CHARACTERISTIC APPROXIMATION PROPERTIES OF QUADRATIC IRRATIONALS

W. B. JURKAT AND A. PEYERIMHOFF
Universitat ULM (MNH)
Abt. f. Mathematic I
7900 U1m (Donau)
Oberer Eselsberg, Germany

(Received April 19, 1978)

ABSTRACT. Some characteristic approximation properties of quadratic irrationals are studied in this paper. It is shown that the limit points of the sequence δ_{n} form a subset $C(x)$, and $D(x)$ can be generated from $C(x)$ in a relatively simple way. Another proof of Lekkerkerker's theorem is given using relations between $\delta_{n-1}, \delta_{n}, \delta_{n+1}$ which are independent of x and n.

KEY WORDS AND PHRASES. Quadratic Irrationals, Approximation of numbers, Badly Approximable Numbers.

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. 10F05, $10 F 35$.
0. Throughout this paper x will denote a real irrational number. We introduce

$$
||x||=\min _{k \in \mathbb{Z}}|x-k| \quad, \quad r(x)=x-\left[x+\frac{1}{2}\right]
$$

which implies

$$
r(x) \epsilon\left[-\frac{1}{2}, \frac{1}{2}\right), \quad|r(x)|=\| x| |
$$

Given x, the sequence $n \| n x| |, n \in \mathbb{N}$, contains bounded subsequences (e.g. $\mathrm{n}||\mathrm{nx}||<1 / \sqrt{5}$ for infinitely many n by Hurwitz's theorem), and it seems natural to investigate the set $D(x)$ of all its limit points which describes the various qualities of approximation of x by rationals which occur again and again ${ }^{1)}$. A number x is "well approximable" if $0 \in D(x)$ (e.g. if $x=e=2.71 \ldots$ or if x is a Liouville number) and "badly approximable" if $0 \Leftrightarrow D(x)$. If $0 \in D(x)$ then 2) $D(x)=[0, \infty)$, hence interesting numbers in this context are the badly approximable numbers.

Let x be represented by the continued fraction $\left[b_{o}, b_{1}, \ldots\right]$, let A_{n} / B_{n} denote its convergents and let

$$
\delta_{n}=\delta_{n}(x)=B_{n}\left|B_{n} x-A_{n}\right|, \quad n \geq-2 \quad\left(\delta_{n}=B_{n}| | B_{n} x| | \text { for } n \geq 1\right)
$$

The limit points of the sequence δ_{n} form a subset $C(x)$ (which is in a sense constructive) and we shall show that $D(x)$ can be generated from $C(x)$ in a relatively simple way (Theorem 1), so the structure of $C(x)$ is basic in our context.

A theorem of Lekkerkerker [5] shows that for a badly approximable number x the set $C(x)$ is finite if and only if x is a quadratic irrational, and the connection between $C(x)$ and $D(x)$ shows that $D(x)$ is discrete if and only if

1) For results on infD(x), which is the inverse of Perron's modular function [5], see [1] and the bibliography of this paper.
2) Let $n_{i}=n_{i}| | n_{i} x| | \rightarrow 0$, choose $0<\alpha \in \mathbf{R}$, and let $n_{i}{ }^{*}=n_{i}\left[\sqrt{\frac{\alpha}{n_{i}}}\right]$ Then $\eta_{i}\left[\sqrt{\frac{\alpha}{\eta_{i}}}\right]^{2}=n_{i}^{*}| | n_{i}^{*} x| |$ for i large and $\eta_{i}\left[\sqrt{\frac{\alpha}{\eta_{i}}}\right]^{2} \rightarrow \alpha$. Hence $\alpha \in D(x)$.
x is (badly approximable and) a quadratic irrational. We will also give another proof of Lekkerkerker's theorem using relations between $\delta_{n-1}, \delta_{n}, \delta_{n+1}$ which are independent of x and n and seem to tell the whole structure of the δ_{n} 's (Lemma 3, Theorem 3).
1. THE BASIC FORMULAS.

Writing $x=\left[b_{0}, b_{1}, \ldots\right]=\left[b_{0}, b_{1}, \ldots, b_{n-1}+\frac{1}{\xi_{n}}\right], \xi_{n}=\left[b_{n}, b_{n+1}, \ldots\right]$ and $\rho_{n}=\frac{B_{n}}{B_{n-1}}, n \geq 1,1 / \rho_{0}=0$ we have for $n \geq 0$ the following well known formulas

$$
\begin{gather*}
\xi_{n}=b_{n}+\frac{1}{\xi_{n+1}} \tag{2}\\
B_{n}\left(B_{n} x-A_{n}\right)=\frac{(-1)^{n}}{\xi_{n+1}+\frac{1}{\rho_{n}}} \tag{3}\\
b_{n+1}=\rho_{n+1}-\frac{1}{\rho_{n}} \tag{4}
\end{gather*}
$$

(cf. [7], 13; (4) is a consequence of $B_{n+1}=b_{n+1} B_{n}+B_{n-1}, n \geq-1$). LEMMA 1. For $n \geq 1$

$$
\begin{align*}
& \left.\delta_{n}+\delta_{n-1}<1 \quad \text { unless } 3\right) \quad n=1, b_{1}=1 \tag{5}\\
& \rho_{n}=\frac{1+\sqrt{1-4 \delta_{n} \delta_{n-1}}}{2 \delta_{n-1}}, \frac{1}{\rho_{n}}=\frac{1-\sqrt{1-4 \delta_{n} \delta_{n-1}}}{2 \delta_{n}} \tag{6}
\end{align*}
$$

