-term fairness has not been shown before. We
demonstrate that this relationship may result in a trade-
off between the coverage and the short-term fairness of a
Wi-Fi-based access network.
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3 System model and studied topologies

3.1 System model

We study a system of transmitters distributed over an area.
The interference relationships between these transmitters
are modeled using a conflict graph in which each node rep-
resents a transmitter and two nodes are connected with a
link if their corresponding transmitters interfere with each
other. We consider two transmitters as interfering if they
are in the carrier sensing range of each other. From now
on, we use the terms node, transmitter, and access point
interchangeably throughout the article.

We study the idealized CSMA model which is analyzed
in [2,6,25]. In this model, it is assumed that carrier sens-
ing is instantaneous and always successful, which leads
to a zero-collision system. Since interfering transmitters
cannot be in transmission concurrently in the idealized
CSMA model, the set of transmitting nodes at a given time
forms an independent set of the conflict graph.

We assume that all transmitters in the system are sat-
urated, that is, transmitters always have data to transmit.
Each transmitter in the CSMA system probes the chan-
nel at random times according to a Poisson point process
and starts transmission when it finds the channel idle.
The mean waiting time between two consecutive probing
instants, 1/A, determines the aggressiveness of a transmit-
ter where X is defined as the probing rate. The lengths of
transmissions are exponentially distributed with mean 1.

3.2 Studied conflict graph topologies

In this study, we analyze three different conflict graph
topologies: tree, grid, and random regular topologies. In
urban areas, independently distributed Wi-Fi networks
can be expected to form a fairly random conflict graph.
However, in a large campus or corporate network, trans-
mitters may be placed in a more structured manner which
may result in a grid conflict graph topology. Although
not common in practice, tree topology is suitable for
mathematical analysis and it has been commonly used in
deriving bounds in the statistical physics literature.

We study a tree in which every node except leaf nodes
have b children as shown in Figure la. The degree of
nodes in the tree is d = b + 1 except the leaf nodes and
the root node. The height of the tree and the number of
nodes in the tree are denoted by / and n, respectively.
The grid topology we simulated is an N x N grid with
d = 4 as shown in Figure 1b. We also generated con-
nected random regular topologies, where each node has
a degree of d, using the software developed by Viger [26].
A random regular topology with d = 3 can be seen in
Figure 1c. Short-term fairness analysis of irregular ran-
dom topologies appears difficult because they typically
fail to achieve long-term fairness when all nodes have
the same access rate due to the inhomogeneity of the
topology. Since long-term fairness is a prerequisite for
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Figure 1 Studied topologies. (a) The tree topology that we study. Each node has b children except leaf nodes. (b) The N x N grid. (c) A sample
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evaluating the short-term fairness, we limited our study
to random regular graph topologies where long-term fair-
ness is always achieved since each node has the same
degree.

We have also investigated the conflict graph of a mesh
deployment of Wi-Fi access points. To cover an area with
access points, it has been shown that a mesh deployment
provides better coverage than a totally random deploy-
ment [27]. In such a deployment, number of conflicting
neighbors of an access point is determined by the den-
sity of deployment. When the access points interfere with
their nearest neighbors, the conflict graph becomes the
grid topology described above. As the density increases,
the conflict graph becomes a higher-degree graph. We
investigate the effect of the density of deployment on
short-term fairness and coverage in Section 7.

4 Short-term fairness metrics
4.1 Short-term fairness horizon
Short-term fairness horizon is defined as the minimum
time required for the transmitters to achieve a fair share of
the network [28]. To measure the short-term fairness hori-
zon, network is monitored for a predetermined window
duration. If the throughput distribution over the window
is not sufficiently fair, the window size is increased. The
minimum window size which attains a fair throughput
distribution is defined as the short-term fairness horizon.
To calculate the short-term fairness horizon, a measure of
long-term fairness is needed to determine the point after
which the network is considered fair. The most widely
used and intuitive long-term fairness measure is the Jain’s
fairness index [29]. We consider the network long-term
fair when a Jain’s fairness index of 0.95 is achieved. It
should be noted that the measured throughputs in simu-
lations are noisy. The particular simulation technique that
we use is explained in Section 6.1.

Short-term fairness horizon is originally measured in
time units. However, if the probing rates of transmitters
are too low, the network converges to equilibrium very

slowly. This behavior results in artificially large values
for the short-term fairness horizon at low probing rates.
Instead of measuring time until fairness, counting the
average number of transmissions per transmitter leads to
a healthier comparison between different scenarios. This
metric normalizes the effect of probing rate allowing a bet-
ter comparison of the fairness performances at different
probing rates. For that reason, we consider the number of
transmissions per transmitter required to achieve fairness
as the short-term fairness horizon in this study.

