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We established the theory to coupled systems of multipoints boundary value problems of fractional order hybrid differential
equations with nonlinear perturbations of second type involving Caputo fractional derivative. The proposed problem is as follows:
𝑐𝐷𝛼[𝑥(𝑡)−𝑓(𝑡, 𝑥(𝑡))] = 𝑔(𝑡, 𝑦(𝑡), 𝐼𝛼𝑦(𝑡)), 𝑡 ∈ 𝐽 = [0, 1], 𝑐𝐷𝛼[𝑦(𝑡)−𝑓(𝑡, 𝑦(𝑡))] = 𝑔(𝑡, 𝑥(𝑡), 𝐼𝛼𝑥(𝑡)), 𝑡 ∈ 𝐽 = [0, 1], 𝑐𝐷𝑝𝑥(0) = 𝜓(𝑥(𝜂1)),𝑥(0) = 0, . . . , 𝑥𝑛−2(0) = 0, 𝑐𝐷𝑝𝑥(1) = 𝜓(𝑥(𝜂2)), 𝑐𝐷𝑝𝑦(0) = 𝜓(𝑦(𝜂1)), 𝑦(0) = 0, . . . , 𝑦𝑛−2(0) = 0, 𝑐𝐷𝑝𝑦(1) = 𝜓(𝑦(𝜂2)), where𝑝, 𝜂1, 𝜂2 ∈ (0, 1), 𝜓 is linear, 𝑐𝐷𝛼 is Caputo fractional derivative of order 𝛼, with 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N, and 𝐼𝛼 is fractional integral of
order 𝛼. The nonlinear functions 𝑓, 𝑔 are continuous. For obtaining sufficient conditions on existence and uniqueness of positive
solutions to the above system, we used the technique of topological degree theory. Finally, we illustrated the main results by a
concrete example.

1. Introduction

Due to a wide range of applications of fractional calculus
in various scientific disciplines such as optimization the-
ory, electric networks, signal processing, nonlinear control
theory, nonlinear biological systems, controlled thermonu-
clear fusion, viscoelasticity, chemistry, turbulence, mechan-
ics, oscillation, diffusion, fluid dynamics, stochastic dynam-
ical system, polymer physics, plasma physics, astrophysics,
chemical physics, and economics [1–4], the subject area has
received much attention among the scientific community.
Recently, the theory on existence and uniqueness of solutions
to boundary value problems (BVPs) of fractional differential
equations (DEs) are well studied and many results are
available in literature (see, e.g., [5–10] and the references
herein). The perturbed DEs are categorized into various
types. Dhage [11] classified different types of perturbations
for nonlinear integral and DEs. An important class of DEs
which captured great attention in last few decades is the

quadratic perturbations of nonlinear differential equations
known as hybrid differential equations (HDEs). This class is
well studied for BVPs with ordinary DEs. However, existence
theory for BVPs with fractional hybrid differential equations
(FHDEs) are not well explored and few results are available
in the literature (see [12, 13]). This class of DEs includes
perturbations of dynamical systems in different ways and
hence includes several dynamical systems as special cases.
Modern control-command systems often include controllers
that perform nonlinear computations to control a physical
system, which can typically be described by hybrid automa-
ton containing high dimensional systems of nonlinear DEs.
The hybrid systems are dynamical systems that involve the
interaction of continuous (real valued) states and discrete
(finite valued) states.

Recently, existence of solutions to some classes ofHDEs is
studiedwith the use of hybrid fixed point theory (see [14–18]).
Dhage and Jadhav [17] developed sufficient conditions for
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existence of maximal and minimal solutions to the following
first-order HDEs:

𝑑
𝑑𝑡 [𝑟 (𝑡) − Θ (𝑡, 𝑟 (𝑡))] = 𝜑 (𝑡, 𝑟 (𝑡)) , a.e 𝑡 ∈ 𝐼,

𝑟 (𝑡0) = 𝑟0 ∈ R,
(1)

where 𝐼 = [𝑡0, 𝑡0 + 𝑎) ∈ R for some 𝑡0, 𝑎 ∈ R with𝑎 > 0 and Θ, 𝜑 ∈ 𝐶(𝐼 × R,R). The results of [17] were
generalized by Lu et al. [18] to the case of fractional order
and developed conditions for existence and uniqueness to the
following FHDEs:

𝐷𝑞 [𝑟 (𝑡) − Θ (𝑡, 𝑟 (𝑡))] = 𝜑 (𝑡, 𝑟 (𝑡)) ,
a.e 𝑡 ∈ 𝐼, 0 < 𝑞 < 1,

𝑟 (𝑡0) = 𝑟0 ∈ R.
(2)