PROOF. It follows from (2) and (4) that

$$
\xi_{n}+\frac{1}{\rho_{n-1}}=b_{n}+\frac{1}{\xi_{n+1}}+\frac{1}{\rho_{n-1}}=\frac{1}{\xi_{n+1}}+\rho_{n} \quad(n \geq 1) \quad . \quad \text { This and (1) }
$$

3) If $b_{1}=1$ then $\delta_{0}+\delta_{1}=(x-[x])-(x-[x]-1)=1$.
show that

$$
\begin{equation*}
\delta_{n}+\delta_{n-1}=\frac{\xi_{n+1}+\rho_{n}}{1+\rho_{n} \xi_{n+1}} \quad \text { for } n \geq 1 \tag{7}
\end{equation*}
$$

which implies (5) (note that $\xi_{n+1}>1$). In order to prove (6) we note that the foregoing calculations also show that

$$
1-4 \delta_{n} \delta_{n-1}=1-4 \frac{\rho_{n} \xi_{n+1}}{\left(1+\rho_{n} \xi_{n+1}\right)^{2}}=\left(\frac{\rho_{n} \xi_{n+1}-1}{1+\rho_{n} \xi_{n+1}}\right)^{2}
$$

and this leads immediately to (6).

Formulas (4) and (6) suggest the introduction of the function

$$
\phi(x, y ; z)=\frac{\sqrt{1-4 x z}+\sqrt{1-4 y z}}{2 z}, \quad z>0,4 x z<1,4 y z<1
$$

using this notation, we have

$$
\begin{equation*}
b_{n+1}=\phi\left(\delta_{n-1}, \delta_{n+1} ; \delta_{n}\right) \quad, \quad n \geq 0 \quad\left(\delta_{-1}=0\right) \tag{8}
\end{equation*}
$$

The following properties of ϕ will be used in later sections of this paper :

$$
\begin{gather*}
\phi(x, y ; z)=\phi(y, x ; z), \tag{9}\\
\phi(x, y ; z) \downarrow(\text { strictly) if } x \uparrow, y \uparrow \text { or } z \uparrow, \tag{10}\\
\phi(x, 1-z ; z)=\frac{|2 z-1|+\sqrt{1-4 x z}}{2 z}, \tag{11}\\
\phi(x, 0 ; z)-\phi(x, 1-z ; z)=\frac{1-|2 z-1|}{2 z}=\left\{\begin{array}{cc}
1 & \text { if } \quad z \leq 1 / 2 \\
\frac{1-z}{z}<1 & \text { if } \\
z>1 / 2
\end{array}\right\} \tag{12}
\end{gather*}
$$

In conclusion we mention that (5) contains Vahlen's result (see e.g. [7], §14)
that at least one of δ_{n}, δ_{n-1} is $<1 / 2$, and Borel's result (see [7], §14) that at least one of $\delta_{n-1}, \delta_{n}, \delta_{n+1}$ is $<1 / \sqrt{5}$ follows from (6), (8) and (10). Indeed, if this were not true then one of the $\delta^{\prime} \mathrm{s}$ would be $>1 / \sqrt{5}$ (since $\delta_{\mathrm{n}}=\delta_{\mathrm{n}+1}=$ $1 / \sqrt{5}$ and (6) would imply $\rho_{n+1}=\frac{\sqrt{5}+1}{2}$, but ρ_{n} is rational) and this and (8) and (10) imply

$$
b_{n+1}=\phi\left(\delta_{n-1}, \delta_{n+1} ; \delta_{n}\right)<\phi(1 / \sqrt{5}, 1 / \sqrt{5} ; 1 / \sqrt{5})=1
$$

but $\quad b_{n+1} \geq 1$.

2. THE RELATION BETWEEN $C(x)$ AND $D(x)$.

In addition to $d(x)$ and $C(x)$ we introduce the sets

$$
\begin{aligned}
& D_{s}(x): \text { the limit points of the sequence } n r(n x) \\
& C_{s}(x): \text { the limit points of the sequence } B_{n} r\left(B_{n} x\right)
\end{aligned}
$$

These sets contain information on the sign of the approximations of x by rationals, and $D(x)$ or $C(x)$ is known if $D_{S}(x)$ or $C_{S}(x)$ is known. Let $\quad||n x||=|n x-m|$, sign $(n x-m)=\varepsilon$. Then it follows from

$$
\begin{align*}
& \mathrm{n}=\lambda \mathrm{B}_{\mathrm{k}}+\mu \mathrm{B}_{\mathrm{k}-1} \\
& \mathrm{~m}=\lambda \mathrm{A}_{\mathrm{k}}+\mu A_{\mathrm{k}-1} \quad, \quad \mathrm{k} \geq-1 \tag{13}
\end{align*}
$$

by Cramer's rule that $\lambda, \mu \in \mathbb{Z}$ and that

$$
\begin{align*}
& \lambda=\mathrm{n}\left|\mathrm{xB}_{\mathrm{k}-1}-\mathrm{A}_{\mathrm{k}-1}\right|+(-1)^{\mathrm{k}} \varepsilon \mathrm{~B}_{\mathrm{k}-1}| | \mathrm{nx}| | \tag{14}\\
& \mu=\mathrm{n}\left|\mathrm{xB}_{\mathrm{k}}-\mathrm{A}_{\mathrm{k}}\right|-(-1)^{\mathrm{k}} \varepsilon \mathrm{~B}_{\mathrm{k}}| | \mathrm{nx}| |
\end{align*}
$$

THEOREM 1. Let $0 \notin D(x)$. Then $\alpha \in D_{s}(x)$ if and only if

$$
\begin{equation*}
\alpha=\lambda^{2} \gamma-\lambda \mu \sqrt{1+4 \beta \gamma} \operatorname{sign} \gamma+\mu^{2} \beta \tag{15}
\end{equation*}
$$

where $\lambda, \mu \in \mathbb{N}_{0}, \quad(\lambda, \mu) \neq(0,0)$ and $\beta=\lim B_{k_{i}-1} r\left(B_{k_{i}-1} x\right)$, $\gamma=\lim B_{k_{i}} r\left(B_{k_{i}} x\right)$ for some sequence $k_{i} \rightarrow \infty$.