4.2 Short-term fair capacity region

For a given conflict graph, throughput of a node refers
to the fraction of time that the node transmits, and the
throughput region of the conflict graph refers to the col-
lection of achievable per-node throughputs. In this study,
we are mainly interested in how much of the through-
put region can be achieved within the acceptable limits of
short-term fairness. We define this subset of the through-
put region as short-term fair capacity region. In order to
quantify the short-term fair capacity, a short-term fairness
horizon threshold has to be determined such that the net-
work is considered short-term unfair when the short-term
fairness horizon is beyond this threshold. In a study which
is focused on developing a fair MAC protocol [30], the
authors observed that it takes 80—140 packets per user for
the IEEE 802.11 standard to become fair. Considering this
result, we select 100 transmissions per node as a thresh-
old for short-term fairness. We also used 50 transmissions
per node as another threshold which corresponds to a
stricter fairness requirement. However, these choices are
not restrictive; the behavior of the capacity region does
not significantly change with the selection of the threshold
as it will be demonstrated in Section 6.

4.3 Successive transmission probability

Another metric that can be used for measuring short-term
fairness is to calculate the probability of a node making a
successive transmission before any of its neighbors has a
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chance to transmit. If this probability is high, it indicates
that a node captures the channel for a long time and its
neighbors starve during this period.

For a random access protocol, a successive transmission
probability of %H indicates a perfectly short-term fair net-
work where d is the number of neighbors of the node. At
the time a node finishes its transmission, it is certain that
its neighbors are idle. Including the recently finished node,
all of the (d+ 1) nodes will probe the channel after waiting
for an exponentially distributed duration with mean 1/A.
If the recently finished node probes the channel before
all its neighbors, it is certain that it will find the chan-
nel idle and it can start another transmission. However, if
one of the neighboring nodes probes the channel before
the recently finished node, it may not find the channel idle
because of its other neighbors. For that reason, the proba-
bility of a node to start a successive transmission is higher
than the transmission probability of neighboring nodes.

Successive transmission probability is a local mea-
sure of short-term fairness which can be computed
using the statistics of a single node and its neighbors.
Short-term fairness horizon, however, is a global metric
which requires states of all nodes have to be taken into
account. For that reason, successive transmission proba-
bility appears to be a more tractable metric for mathe-
matical analysis. We present an analysis of the short-term
fairness of the tree conflict graph using this metric in the
next section.

5 Mathematical analysis for a tree

In this section, we develop an approximate fairness model
for a tree conflict graph using the successive transmission
probability as the fairness metric.

We are interested in determining the probability that a
node starts transmission before its neighbors after finish-
ing its transmission. In order to evaluate the successive
transmission probability of a node, we refer to Kelly’s work
[31] which gives the conditional probability of a node
being in transmission when its parent is not transmitting
as a function of probing rate. For the tree topology, let p
be the probability of the child being idle given that its par-
ent is idle. The value of this probability typically depends
on the node, but for large trees nodes that are far from the
leaves tend to have similar values due to symmetry. Kelly’s
analysis identifies a common value in the limit of an infi-
nite tree, which serves as a convenient approximation for
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large finite trees. Namely, it is shown that p is the posi-
tive solution of 1 = lp;dp and the throughput of each node

. 1—
isT = ﬁ when channel access rates of leaf nodes are

normalized to compensate for their advantage. Although
Kelly’s analysis is carried out for the Cayley tree in which
the root node has d children, it extensible for the tree that
we study whose root node has d — 1 children.

To illustrate our approach let us consider a special case
of a tree with d = 2 which is an infinite line topology.
Let Nodes —2 to 2 be adjacent nodes in this line as shown
in Figure 2. Each node probes the channel at rate A. Let
Node 0 be at the end of its transmission. At this point, its
neighbors (Nodes —1 and 1) are idle; and, Nodes —2 and
2 are idle with probability p. Node 0 has a higher chance
of capturing the channel: Even if Node —1 or 1 probe the
channel before Node 0, they may find the channel busy
because Nodes —2 and 2 may be transmitting. Node 0
will probe the channel after a duration exponentially dis-
tributed with rate A. Nodes —1 and 1 will also probe the
channel after exponentially distributed durations with A
but they may find the channel busy because Nodes —2 and
2 may be in transmission with probability p. The probabil-
ity p is the conditional probability of a grandchildren of a
node is idle given that the node has performed a previous
transmission. In this analysis, we assume p = p, so Nodes
—1 and 1 have an effective probing rate of Ap instead of A.
Then, the probability that Node O starts its transmission
before Nodes —1 and 1 is given by