Bashiri et al. in [13] used coupled fixed point theorem, a
Krasnoselskii type generalization of fixed point theorem of
Burton [19] in Banach spaces, to the case of coupled systems
and developed sufficient conditions for existence of solutions
to the following coupled systems of two-point BVPs for
FHDEs:

𝐷𝑞 [𝑟 (𝑡) − Θ (𝑡, 𝑟 (𝑡))] = 𝜓 (𝑡, 𝑠 (𝑡) , 𝐼𝛼 (𝑠 (𝑡))) ,
a.e 𝑡 ∈ 𝐼,

𝐷𝑞 [𝑠 (𝑡) − Θ (𝑡, 𝑠 (𝑡))] = 𝜓 (𝑡, 𝑟 (𝑡) , 𝐼𝛼 (𝑟 (𝑡))) ,
a.e 𝑡 ∈ 𝐼, 0 < 𝑞 < 1, 𝛼 > 0,

𝑟 (0) = 0,
𝑠 (0) = 0.

(3)

Leray Schauder theory is powerful tool in solving operator
equations of the form (𝐼 − 𝑇)𝑢 = 𝑤, where 𝑇 is compact. But
inmany situations,𝑇 is not compact.Therefore, it is natural to
ask whether the solutions of the above operator equation are
possible if 𝑇 is not compact. Schauder constructed an exam-
ple and showed that it is impossible. But later on Browder,
Sadovski and Vath, and so on proved that it is possible to
define a complete analogue of the Leray Schauder theory for
condensing typemapping with compactness.They called this
method the “topological degree method”; see for detail [20].
In 1970, Mawhin introduced the mentioned degree theory
for nonlinear Volterra integral equations and differential
equations with boundary conditions. On the other hand,
using the classical fixed point theory such as “Schauder fixed
point theorem” and “Banach contraction principle” required
stronger conditions on the nonlinear functions and thus
restrict the applicability of these results to limited classes of
applied problems and to some specialized systems of BVPs.
Finding the fixed points of the respective operator equations
corresponding to fractional integral equations needs strong
conditions for the compactness of the operator. To relax the
criteria and establish weaker conditions in order to extend
tools to more classes of BVPs, researchers need to look for
some other refined tools of functional analysis. One of such

tools is “topological degree theory.” The topological degree
method is a powerful tool for existence of solutions to BVPs
of many mathematical models that arise in applied nonlinear
analysis. The concerned method is also called the “prior
estimate method.” By coincidence degree theory approach,
Mawhin [21] studied existence of solutions to the following
BVPs:

𝑑
𝑑𝑡𝑠 (𝑡) = 𝜓 (𝑡, 𝑠 (𝑡)) , 𝑡 ∈ [0, 1] ,
𝑠 (0) = 𝑠 (1) ,

(4)

− 𝑑2𝑑𝑡2 𝑠 (𝑡) = 𝜓(𝑡, 𝑠 (𝑡) ,
𝑑
𝑑𝑡 𝑠 (𝑡)) , 𝑡 ∈ [0, 𝜋] ,

𝑠 (0) = 𝑠 (𝜋) = 0,
(5)

under appropriate assumptions. Dinca et al. [22] used this
method together with Leray Schauder degree to prove the
existence of solutions of the Dirichlet problems with 𝑝-
Laplacian:

−Δ 𝑝𝑤 = 𝜓 (𝑡, 𝑤) , in Ω
𝑤 | 𝜕Ω = 0. (6)

Isaia [23] used this method along with “the degree for
condensing maps” and proved the existence of solutions
for the following integral equation by using appropriate
assumption on the functions 𝜑 and Θ, where 𝜑 : [𝑎1, 𝑎2] ×
R → R and Θ : [𝑎1, 𝑎2] × [𝑎1, 𝑎2] × R → R are continuous
functions, 𝑎1, 𝑎2 ∈ R,

𝑠 (𝑡) = 𝜑 (𝑡, 𝑠 (𝑡)) + ∫𝑎2
𝑎
1

Θ (𝑡, 𝜉, 𝑠 (𝜉)) 𝑑𝜉, 𝑡 ∈ [𝑎1, 𝑎2] . (7)

Wang et al. [24] used “topological degree method” to a class
of “nonlocal Cauchy problems” of the following form to study
the existence and uniqueness of solutions:

𝑐𝐷𝑝𝑠 (𝑡) = 𝜓 (𝑡, 𝑠 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,
𝑠 (0) + 𝑔 (𝑠) = 𝑠0, (8)

where 𝑐𝐷𝑝 is the Caputo fractional derivative of order 𝑝 ∈(0, 1], 𝑠0 ∈ R, and 𝜓 : [0, 𝑇] × R → R is continuous. For
more study of fractional DEs via topological degree method,
we refer to [6, 24–26]. Recently, Shah et al. [27] applied
the “topological degree method” and established sufficient
conditions for the existence of at least one solution to the
following coupled system of nonlinear ordinary fractional
equations with four-point boundary conditions:

𝑐𝐷𝑝𝑥 (𝑡) = 𝜙 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) , 𝑡 ∈ [0, 1] ,
𝑐𝐷𝑞𝑦 (𝑡) = 𝜓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑥 (0) = 𝑓 (𝑥) ,
𝑥 (1) = 𝜆𝑥 (𝜂) , 𝜆, 𝜂 ∈ (0, 1) ,
𝑦 (0) = 𝑔 (𝑦) ,
𝑦 (1) = 𝛿𝑦 (𝜉) , 𝛿, 𝜉 ∈ (0, 1) ,

(9)
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where 𝑝, 𝑞 ∈ (1, 2] and 𝜙, 𝜓 : [0, 1] × R × R → R

are continuous, also 𝑓, 𝑔 ∈ ([0, 1],R). The above system
(9) contains two nonlinear functions, namely, 𝜙, 𝜓. While
the proposed coupled system contains four nonlinearities as
follows:

𝑐𝐷𝛼 [𝑥 (𝑡) − 𝑓 (𝑡, 𝑥 (𝑡))] = 𝑔 (𝑡, 𝑦 (𝑡) , 𝐼𝛼𝑦 (𝑡)) ,
𝑡 ∈ 𝐽 = [0, 1] ,

𝑐𝐷𝛼 [𝑦 (𝑡) − 𝑓 (𝑡, 𝑦 (𝑡))] = 𝑔 (𝑡, 𝑥 (𝑡) , 𝐼𝛼𝑥 (𝑡)) ,
𝑡 ∈ 𝐽 = [0, 1] ,

𝑐𝐷𝑝𝑥 (0) = 𝜓 (𝑥 (𝜂1)) ,
𝑥 (0) = 0, . . . , 𝑥𝑛−2 (0) = 0,

𝑐𝐷𝑝𝑥 (1) = 𝜓 (𝑥 (𝜂2)) ,
𝑐𝐷𝑝𝑦 (0) = 𝜓 (𝑦 (𝜂1)) ,

𝑦 (0) = 0, . . . , 𝑦𝑛−2 (0) = 0,
𝑐𝐷𝑝𝑦 (1) = 𝜓 (𝑦 (𝜂2)) ,

(10)

which made the considered problem more general and
complicated. Furthermore, in the proposed coupled system
(10) of FHDEs, the order of fractional differential operator
lies in (𝑛 − 1, 𝑛]. Moreover, the boundary conditions of the
proposed problem involve Caputo fractional order derivative
as well as ordinary derivative of higher order. Moreover, to
the best of our knowledge, the topological degreemethod has
not been applied properly for the systems of nonlinear hybrid
fractional differential equations.

Motivated by this consideration, our main focus in the
present article is to use topological degree approach for
condensing mapping to investigate existence of solutions of
coupled system (10). We would like to solve the dynamics of
the system to determine how the statewill evolve in the future,
that is, to find a function 𝑥(𝑡) called trajectory or solution of
the system.

2. Preliminaries

In the following, we provide some basic definitions and
results of fractional calculus and topological degree theory.
For detailed study, we refer to [1–4, 10, 28–30].

Definition 1 (see [1]). The fractional integral operator of order𝑟 ∈ R+ of a function 𝑓 : (0,∞) → R is defined as

𝐼𝑟𝑓 (𝑡) = 1
Γ (𝑟) ∫

𝑡

0
(𝑡 − 𝜉)𝑟−1 𝑓 (𝜉) 𝑑𝜉, (11)

provided that integral on the right is pointwise defined on(0,∞).

Definition 2 (see [1]). The Caputo fractional order derivative
of order 𝑝 ∈ R+of a continuous function 𝑓 : (0,∞) → R is
defined as

𝑐𝐷𝑝𝑓 (𝑡) = 1
Γ (𝑚 − 𝑝) ∫

𝑡

0
(𝑡 − 𝜉)𝑚−𝑝−1 𝑓(𝑚) (𝜉) 𝑑𝜉, (12)

where 𝑚 = [𝑝] + 1, provided that integral on the right is
pointwise defined on (0,∞).
Lemma 3 (see [1, 28]). The following results hold for fractional
integral and Caputo derivative.