COROLLARY. Formula (15) and $\beta \gamma<0$ show that $D(x)$ and $C(x)$ are connected by

$$
\begin{equation*}
\alpha=\left|\lambda^{2}\right| \gamma\left|-\lambda \mu \sqrt{1-4|\beta| \gamma \mid}-\mu^{2}\right| \beta| | \tag{16}
\end{equation*}
$$

PROOF of Theorem 1.

Let $n_{i} r\left(n_{i} x\right)=n_{i}\left(n_{i} x-m_{i}\right) \rightarrow \alpha \in D_{s}(x)$, and select $k_{i} \in N \quad$ (for all large i) such that

$$
\begin{align*}
& B_{k_{i}}| | n_{i} x| | \leq n_{i}| | B_{k_{i}} x| | \tag{17}\\
& B_{k_{i}+1}| | n_{i} x| |>n_{i}| | B_{k_{i}+1} x| | \tag{18}
\end{align*}
$$

Define numbers λ_{i}, μ_{i} by (13) (with n_{i}, m_{i}, k_{i} instead of n, m, k). It follows from (17) and (14) that $\lambda_{i}, \mu_{i} \epsilon \mathbf{N}_{0}$. Condition (17) implies $B_{k_{i}} \leq n_{i}$ since otherwise $\left|\left|n_{i} x\right|\right|>\left|\left|B_{k_{i}} x\right|\right|$ by Lagrange's Theorem ([7], §15) which leads to a contradiction to (17). On the other hand, it follows from

$$
\begin{aligned}
& \left\|\mathrm{B}_{\mathrm{k}_{\mathrm{i}}+1} \mathrm{x}\right\| \mid>\left(\mathrm{B}_{\mathrm{k}_{\mathrm{i}}+1}+\mathrm{B}_{\mathrm{k}_{\mathrm{i}}+2}\right)^{-1}([7], \text { §13) and (18) that } \\
& \quad \frac{n_{i}^{2}}{B_{k_{i}+1}+B_{k_{i}+2}} \leq n_{i}^{2}| | B_{k_{i}+1} x| |<B_{k_{i}+1} n_{i}| | n_{i} x| |=B_{k_{i}+1}(|\alpha|+o(1))
\end{aligned}
$$

which implies $n_{i} \leq 2|\alpha|^{1 / 2}{B_{k_{i}}+2}^{\text {for all large } i .}$
It follows from $0 \notin D(x)$ and $B_{k}| | B_{k} x| |<\frac{1}{b_{k+1}} \quad([7], 13)$ that $b_{k+1}=0(1)$. Hence, there is a constant $C=C(\alpha, x)$ such that

$$
\begin{equation*}
\mathrm{B}_{\mathrm{k}_{\mathrm{i}}} \leq \mathrm{n}_{\mathrm{i}} \leq \mathrm{C}(\alpha, x) \mathrm{B}_{\mathrm{k}_{\mathrm{i}}-1} \quad \text { for all large } i, \tag{19}
\end{equation*}
$$

From (19) and (14) we infer that

$$
0 \leq \lambda_{i} \leq K_{1}(\alpha, x) \quad, \quad 0 \leq \mu_{i} \leq K_{2}(\alpha, x)
$$

for constants K_{1}, K_{2} and all large i.

By taking subsequences, the foregoing shows that sequences $n_{i} \rightarrow \infty, k_{i} \rightarrow \infty$ exist such that
(20)

$$
\left\{\begin{array}{l}
n_{i} r\left(n_{i} x\right) \rightarrow \alpha \\
n_{i}=\lambda B_{k_{i}}+\mu B_{k_{i}-1}, m_{i}=\lambda A_{k_{i}}+\mu A_{k_{i}-1}, \lambda, \mu \in \mathbb{N}_{o},(\lambda, \mu) \neq(0,0) \\
B_{k_{i}-1} r\left(B_{k_{i}-1} x\right) \rightarrow \beta, B_{k_{i}} r\left(B_{k_{i}} x\right) \rightarrow \gamma .
\end{array}\right.
$$

Let n_{i}, k_{i} satisfy (20). Then (note that $r\left(B_{n} x\right)=B_{n} x-A_{n}$ for $n \geq 1$)
$n_{i} r\left(n_{i} x\right)=\lambda^{2} B_{k_{i}} r\left(B_{k_{i}} x\right)+\lambda \mu\left(\rho_{k_{i}} B_{k_{i}-1} r\left(B_{k_{i}-1} x\right)+\frac{1}{\rho_{k_{i}}} B_{k_{i}} r\left(B_{k_{i}} x\right)+\mu^{2} B_{k_{i}-1} r\left(B_{k_{i}-1} x\right)\right.$.

This and (6) show that every $\alpha \in D_{S}$ has a representation (15) and that every number (15) belongs to D_{S}.