A 1

= = . (1)
A+2p 142p

S

If we generalize this formula to a tree with a degree d,
we get

Pup) = —— o)
T 1 dpdt
where p is the positive solution of
l-p
A= —. (3)
pd

For d > 3, we cannot obtain p in closed form which
prohibits obtaining a direct relationship between prob-
ing rate, A, and successive transmission probability, Ps.
However, it is possible to establish a relationship between

Node -2 Node -1

P(0)=p

Node 0

Node 1 Node 2

(o)
N

)
N

P(O)=p)— - - -

(o)
N

Figure 2 States of nodes in a line topology. Node 0 is transmitting, Nodes —1 and 1 are therefore idle and Nodes —2 and 2 are active with

probability p.
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throughput and successive transmission probability since
T = %%ﬁ [31]. It can be written that

Py(T) (4)

14+ d(52hH4!
where 0 < T < 0.5.

At very low probing rates, the successive transmission
probability of a node is independent of the global topol-
ogy where it is solely determined by the degree of a node.
Since all nodes have the same probing rate, the probability
of a node to perform a successive transmission before its
neighbor is given by

1

lim P(T) = ——. 5

fm P = 3 +1 ©)

At very high probing rates, however, successive trans-
mission probability of a node converges to 1, i.e.,

Tll>r13.5 P(T) = 1. ©)

T = 0.5 is the maximum achievable throughput by all
nodes in the network because it is not possible for more
than half of the nodes in the tree to be active concur-
rently. In this case, once a node has a chance to trans-
mit, it tends to transmit repeatedly at successive probing
instants, severely degrading short-term fairness.

The assumption of p = p causes the proposed model
to slightly deviate from simulation results which will be
analyzed in Section 6.2.1.

6 Simulation study

We now study the effects of several network attributes on
short-term fairness. We investigate three different conflict
graph topologies: tree, grid, and random regular.

6.1 Simulation method

In this section, we use the short-term fairness horizon
as the fairness metric. We also measure the successive
transmission probability for the tree topology in order to
evaluate the accuracy of proposed analysis.

We measure the short-term fairness horizon in our
simulations using the following procedure: we keep a
throughput counter for each node; this counter records
the total throughput that the node has gained until the
current time in the simulation. Using these throughput
values, we repeatedly check for the Jain’s index of the net-
work as the simulation continues. If the network achieves
a Jain’s index of 0.95, we record the number of com-
pleted transmissions per node until that moment as the
short-term fairness horizon. At this moment, we reset the
counters and again wait for the network to reach a fairness
index of 0.95. We sample the short-term fairness horizon
50 times by repeating this procedure and take the average
of these values.
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In order to measure the short-term fairness horizon, the
network has to achieve a fairness index of 0.95 in the long
run; that is, it must be long-term fair. To establish long-
term fairness, probing rates of nodes have to be adjusted
such that all nodes have the same long-term throughput.
However, computing the probing rates that result in a fair
equilibrium distribution is non-trivial [9]. Although there
is a closed form expression for probing rates which equal-
izes throughputs for the tree topology [31], there is no
such expression for N x N grids and random topologies.

In the simulations of grid and random topologies, we
assign the same probing rate to each node and assume that
they can achieve a fairness index of 0.95 in the long-run.
This assumption is valid for our simulations because all
simulations achieved a fairness index of 0.95. Simulating
large random topologies is also of help because the effect
of locally unfair throughput distributions can be balanced
in a large network.

In the tree topology, leaf nodes have an important
advantage over the internal nodes; they have a single
neighbor whereas internal nodes have d neighbors. For
that reason, leaf nodes face less competition and they can
gain higher throughputs than internal nodes. Since the
leaf nodes form a large portion of nodes in the tree, the
probing rates of leaf nodes have to be adjusted such that
they have the same throughput with internal nodes. Using
the analysis in [31], we select the probing rates such that
the throughput distribution is long-term fair.

6.2 Tree topology

Figure 3a depicts the short-term fairness horizon for tree
topologies with different values of d as a function of A.
At the same probing rate, short-term fairness horizon
of higher degree topologies is shorter than lower degree
topologies. However, nodes in the higher-degree networks
need to probe the channel at a higher rate than the nodes
in the lower-degree networks in order to achieve the same
throughput. For that reason, comparing the performance
of topologies with different degrees at the same probing
rate is not fair.