REMARKS. 1. Let $K>0$. Then the proof of Theorem 1 shows that for every $\alpha \in D_{S}(x),|\alpha| \leq K$, a representation (15) holds for some λ and μ which are bounded by a constant which depends on K and x only. Hence, if $C(x)$ is discrete (i.e. $C(x)$ is finite since $B_{n}| | B_{n} x| | \leq 1$), then $D(x)$ is discrete and vice versa.
2. A slight modification of the proof of Theorem 1 also shows that
$\mathrm{n}||\mathrm{nx}||=\mathrm{n}|\mathrm{nx}-\mathrm{m}|<1 / 2 \quad(\mathrm{n} \in \mathbb{N})$ implies $\mathrm{n} / \mathrm{m}=\mathrm{A}_{\nu} / \mathrm{B}_{\nu}$ for some $\nu \quad$ ([7], §13;[2]

Theorem 184; for a more general result compare [4], Proposition 4). In fact, choose $k \geq 1$ such that $B_{k-1}<n \leq B_{k} \quad\left(n=1\right.$ is a trivial case). If $\varepsilon=(-1)^{k}$ and $n<B_{k}$, then (14) leads to the contradiction $0<\lambda<2 n| | n x| |<1$, hence $\mathrm{n}=\mathrm{B}_{\mathrm{k}}$. If $\varepsilon=(-1)^{\mathrm{k}-1}$, then (14) implies $\mu>0, \lambda>-\mathrm{n}| | \mathrm{nx}| |>-1 / 2$, hence $\lambda \geq 0$. But $\lambda<1$ since $n \leq B_{k}$, hence $n=\mu B_{k-1}, m=\mu A_{k-1}$.
3. THE STRUCTURE OF $C(x)$ WHEN x IS A QUADRATIC IRRATIONALITY.

We show first that $C(x)$ is finite when x is a quadratic irrationality.

LEMMA 2. If x belongs to a quadratic number field, then $0 \ddagger C(x)$ and $C_{S}(x)$ and $C(x)$ are finite.

This Lemma is essentially due to Lekkerkerker [5], see also Perron [6], p.6. The following proof contains an explicit representation of the elements of $C_{s}(x)$.

PROOF. $x=\left[b_{0}, b_{1}, \ldots\right]$ is represented in this case by a periodic continued fraction, i.e. $x=\left[b_{0}, \ldots, b_{r-1, p_{0}}, \overline{p_{1}, \ldots, p_{k-1}}\right], r \geq 1, k \geq 1$. It follows that $b_{r+n k+\nu}=p_{\nu}$ for $\nu=0,1, \ldots, k-1, n \in \mathbf{N}_{0}$, and if $x_{v}=\left[\overline{p_{v}, p_{v+1}, \ldots, p_{k-1}, p_{o}, \ldots p_{v-1}}\right]$, then $\xi_{r+n k+v}=x_{v}$ It follows from (4) that $\rho_{n}=\left[b_{n}, b_{n-1}, \ldots, b_{1}\right]$, hence $\rho_{r+n k+v-1} \rightarrow\left[\overline{p_{v}-1},{p_{v-2}}, \cdots, p_{o}, p_{k-1}, \cdots, p_{v}\right]=c_{v}(n \rightarrow \infty)$, and the statement of Lemma 2 follows from (3).

REMARK. It follows from a theorem of Galois ([7], §23) that $c_{v}=-\frac{1}{\bar{x}_{v}}$, where \bar{x}_{v} is the conjugate of x_{v}. Hence, the elements of C_{s} are

$$
\begin{equation*}
\frac{(-1)^{r+v-1}}{x_{v}-\bar{x}_{v}} \text { if } k \text { is even }, \frac{ \pm 1}{x_{v}-\bar{x}_{v}} \quad \text { if } k \text { is odd. } \tag{21}
\end{equation*}
$$

This formula leads to an even more explicit representation of the elements of $C_{s}(x)$.

This representation uses the notation $A_{n, j} / B_{n, j}$ for the convergents of $\left[b_{j}, b_{j+1}, \ldots\right]([7], \S 5)$. Let A_{n} / B_{n} denote the convergents of $\left[\overline{p_{0}, \ldots, p_{k-1}}\right]$. Then the elements of $C_{s}(x)$ are

$$
\left\{\begin{array}{l}
(-1)^{r+\nu-1} \frac{B_{k-1, v}}{\sqrt{D}} \text { if } k \text { is even } \pm \frac{B_{k-1, \nu}}{\sqrt{D}} \text { if } k \text { is odd } \tag{22}\\
v=0,1, \ldots, k-1 \quad, \quad D=\left(A_{k-1}+B_{k-2}\right)^{2}+4(-1)^{k-1}
\end{array}\right.
$$

In fact, we have $x_{v}=\frac{A_{k-1, \nu}-B_{k-2, \nu}+\sqrt{D_{v}}}{2 B_{k-1, v}}, \quad D_{v}=\left(A_{k-1, v}+B_{k-2, \nu}\right)^{2}+4(-1)^{k-1}$ ([7], § 19). But $B_{i, j}=A_{i-1, j+1}, \quad A_{i, j}=b_{j} A_{i-1, j+1}+B_{i-1, j+1} \quad$ ([7], §5) , and it follows that
$A_{k-1, v-1}+B_{k-2, v-1}=b_{v-1} A_{k-2, v}+B_{k-2, v}+A_{k-3, v}=b_{k-1+v} A_{k-2, v}+A_{k-3, v}+B_{k-2, v}$
$=A_{k-1, v}+B_{k-2, v}$. Hence $D_{v}=D_{o}$, and (22) follows.
4. THE RELATION BETWEEN THREE CONSECUTIVE $\delta^{\prime} s$.

Formula (8) shows that b_{n+1} is a function of $\delta_{n-1}, \delta_{n,} \delta_{n+1}$. The following Lemma shows that b_{n+1} is also a function of δ_{n-1}, δ_{n} alone. This fact is the key to the following considerations, which will show that the converse of Lemma 2 is also true.

LEMMA 3. For $\mathrm{n} \geq 0$

$$
\begin{equation*}
b_{n+1}=\phi\left(\delta_{n-1}, 0 ; \delta_{n}\right) \quad \text {, and } \phi\left(\delta_{n-1}, 0 ; \delta_{n}\right) \notin N \tag{23}
\end{equation*}
$$

PROOF. Formulas (3), (6) and (8) imply

$$
\xi_{n+1}=\frac{1}{\delta_{n}}-\frac{1}{\rho_{n}}=\frac{1+\sqrt{1-4 \delta_{n} \delta_{n-1}}}{2 \delta_{n}}=\phi\left(\delta_{n-1}, 0 ; \delta_{n}\right) \quad(n \geq 0)
$$

and (23) follows from $\xi_{n+1}=\left[b_{n+1}, b_{n+2}, \ldots\right]$, $b_{n+1}=\left[\xi_{n+1}\right]$ (note that ξ_{n+1} is irrational).

REMARK. Formulas (6) and (4) show that

$$
\phi\left(\delta_{n+1}, 0 ; \delta_{n}\right)=\frac{1+\sqrt{1-4 \delta_{n}^{\delta} \delta_{n+1}}}{2 \delta_{n}}=\rho_{n+1}=\left[b_{n+1}, b_{n}, \ldots, b_{1}\right] \quad(n \geq 0)
$$

and it follows

$$
\begin{equation*}
b_{n+1}=\phi\left(\delta_{n+1}, 0 ; \delta_{n}\right) \quad, \quad \phi\left(\delta_{n+1}, 0 ; \delta_{n}\right) \notin \mathbf{N} \tag{24}
\end{equation*}
$$

if $\mathrm{n} \geqslant 2$ or if $\mathrm{n}=1, \mathrm{~b}_{1}>1$.
The first formula (24) remains true for $n=0$.
Lemma 3 shows that a (universal) function Ψ exists such that

$$
\begin{equation*}
b_{n+1}=\Psi\left(\delta_{n}, \delta_{n-1}\right), \quad n \geq 0, \tag{25}
\end{equation*}
$$

and the remark shows that also $b_{n+1}=\Psi\left(\delta_{n}, \delta_{n+1}\right)$ unless $n=1, b_{1}=1$, i.e. unless $n=1, \delta_{0}>1 / 2$.

It follows from (8) that $\Psi\left(\delta_{n}, \delta_{n-1}\right)=\phi\left(\delta_{n-1}, \delta_{n+1}, \delta_{n}\right)$, hence there exists by (10) a function X such that

$$
\begin{equation*}
\delta_{n+1}=x\left(\delta_{n}, \delta_{n-1}\right), n \geq 0 \tag{26}
\end{equation*}
$$

and similarly

$$
\delta_{n-1}=x\left(\delta_{n}, \delta_{n+1}\right) \text { unless } n=1, b_{1}=1 .
$$

Using the function Ψ, we find explicitely

$$
\begin{equation*}
\delta_{n+1}=\chi\left(\delta_{n}, \delta_{n-1}\right)=\frac{1}{4 \delta_{n}}\left[1-\left(2 \delta_{n} \psi\left(\delta_{n}, \delta_{n-1}\right)-\sqrt{1-4 \delta_{n-1} \delta_{n}}\right)^{2}\right] \tag{27}
\end{equation*}
$$

The following theorem gives Ψ in a more convenient form than Lemma 3 .
THEOREM 2. Let $n \geq 0, k_{n}=\left[\frac{1}{\delta_{n}}\right]$. Then $\delta_{n-1} \neq k_{n}\left(1-k_{n} \delta_{n}\right)$ and

$$
b_{n+1}=\psi\left(\delta_{n}, \delta_{n-1}\right)= \begin{cases}k_{n} & \text { if } \delta_{n-1} \in\left[0, k_{n}\left(1-k_{n} \delta_{n}\right)\right) \\ k_{n}-1 & \text { if } \delta_{n-1} \in\left(k_{n}\left(1-k_{n} \delta_{n}\right),\left(1-\delta_{n}\right)\right)\end{cases}
$$

PROOF. Assume that $\delta_{n-1}=k_{n}\left(1-k_{n} \delta_{n}\right)$. Then

$$
\begin{equation*}
\phi\left(\delta_{n-1}, 0 ; \delta_{n}\right)=\frac{1+\sqrt{\left(2 \delta_{n} k_{n}-1\right)^{2}}}{2 \delta_{n}}=k_{n} \tag{28}
\end{equation*}
$$

(note that $2 \delta_{n} k_{n}>1$) which contradicts (23).
Let $\delta_{n-1} \in\left[0, k_{n}\left(1-k_{n} \delta_{n}\right)\right)$. Then by (10) and (28)
$k_{n}+1>\frac{1}{\delta_{n}}=\phi\left(0,0 ; \delta_{n}\right) \geq \phi\left(\delta_{n-1}, 0 ; \delta_{n}\right)>\phi\left(k_{n}\left(1-k_{n} \delta_{n}\right), 0 ; \delta_{n}\right)=k_{n}$ and $k_{n}=b_{n+1}$ follows from Lemma 3.

Let $\delta_{n-1} \in\left(k_{n}\left(1-k_{n} \delta_{n}\right)\right.$, $\left.1-\delta_{n}\right)$ which implies $n \geq 1$ since $\delta_{-1}=0$. Then, by (28), (10), (5) and (12)

$$
\begin{aligned}
k_{n}=\phi\left(k_{n}\left(1-k_{n} \delta_{n}\right), 0 ; \delta_{n}\right) & >\phi\left(\delta_{n-1}, 0 ; \delta_{n}\right) \geq \phi\left(1-\delta_{n}, 0 ; \delta_{n}\right) \\
& \geq \phi\left(0,0 ; \delta_{n}\right)-1=\frac{1}{\delta_{n}}-1>k_{n}-1,
\end{aligned}
$$

and $k_{n}-1=b_{n+1}$ follows from Lemma 3 .
Figure 1 shows the areas of constancy for the function Ψ.