The relationship between fairness and throughput is
more relevant for our purposes than the relationship
between fairness and probing rate because we are inter-
ested in characterizing a practically useful throughput
region. Figure 3b shows how short-term fairness horizon
changes as a function of throughput. At low through-
puts, short-term fairness horizon does not depend on d.
As the throughput increases, there is a sharp increase
in the short-term fairness horizon. The maximum value
of the throughput where short-term fairness can be sat-
isfied decreases as d increases. The reason behind this
behavior is that the nodes are more dependent on each
other in densely connected networks at high through-
puts. When the average throughput in the network is
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Figure 3 Short-term fairness horizon of the tree topology with different degrees; (a) as the probing rate increases (b) as the average
throughput increases. Short-term fairness thresholds of Th =50 and 100 transmissions per node are also shown as horizontal dashed lines.

low, transmission of a node is rarely prevented by its
neighbors. So, nodes behave almost independently and
short-term fairness does not depend on the global prop-
erties of the system such as the degree. As the probing
rates increase, dependence between nodes increases. A
node frequently finds the channel busy since at least
one of its neighbors is already transmitting. This phe-
nomenon is more apparent in higher degree networks
because nodes are more densely connected. So, the
nodes in higher-degree topologies starve for a long time
at high probing rates that are required for achieving
high throughputs.

This relationship between the fairness and the degree
of the tree demonstrates an important limitation of ran-
dom access networks working at high throughput. A
centralized scheduler can provide a throughput of 0.5
to all nodes in the tree independent of the degree by
alternating transmissions between nodes at even and
odd distances to the root node. Since the transmis-
sions are alternated between nodes at each time step,
short-term fairness of this scheduler is optimum. On
the other hand, fairness of the CSMA network signifi-
cantly depends on the degree and average throughput of
the network.

Since short-term fairness is significantly affected by the
degree and throughput, it is natural to ask how much of
the throughput region can be achieved within the accept-
able limits of short-term fairness. We have previously
defined this practically useful throughput limit as the
short-term fair capacity region. The short-term fairness
thresholds of 50 and 100 transmissions are depicted as
horizontal lines in Figure 3b. Throughputs corresponding
to these thresholds are computed using interpolation and
plotted in Figure 4 where the short-term fair capacity of a
tree network under CSMA is plotted as d increases. In this
plot, degrees omitted from Figure 3b are also included to
give a better picture of the short-term fair capacity region.

For d = 2, the network can achieve a throughput of 0.44
in a short-term fair manner for a threshold of 100. How-
ever, for d = 18, the maximum throughput which can be
obtained under short-term constraints drops to 0.22.
Figure 5 presents simulation results for trees with differ-
ent heights but with the same number of children, b = 3,
i.e., d = 4 for internal nodes. The tree with # = 1 has
a very good fairness performance since it consists of only
four nodes. For very small networks consisting of a few
nodes, the number of nearby nodes which influence the
state of a node is very small. As extra nodes are added
to the neighborhood of a node, the number of transmit-
ters affecting the state of the transmitter increases. This
increase results in a decrease in short-term fairness. How-
ever, as the network grows beyond the neighborhood, the
influence of the newly added nodes declines gradually. For
that reason, short-term fairness becomes almost indepen-
dent of the network size for sufficiently large topologies,
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Figure 4 Short-term fair capacity of the tree topology as the

degree increases.
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Figure 5 Short-term fairness horizon of the tree topology as the
height of the tree increases. Internal nodes in all trees have d = 4.

i.e., short-term fairness does not degrade further once the
network size becomes sufficiently large.

6.2.1 Successive transmission probability

We now present the mean number of successive transmis-
sions of a node and compare the results with the analysis
given in Section 5. We collected transmission statistics
of each node during the simulations presented in the
previous part. Statistics of only internal nodes are used
because leaf nodes have only a single neighbor resulting in
different transmission statistics from internal nodes.

We compare fairness performances of tree topologies
with different degrees using this new metric. Figure 6
plots the mean number of successive transmissions of a
node as the throughput increases along with the mean

-
o
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Figure 6 Mean number of successive transmissions as the
average throughput increases. Dashed lines plot the results of the

proposed model.
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number of transmissions computed using the proposed
fairness model using a binomial assumption. The pro-
posed model gives a closed-form relationship between
the successive transmission probability and throughput
as given by (4). The successive transmission probability
is computed using the assumption that probability of the
secondary neighbors of a node being idle is independent
of the number of its previous transmissions. Since this
assumption gets closer to reality as d increases, the model
is very accurate especially for higher degree trees. At a
very low throughput, the successive transmission proba-
bility of a node is lower for a higher degree graph as given
by (5). However, as the throughput increases, the higher
degree graphs show worse short-term fairness because of
the increased dependence between nodes.

Figure 6 is very similar to Figure 3b which shows that
both metrics, short-term fairness horizon and number
of successive transmissions, characterize the short-term
fairness behavior in a similar manner. Since behaviors
of both metrics resemble, we do not present the suc-
cessive transmission probability statistics in the rest of
this article.

6.3 Grid topology

We now examine the short-term fairness properties of the
grid topology. Since the degree of the grid topology is fixed
at 4 for internal nodes, the only parameter that we inves-
tigate is the network size. We simulated the grid topology
for n = 50 x 50,100 x 100, and 150 x 150.

Figure 7 shows how short-term fairness of the grid
topology changes as the average throughput in the
network increases. It may not be possible to oper-
ate the CSMA protocol under reasonable short-term
fairness requirements above an average throughput of
0.35 because the short-term fairness horizon reaches
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CE) 200
o 184
£ 40000 g 1
3 140
c 120
If 3000 100 1
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Figure 7 Short-term fairness horizon of the grid topology for
three different dimensions.
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Figure 8 Average short-term fairness horizon of randomly
generated topologies with different degrees as the average
throughput increases. Short-term fairness thresholds of Th=50 and
100 transmissions per node are also shown as horizontal dashed lines.

extremely high values. At such high throughputs, short-
term fairness of the grid topology also depends on the
network size. At a throughput of 0.35, short-term fair-
ness horizon of the 100 x 100 grid network is twice
of the horizon of the 50 x 50 grid. At this throughput,
short-term fairness horizon of all simulated topologies is
larger than 1,000 transmissions which can be considered
unacceptable for practical purposes.

Grid topology exhibits undesirable short-term fairness
properties mainly because it has two maximal indepen-
dent sets which correspond to the blacks and whites of the
checkerboard pattern. The throughput distribution of the
network favors either of these maximal independent sets
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Figure 9 Short-term fair capacity of the randomly generated

topologies as the degree increases with short-term fairness
thresholds of Th=50 and 100.
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at high probing rates. Since these maximal independent
sets have no elements in common, transition from one to
the other occurs rarely at high probing rates resulting in
long starvation periods for some nodes.

6.4 Random topology

We now investigate the short-term fairness properties
of randomly generated contention graph topologies. For
each d, ten random topologies each having 5,000 nodes
are generated as described in Section 3.2. Short-term fair-
ness horizon of these topologies are computed for increas-
ing throughputs and averaged to obtain a short-term
fairness horizon plot for each d.

Figure 8 shows how short-term fairness horizon changes
as the throughput increases. It is very similar to the tree
topology: at low throughputs, short-term fairness hori-
zon weakly depends on d but high-degree topologies have
substantially larger short-term fairness horizon than low-
degree topologies at higher throughputs. Short-term fair-
ness thresholds of 50 and 100 are also depicted as horizon-
tal dashed lines. Throughputs obtained at these thresholds
are plotted in Figure 9 where we observe that short-term
fair capacity degrades as network degree increases. The
reduction in the short-term fair capacity as the degree
increases is more apparent in the random topology than
the tree topology as will be compared later.

Figure 10 plots how short-term fairness horizon changes
with the size of the random network. The plot is obtained
by simulating randomly generated topologies with d =
4, 6, and 10 for » = 1,000, n = 5,000, and 20, 000.
It is observed that the short-term fairness of the ran-
dom topology does not depend significantly on # for large
networks.

These results imply that the performance of a system
of randomly placed networks does not degrade with the
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Figure 10 Average short-term fairness horizons for the
randomly generated topologies with different network sizes.




Koseoglu et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:367

http://jwecn.eurasipjournals.com/content/2012/1/367

system size if the number of neighbors is kept fixed.
However, as the density, along with d, increases, a perfor-
mance reduction in the short-term fairness is observed.

6.5 Comparison of different topologies

Figure 11 compares fairness performances of tree, grid,
and random topologies all with d = 4. At low through-
puts, short-term fairness is marginally affected by the
network topology because nodes do not interact strongly
with each other. However, as the throughput increases,
nodes interact strongly and topological structure becomes
more important. Among the topologies we consider,
tree topology has the best short-term fairness perfor-
mance mainly because interdependency between nodes
in the tree topology is lower than any other topology:
tree can be separated into two independent parts by
removing a single node. Low interdependency results
in good short-term fairness performance because net-
work does not spend too much time around some
transmission patterns.

In contrast to the tree topology, grid topology exhibits
high dependency between nodes which results in a poor
fairness performance. The active nodes of the grid topol-
ogy tend to be in one of the two maximal independent sets
so that nodes which do not belong to the active transmis-
sion pattern wait for a long time to become active. Ran-
dom topology lies between the tree and the grid topologies
in terms of short-term fairness.