5. THE INFLUENCE OF $0 \ddagger C(x)$.

Our next step is to introduce the assumption $0 \& C(x)$, i.e. $\delta_{n} \geq \lambda>0$, $\mathrm{n} \in \mathbf{N}$, for some λ into our considerations.

LEMMA 4. Let $0 \leq \lambda \leq 1 / \sqrt{2}$.
If $n \geq 1$ and if δ_{n-1} and δ_{n+2} are $>\lambda$, then
4) This interval is empty if $k_{n}=1$.

$$
\begin{equation*}
\delta_{n}+\delta_{n+1}<\sqrt{1-\lambda^{2}} \tag{29}
\end{equation*}
$$

PROOF. Our proof depends on the inequality

$$
\begin{equation*}
\phi\left(\lambda, \sqrt{1-\lambda^{2}}-z ; z\right) \leq 1 \quad \text { if } \quad \frac{1}{2} \sqrt{1-\lambda^{2}} \leq z<1,4 \lambda z<1 \tag{30}
\end{equation*}
$$

In order to prove (30) we observe that

$$
\begin{aligned}
& \sqrt{1-4 \lambda z} \leq \sqrt{1-2 \lambda \sqrt{1-\lambda^{2}}}=\sqrt{\left(\sqrt{1-\lambda^{2}}-\lambda\right)^{2}}=\sqrt{1-\lambda^{2}}-\lambda \\
& \sqrt{1-4 z\left(\sqrt{1-\lambda^{2}}-z\right)}=\sqrt{\left(2 z-\sqrt{1-\lambda^{2}}\right)^{2}+\lambda^{2}} \leq\left(2 z-\sqrt{1-\lambda^{2}}\right)+\lambda,
\end{aligned}
$$

and (30) follows from

$$
\phi\left(\lambda, \sqrt{1-\lambda^{2}}-z ; z\right) \leq \frac{1}{2 z}\left(\sqrt{1-\lambda^{2}}-\lambda+2 z-\sqrt{1-\lambda^{2}}+\lambda\right)=1
$$

Assume that the assumptions of Lemma 4 hold and that $\delta_{n}+\delta_{n+1} \geq \sqrt{1-\lambda^{2}}$. If $\delta_{n} \geq \frac{1}{2} \sqrt{1-\lambda^{2}}$, then by (8), (10) and (30)

$$
b_{n+1}=\phi\left(\delta_{n-1}, \delta_{n+1} ; \delta_{n}\right)<\phi\left(\lambda, \delta_{n+1} ; \delta_{n}\right) \leq \phi\left(\lambda, \sqrt{1-\lambda^{2}}-\delta_{n} ; \delta_{n}\right) \leq 1,
$$

but $b_{n+1} \geq 1$.
Similarily, if $\delta_{n+1} \geq \frac{1}{2} \sqrt{1-\lambda^{2}}$,

$$
b_{n+2}=\phi\left(\delta_{n}, \delta_{n+2} ; \delta_{n+1}\right)<\phi\left(\lambda, \delta_{n} ; \delta_{n+1}\right) \leq \phi\left(\lambda, \sqrt{1-\lambda^{2}}-\delta_{n+1} ; \delta_{n+1}\right) \leq 1,
$$

but $b_{n+2} \geq 1$.

REMARK. Formula (5) is for $n \geq 2$ a special case of (29). If $\delta_{n}>\lambda$ for all n, then it follows form (29) that $2 \lambda<\sqrt{1-\lambda^{2}}$, hence $\lambda<1 / \sqrt{5}$.

Lemma 4 will be used now to show that the points $\left(\delta_{n}, \delta_{n-1}\right)$ keep a certain distance from the discontinuities of Ψ if $0 \ddagger C(x)$. We introduce the notation

$$
\eta_{n}=k_{n}\left(1-k_{n} \delta_{n}\right)
$$

and we assume chat $\quad \delta_{n}>\lambda>0$ for some $\lambda>0$ and all $n \in \mathbf{N}$. Let $\delta_{n} \quad 1 / 2$ for some fixed $n \geq 2$. Formula (8) and Theorem 2 imply

$$
\sqrt{1-4 \delta_{n} \delta_{n-1}}+\sqrt{1-4 \delta_{n} \delta_{n+1}}=\left\{\begin{array}{lll}
2 \delta_{n} k_{n} & \text { if } & \delta_{n-1}<\eta_{n} \tag{31}\\
2 \delta_{n} k_{n}-2 \delta_{n} & \text { if } & \delta_{n-1}>n_{n}
\end{array}\right\}
$$

In what follows we need the inequality $2 \ln _{n}>\frac{2 k_{n}}{k_{n}+1} \geq \frac{4}{3}$ (note that $k_{n} \geq 2$) and the formulas $1-4 \delta_{n} n_{n}=\left(2 \delta_{n} k_{n}-1\right)^{2}, 1-4 \delta_{n}\left(1-\delta_{n}\right)=\left(1-2 \delta_{n}\right)^{2}$.