Figure 12 plots the short-term fair capacities of the tree
and random topologies as d increases. A tree with d = 2
is a line topology; similarly, a connected random topology
with d = 2 is also a line topology. So, both topologies have
the same capacity at d = 2. As d increases, the difference
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Figure 11 Short-term fairness horizons for the tree, grid and

random topologies as the throughput increases. All three
topologies have d = 4.
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between these two topologies increases. At d = 18, short-
term fair capacity of the random topology is 53% of the
tree topology.

This comparison demonstrates that although the net-
work degree is the main determining factor for the
short-term fairness, it is not the sole influencing fac-
tor. Other characteristics such as the structure of inde-
pendent sets and network topology may also affect
the short-term fairness performance. Also, it should be
noted that we here present averages taken over a large
number of topologies; however, short-term fairness of
each individual topology may not monotonically degrade
with d.

7 Practical implications on the deployment of
Wi-Fi networks

Municipal wireless networks become increasingly
widespread to provide wireless connectivity for cities.
For example, Oklahoma City provides wireless cover-
age for a 555-square-mile area using 1,100 mesh nodes
and 900 mobile nodes. As well as municipalities, private
companies are also interested in providing urban wireless
coverage. For instance, Google provides city-wide Wi-Fi
access for Mountain View, California.

Our findings may have some implications on the perfor-
mance of such city-wide networks regarding their deploy-
ment density. Densely deploying Wi-Fi access points may
be required to provide a better coverage of the mobile
users. On the other hand, as the density of deploy-
ment increases, the number of interfering neighbors of an
access point increases, which in turn increases the nodal
density of the system. Our analysis indicates that nodal
degree of the system inversely affects the short-term fair-
ness of a system of wireless networks. For that reason,
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Figure 12 Short-term fair capacities for tree and random

topologies as the degree increases with short-term fairness
threshold Th =50.
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Figure 13 A 5km x 5km area is covered by Wi-Fi access points which are located in a mesh pattern where (a) = 300 m and (b)
I = 450 m. The interference relationship between nodes are denoted by lines between interfering nodes.

there may be a trade-off between the short-term fairness
of the system and the deployment density to some extent.

To investigate this

relationship, we simulated a 10km x

10km area covered by Wi-Fi access points. Previ-
ous studies showed that a regular deployment such
as the mesh deployment provides better coverage
than a totally random deployment [27]. We here
investigate the relationship between the density of
deployment and short-term fairness performance of

networks.

The transmission range of each access point is selected
to be 250 m and carrier sensing range of access points
is selected to be 550 m which are the default values for
ns-2 network simulator. We simulated for inter-nodal
distances between 200 and 900 m. For each inter-nodal
distance, we formed the conflict graph by linking the
access point with their neighbors within their carrier
sensing ranges. Two sample conflict graphs correspond-
ing to different deployment scenarios for / = 300 and

| =

450m are depicted in Figure 13. As the inter-

nodal degree reduces, the number of interfering neigh-
bors of an access point increases, in turn increasing
the degree of the conflict graph. We assumed that the

access points have s

imilar traffic requirements and each

of them independently probes the channel at the same
rate according to a Poisson point process. Similar to
previous simulations, we measured the short-term fair-
ness horizon of each topology corresponding to a given

inter-nodal distance.
Short-term fairnes
put of individual ac

s of the network against the through-
cess points for different inter-nodal

distances are plotted in Figure 14. As the deployment
density increases, the short-term fairness horizon starts
to increase rapidly at lower throughputs. For [ > 550,
there is no interaction between nodes. This low inter-
ference results in desirable short-term fairness perfor-
mance: there is no degradation in short-term fairness with
increasing throughput. For denser deployments, however,

short-term fairness horizon starts to degrade rapidly as
throughputs increase.

Although a larger inter-nodal distance gives a good
short-term fairness performance, coverage ratio decreases
as the inter-nodal distance increases. Figure 15 presents
the coverage of access points as the inter-nodal distance
increases. In this plot, coverage is calculated by assum-
ing that an access point can cover a circular area with
a radius of its transmission range and total coverage is
the union of these circular areas. Although the short-term
fairness is very good, it is only possible to cover almost
half of the area with an inter-nodal distance of 600 m.
From this plot, it can be said that a sacrifice from short-
term fairness is needed to achieve a significant coverage of

the area.

The results imply that there is a trade-off between
the short-term fairness of the network and its coverage.
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Improving coverage may come at the expense of reducing
short-term fairness which should be considered in design-
ing Wi-Fi networks along with other factors such as cost,
connectivity, etc.