Let $\delta_{n-1}>\eta_{n}$, Then it follows from (31) that

$$
\sqrt{1}-\sqrt{1-4 \delta_{n} \delta_{n+1}}=\sqrt{1-4 \delta_{n} \delta_{n-1}}-\sqrt{1-4 \delta_{n} n_{n}}
$$

hence (use $\sqrt{a}-\sqrt{b}=(a-b) /(\sqrt{a}+\sqrt{b})$)

$$
\frac{\lambda}{2} \leq \frac{\delta_{n+1}}{2} \leq \frac{\delta_{n+1}}{1+\sqrt{1-4 \delta_{n} \delta_{n+1}}}=\frac{\eta_{n}-\delta_{n-1}}{\sqrt{1-4 \delta_{n} \delta_{n-1}}+\left(2 \delta_{n} k_{n}-1\right)} \leq \frac{n_{n}-\delta_{n-1}}{1 / 3} .
$$

It follows that

$$
\begin{equation*}
\delta_{n-1} \leq n_{n}-\frac{\lambda}{6} \tag{32}
\end{equation*}
$$

Let $\delta_{n-1}>\eta_{n}$. Then it follows from (31) that

$$
\sqrt{1-4 \delta_{n} n_{n}}-\sqrt{1-4 \delta_{n} \delta_{n-1}}=\sqrt{1-4 \delta_{n} \delta_{n+1}}-\sqrt{1-4 \delta_{n}\left(1-\delta_{n}\right)},
$$

hence, by Lemma 4

$$
\frac{\delta_{n-1}-n_{n}}{1 / 3} \geq \frac{\delta_{n-1}-n_{n}}{2 \delta_{n} k_{n}-1+\sqrt{1-4 \delta_{n} \delta_{n-1}}}=\frac{1-\left(\delta_{n}+\delta_{n+1}\right)}{1-4 \delta_{n} \delta_{n+1}+\left(1-2 \delta_{n}\right)} \geq \frac{1-\sqrt{1-\lambda^{2}}}{2}
$$

It follows that

$$
\begin{equation*}
\delta_{n-1} \geq n_{n}+\frac{1-\sqrt{1-\lambda^{2}}}{6} \tag{33}
\end{equation*}
$$

Formula (4) implies that all points $\left(\delta_{n}, \delta_{n-1}\right), n \geq 2$, are in a certain open triangle, and some straight lines inside of this triangle are excluded by Theorem 2 (cf. figure 1) .

Fig. 1

Moreover, if $\delta_{\mathrm{n}}>\lambda>0$, then (29), (32) and (33) introduce some additional restriction for $\left(\delta_{n}, \delta_{n-1}\right)$. To describe the remaining region we introduce the following set.

Let $M(\lambda), 0 \leq \lambda<1 / \sqrt{5}$, denote the (open) set of points (x, y) with the properties

$$
\begin{aligned}
& \mathrm{x}>\lambda, \mathrm{y}>\lambda, \mathrm{x}+\mathrm{y}<\sqrt{1-\lambda^{2}} \\
& \text { and for } \mathrm{x}<1 / 2
\end{aligned}
$$

$$
y<\left[\frac{1}{x}\right]\left(1-x\left[\frac{1}{x}\right]\right)-\frac{\lambda}{6} \quad \text { or } \quad y>\left[\frac{1}{x}\right]^{\bullet}\left(1-x\left[\frac{1}{x}\right]\right)+\frac{1-\sqrt{1-\lambda^{2}}}{6}
$$

(Figure 2 illustrates $M(\lambda)$ for $\lambda=1 / 5$.)

Fig. 2

If $\delta_{n}>\lambda \geq 0$ for all $n \in \mathbb{N}$, then $\left(\delta_{n}, \delta_{n-1}\right) \in M(\lambda)$ for $n \geq 3$ by (29), (32) and (33). The combination of this result with the results of section 4 leads immediately to

THEOREM 3. There are (universal) functions Ψ and X, defined on $M(0)$, such that $b_{n+1}=\Psi\left(\delta_{n}, \delta_{n-1}\right), \delta_{n+1}=\chi\left(\delta_{n}, \delta_{n-1}\right), n \geq 0$.

The functions ψ and X are continuous on every $M(\lambda) . \lambda>0$. If $\delta_{n}>\lambda>0(\lambda<1 / \sqrt{5})$ for all $n \in \mathbf{N}$, then $\left(\delta_{n}, \delta_{n-1}\right) \in M(\lambda)$ for $n \geq 3$. 6. THE CONVERSE OF LEMMA 2.

We use Theorem 3 to prove the following result of Lekkerkerker [5].

THEOREM 4. If $C_{s}(x)$ is finite and $0 \notin C_{s}(x)$, then x belongs to a quadratic number field.

PROOF. Let α_{i} denote the elements of $C(x)$, and let A be the set to all pairs $\left(\alpha_{i}, \alpha_{j}\right)$ with $\left(\delta_{n}, \delta_{n-1}\right) \rightarrow\left(\alpha_{i}, \alpha_{j}\right)$ on a subsequence. Since $0 \notin C(s)$, there is some $\lambda>0$ such that $\left(\delta_{n}, \delta_{n-1}\right) \in M(\lambda)$ for all large n, and $a \in M(\lambda)$ for every $a \in \mathbb{A}$.

If $a=\left(\alpha_{i}, \alpha_{j}\right) \in A$ then $a^{\prime}=\left(x\left(\alpha_{i}, \alpha_{j}\right), \alpha_{i}\right) \in A$ since $\delta_{n_{k}} \rightarrow \alpha_{i}$, $\delta_{n_{k}-1} \rightarrow \alpha_{j}$ implies $\quad \delta_{n_{k}+1}=x\left(\delta_{n_{k}}, \delta_{n_{k}-1}\right) \rightarrow\left(\alpha_{i}, \alpha_{j}\right) \quad$ by Theorem 3.

We call a^{\prime} the successor of a. The set A is finite, hence if $a \in A$ then one of its later successors is again a .
Let $U(a, \varepsilon)=\{(x, y)| |(x, y)-a \mid<\varepsilon\}, a \in A$. Choose $\varepsilon>0$ such that $u(a, \varepsilon) \subseteq M(\lambda)$ for every $a \in A, U(a, \varepsilon) \cap U(b, \varepsilon)=\emptyset$ if $a \neq b$.