8 Analogy with the hard-core model

The idealized CSMA network model closely resembles a
simple model of a material which is called as the hard-core
model [32]. In this model, particles of the material can
be found at the vertices of a lattice graph under the con-
dition that two particles cannot be found at neighboring
nodes. This model is equivalent to the ideal CSMA net-
work where two neighboring nodes cannot be active at the
same time. So, finding a particle at a given vertex is equiv-
alent to finding a node transmitting in a CSMA network.
Recently, the underlying dynamics of the hard-core model
has been used to analyze the performance of ideal CSMA
(3,14,19].

The equivalent of the probing rate in the CSMA network
is the fugacity in the hard-core model. As the probing
rate of a node increases in the CSMA network, the prob-
ability of finding it active increases. Similarly, probability
of finding a particle at a given vertex is increased as the
fugacity increases. The difference between the idealized
CSMA model and the hard-core model is that the indi-
vidual transmitters in the CSM A model can have different
probing rates. In contrast, the fugacity in the hard-core
model is a system-wide parameter. So, the equivalent of
the hard-core gas model with a given fugacity is a CSMA
network where the probing rate of all nodes is equal to the
fugacity.

There is substantial literature in statistical physics, and
more recently in theoretical computer science, on charac-
terization of conditions under which long-term correla-
tions arise in the hard-core model. On the one hand, this
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literature is relevant to our purposes due to the alluded
relationship between long-range dependence in spatial
models and short-term fairness. On the other hand,
explicit characterization of these conditions is known to
be difficult, and has been achieved only for special graph
topologies such as regular trees, which have limited rele-
vance to spatial systems of interacting Wi-Fi networks that
may arise in practice. In addition, conventional approach
is to characterize such conditions in terms of parameters
coined “fugacities” that may roughly be associated with
backoft timers in Wi-Fi transmitters. In contrast, since
we are interested in identifying the practically useful por-
tion of the throughput region, our goal here is to obtain
conditions that are in terms of throughputs.

Since long-range correlations in a CSMA network
causes transmission patterns to persist over long time
scales, we here investigate if conditions creating long-
range correlations have a relationship with the short-term
fairness of a CSMA network. We explain two conditions
from the literature which corresponds to two different
intensities of long range correlations and present sim-
ulation results which demonstrate the possible relation
between these conditions and the short-term fair capacity.

The first condition which is indicative of long-range
correlations in the model is the existence of multiple
equilibrium distributions. The second condition which
indicates a stronger correlation is the reconstruction con-
dition under which long-range correlations enable the
reconstruction of the state of the root node using the
states of leaf nodes in the tree as the length of the tree
approaches to infinity.

8.1 Uniqueness of a Gibbs measure

Gibbs measure is the equilibrium distribution of a large
number of locally interacting particles [33]. Since the
interactions between particles are local, Gibbs measure
has the Markov property where each node is condition-
ally independent of the rest of the network given the
states of its neighbors. It is known that there exists at
least one Gibbs measure satisfying the local conditional
distributions. However, the system may also admit multi-
ple measures in an infinite graph under some conditions
which is called as phase transition.

The hard-core model on the infinite square lattice, for
example, may admit multiple equilibrium distributions.
For small A, there is a unique Gibbs measure on the square
lattice. However, it is possible to find two equilibrium dis-
tributions for large A, namely pyhite and [plack- Mwhite
corresponds to the case where the whites of the checker-
board pattern have a higher probability than the blacks
of the checkerboard pattern. up,cx corresponds to the
opposite case where the blacks are favored over whites.

A phase transition typically manifests itself in the form
of a unique equilibrium distribution that has multi-modal



Koseoglu et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:367

http://jwcn.eurasipjournals.com/content/2012/1/367

nature in a finite graph. That is, most of the probabil-
ity measure is concentrated around several quasi-stable
states. Transitions between such states become rare as
the system size increases, leading to multiple distinct
equilibrium distributions in the limit.

Dobrushin [34] showed that when the fugacity is below
a certain critical threshold, i.e, A < A, a system has a
unique measure. However, determination of this thresh-
old is a difficult problem even for regular topologies. Kelly
[31] has obtained the uniqueness threshold for the tree
topology with degree d:

1 [d—1\?
d—1\d-2/ "~

Previous literature was interested in determining
threshold fugacities but they did not consider the station-
ary probabilities, that is, throughputs that correspond to
these thresholds. The uniqueness threshold for the tree
topology corresponds to the case where the stationary
probability of a node being active is % which also follows
from [31]. If the throughput of nodes in the tree is less
than %, the system has a unique measure.

A< (7)

8.2 Reconstruction threshold
A stronger condition that is indicative of long-range cor-
relations between nodes is called the reconstruction con-
dition. Reconstruction problem is interested in charac-
terizing the conditions under which the state of the root
can be reconstructed using the states of the leaf nodes as
the height of the tree approaches to infinity. Reconstruc-
tion property is a stronger condition than having multiple
equilibrium distributions.

Exact reconstruction threshold for the tree topology is
not known but, recently, it is shown that the hard-core
model on the tree has non-reconstruction if [35]:
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(In(2) — 0(1)) In?(d)
b= 2Inind) ®

8.3 Short-term fairness and mixing time

The described conditions occur as a result of increased
correlation between the particles in the material. Sim-
ilarly, short-term fairness of a CSMA network reduces
mainly because states of nodes become increasingly cor-
related which causes some nodes to starve for a long time
reducing short-term fairness.

Short-term fairness is thought to be estimated by
the mixing time of the underlying system dynamics [5]
where mixing time is defined as the time required for
the underlying Markov chain to converge to its equi-
librium distribution. Convergence to equilibrium slows
down if the network sticks to some transmission pat-
terns during the convergence process. For that reason,
slow mixing is considered to be an indicator of short-term
unfairness.

Previous studies on the mixing time of the hard-core
model investigate the conditions of fast mixing. A recent
study shows that the fast mixing region extends beyond
the uniqueness region and reaches to the reconstruction
region for the tree topology [36]. Because of this relation-
ship, we investigate here whether these two thresholds
have any implications in determining the region beyond
which short-term fairness of the CSMA network starts to
deteriorate.

8.4 Simulations

The described uniqueness and reconstruction thresh-
olds are for the tree topology and are in terms of
fugacities. We obtain throughputs obtained at these
fugacities by performing simulations and compare the
results against the short-term fair horizon for the
tree topology.
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Figure 16 plots the short-term fairness horizon of the
tree topologies for d = 4,10, and 18, along with the
throughputs corresponding to the uniqueness threshold
and the non-reconstruction bound. For d = 4, the unique-
ness threshold and the non-reconstruction bound are
close to each other corresponding to the point where
short-term fairness starts to increase rapidly. However,
for larger d, the uniqueness threshold underestimates this
point of increase while the non-reconstruction bound
consistently locates the point where the horizon starts to
increase rapidly.

These simulations demonstrate a possible analogy
between the phase transitions of the hard-core model and
short-term fairness of the CSMA network. In light of
the recent research, results showing that the fast mixing
threshold of the tree topology extends to the reconstruc-
tion threshold [36], this line of study suggests further
research especially for other topologies.

9 Conclusions

This article was aimed at characterizing the performance
of a system of networks employing CSMA protocol under
a short-term fairness constraint. Our main findings can
be summarized as follows: (1) Short-term fairness sig-
nificantly depends on the degree of the network: high-
degree topologies have less short-term fair capacity than
low-degree topologies. (2) Short-term fairness does not
depend on network size for reasonably large fixed degree
random networks.

Conflict graph topology is an important factor affect-
ing the short-term fair capacity. The grid topology is
inherently unfair at high throughputs. When the Wi-Fi
transmitters form a grid conflict graph the network may
become severely unfair at high throughputs. However, in
random conflict graphs, such behavior is not observed so
that randomly placed transmitters are unlikely to experi-
ence this degradation in short-term fairness.

Dependence of short-term fairness on the degree of the
network has implications for deployment of large area
Wi-Fi networks. Deploying a dense network improves
coverage; however, it reduces short-term fair capacity by
increasing the average degree.

We have also presented simulation results which suggest
a correlation between the phase transitions of the hard-
core model from statistical physics literature to the short-
term fairness of the CSMA network. Our results suggest
that the reconstruction threshold can be used as a good
indicator of the short-term fair capacity region for the tree
topology which is in accordance with the recent results on
the mixing time.

Our study focuses on fixed-rate CSMA systems where
the nodes do not adaptively change their probing rates.
Whether a similar short-term unfairness phenomenon
will be observed in adaptive CSMA systems is a subject
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of future study. We conjecture that the short-term unfair-
ness problem may also be observed in adaptive CSMA
systems at high loads because the nodes need to probe
the channel very frequently resembling a fixed rate sys-
tem at high loads. Similarly, the extent of short-term
unfairness in CSMA-based MAC protocols, such as the
802.11 protocol, has to be investigated.

In addition to further analysis of adaptive CSM A, meth-
ods to resolve the short-term fairness problems have to
be devised. As our results show, only a portion of the
capacity region can be achieved under short-term fair-
ness constraints, so a sacrifice from throughput may be
needed to alleviate the short-term unfairness problem in
a distributed fashion.
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