It follows that Ψ is constant on every $U(a, \varepsilon)$.
Choose $\varepsilon^{*} \epsilon(0, \varepsilon)$ such that for every $a \in A$

$$
\begin{equation*}
\left\{(x(x, y), x) \mid(x, y) \in U\left(a, \varepsilon^{*}\right)\right\} \subseteq U\left(a^{\prime}, \varepsilon\right) . \tag{34}
\end{equation*}
$$

Let $N \in \mathbf{N}$ be so large that $\left(\delta_{n}, \delta_{n-1}\right) \subseteq U\left(a, \varepsilon^{*}\right)$ for exactly one $a \in A$ depending on $n \geq N$. This establishes a mapping $a=F\left(\delta_{n}, \delta{ }_{n-1}\right)$ for every $\mathrm{n} \geq \mathrm{N}$ which is "successor preserving", i.e. if $\mathrm{F}\left(\delta_{\mathrm{n}}, \delta_{\mathrm{n}-1}\right)=a$ then $F\left(\delta_{n+1}, \delta_{n}\right)=a^{\prime}$. Indeed, if $F\left(\delta_{n}, \delta_{n-1}\right)=a$, i.e. $\left(\delta_{n}, \delta_{n-1}\right) \in U\left(a, \varepsilon^{*}\right)$, then $\left(\delta_{n+1}, \delta_{n}\right)=\left(x\left(\delta_{n}, \delta_{n-1}\right), \delta_{n}\right) \cong U\left(a^{\prime}, \varepsilon\right)$ by (34), hence $\left(\delta_{n+1}, \delta_{n}\right) \in U\left(a^{\prime}, \varepsilon^{*}\right)$ since $n \geq N$.

Take a fixed $n \geq N$, and let $a=F\left(\delta_{n}, \delta_{n-1}\right)$. Consider a sequence of successors $a=a^{(0)}, a^{\prime}, a^{\prime \prime}, \ldots, a^{(\ell)}, \ell \in \mathbf{N}$, with $a^{(\ell)}=a$. It follows that

$$
\begin{equation*}
F\left(\delta_{n+\nu+k \ell}, \delta_{n-1+\nu+k \ell}\right)=a^{(\nu)} \quad, \quad \nu=0,1, \ldots, \ell-1, k=0,1,2, \ldots \tag{35}
\end{equation*}
$$

Since Ψ is constant on every $U\left(a, \varepsilon^{*}\right)$, it follows from (35) that $b_{n+\nu+k \ell+1}=\Psi\left(\delta_{n+\nu+K \ell}, \delta_{n+\nu+k \ell-1}\right)$ is independent of k, i.e. the continued fraction for x is periodic. This proves Theorem 4.

REMARK. As conclusion we explain our results in the simplest case $x=(1+\sqrt{5}) / 2=[1,1, \ldots]$. Here $C(x)$ consists of the single point $1 / \sqrt{5}$ by (22), and $D(x)$ consists of the points $\left|\lambda^{2}-\lambda \mu-\mu^{2}\right| / \sqrt{5}$ with integral $(\lambda, \mu) \neq(0,0)$ by (16). It is well-known (see [3], p. 554) that

$$
\lambda^{2}-\lambda \mu-\mu^{2}=\left(\lambda-\mu \frac{1+\sqrt{5}}{2}\right)\left(\lambda-\mu \frac{1-\sqrt{5}}{2}\right)
$$

represents exactly the integers for which the exponents in the prime factorization must be even for all primes $\equiv 2$ or $3 \bmod 5$. So

$$
D(x)=\left\{\frac{1}{\sqrt{5}}, \frac{4}{\sqrt{5}}, \frac{5}{\sqrt{5}}, \frac{9}{\sqrt{5}}, \frac{11}{\sqrt{5}}, \frac{16}{\sqrt{5}}, \frac{19}{\sqrt{5}}, \frac{20}{\sqrt{5}}, \ldots\right\}
$$

Since this set contains only one element $\epsilon(0,1)$ it determines $C(x)$ uniquely. Furthermore, given $C(y)=\{1 / \sqrt{5}\}$, all possible y which produce this set are given by integral transformations $y=\frac{a x+b}{c x+d}, \quad a d-b c= \pm 1$.

This follows because the proof of Theorem 4 works with $\ell=1$, so the continued fraction for y has period 1 (the terms before the period being of no influence with quotients 1 by (22).

ACKNOWLEDGEMENT. This research was supported in part by the National Science Foundation.

REFERENCES

1. Davis, N. and Kinney, J.R. : Quadratic Irrationals in the Lower Lagrange Spectrum. Can. J. Math. 25 (1973) 578-584.
2. Hardy, G.H. and Wright, E.M. : An Introduction to the Theory of Numbers. Oxford 1954.
3. Hasse, H. : Zahlentheorie, Akademie-Verlag, Berlin 1969.
4. Jurkat, W. B. , Kratz, W., and Peyerimhoff, A. : Explicit Representations of Dirichlet Approximations.
5. Lekkerkerker, C.G. : Una Questione di Approssimazione Diofantea e Una Proprieta Caratteristica dei Numeri Quadratici I, II.
Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 21 (1956) 179-185, 257-262.
6. Perron, 0. : Uber die Approximation Irrationaler Zahlen Durch Rationale. S.-B. Heidelberger Akad. Wiss. Math.-Nat. K1. 12 (1921) 3-17.
7. Perron, 0. : Die Lehre von den Kettenbruchen. Teubner Verlag, Stuttgart 1954, 1957.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