(i) 𝑐𝐷𝑝[𝜆1𝑓(𝑡) + 𝜆2𝑔(𝑡)] = 𝜆1𝑐𝐷𝑝𝑓(𝑡) + 𝜆2𝑐𝐷𝑝𝑔(𝑡),𝜆1, 𝜆2 ∈ R.
(ii) 𝑐𝐷𝑝𝐼𝑞𝑓(𝑡) = 𝐼𝑞−𝑝𝑓(𝑡), 𝑐𝐷𝑝𝐼𝑝𝑓(𝑡) = 𝑓(𝑡).
(iii) 𝑐𝐷𝑝𝑡𝑞 = (Γ(𝑞 + 1)/Γ(𝑞 + 1 − 𝑝))𝑡𝑞−𝑝, 𝐷𝑝𝐶 = 0, where𝐶 is a constant.
(iv) 𝐼𝑞 𝑐𝐷𝑞𝑓(𝑡) = 𝑓(𝑡) − ∑𝑛−1𝑘=0 (𝐷𝑘𝑓(0)/Γ(𝑘 − 𝑞 + 1))𝑡𝑘 =𝑓(𝑡) − 𝑑0 − 𝑑1𝑡 − 𝑑2𝑡2 − 𝑑3𝑡3 − ⋅ ⋅ ⋅ − 𝑑𝑛−1𝑡𝑛−1, 𝑑𝑖 ∈ R,

for 0 ≤ 𝑖 ≤ 𝑛 − 1.
Let 𝐽 = [0, 1]; the spaces of all continuous functions𝑌 = 𝐶(𝐽,R) and 𝑍 = 𝐶(𝐽,R) are Banach spaces under the

usual norms ‖𝑦‖ = sup{|𝑦(𝑡)| : 𝑡 ∈ 𝐽} and ‖𝑧‖ = sup{|𝑧(𝑡)| :𝑡 ∈ 𝐽}, respectively. Moreover, the product space 𝑌 × 𝑍 is a
Banach space under the norm ‖(𝑦, 𝑧)‖ = ‖𝑦‖ + ‖𝑧‖ and norm‖(𝑦, 𝑧)‖ = max{‖𝑦‖ + ‖𝑧‖}. In the following, 𝑌 is a Banach
space andM ⊂ 𝑃(𝑌) is the family of all its bounded sets.

We recall the following notions, which can be found in
[29].

Definition 4. “The functionΥ : M → R+ defined as 𝜇(𝑀𝑘) =
inf{𝑑 > 0 : 𝑀𝑘 admits a finite cover by sets of diameter ≤𝑑}, where 𝑀𝑘 ∈ M is called the (Kuratowski-) measure of
noncompactness.”

Some of the properties of this measure are listed below
(without proof).

Proposition 5. The following assertions hold for Kuratowski
measure Υ:

(i) Υ(𝑀𝑘) = 0 iff𝑀𝑘 is relatively compact.
(ii) Υ is a seminorm; that is, Υ(𝜎𝑀𝑘) = |𝜎|Υ(𝑀𝑘) andΥ(𝑀𝑘1+𝑀𝑘2) ≤ Υ(𝑀𝑘1)+Υ(𝑀𝑘2), where𝑀𝑘1,𝑀𝑘2 ∈

M, and 𝜎 ∈ R.
(iii) 𝑀𝑘1 ⊂ 𝑀𝑘2 implies Υ(𝑀𝑘1) ≤ Υ(𝑀𝑘2) and Υ(𝑀𝑘1 ∪𝑀𝑘2) = max{Υ(𝑀𝑘1), Υ(𝑀𝑘2)}.
(iv) Υ(conv𝑀𝑘) = Υ(𝑀𝑘).
(v) Υ(𝑀𝑘) = Υ(𝑀𝑘).

Definition 6. Let L ⊂ 𝑌 and Θ : L → 𝑌 be a continuous
bounded mapping. Then Θ is Υ-Lipschitz if ∃ 𝑘 ≥ 0 ∋

Υ (Θ (𝐿)) ≤ 𝑘Υ (𝐿) (∀) 𝐿 ⊂ L bounded. (13)

Furthermore, if 𝑘 < 1, then Θ is a strict Υ-contraction.
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Definition 7. The function Θ is Υ-condensing if
Υ (Θ (𝐿)) < Υ (𝐿)

(∀) 𝐿 ⊂ L bounded with Υ (𝐿) > 0. (14)

If Υ(Θ(𝐿)) ≥ Υ(𝐿), then Υ(𝐿) = 0.
It may be noted that the class of strict Υ-contractions

contains the class ofΥ-condensingmaps. Also every member
of Υ-condensing map is Υ-Lipschitz with constant 𝑘 = 1.
Definition 8. Θ : L → 𝑌 is called Lipschitz if ∃ 𝑘 > 0 ∋

Θ𝑦1 − Θ𝑦2 ≤ 𝑘 𝑦1 − 𝑦2 (∀) 𝑦1, 𝑦2 ∈ L. (15)

If 𝑘 < 1, then Θ is a strict contraction.

Proposition 9 (see [23]). If Θ : L → 𝑌 is compact, then Θ isΥ-Lipschitz with zero constant.
Proposition 10 (see [23]). If Θ : L → 𝑌 is Lipschitz with
constant 𝑘1, then Θ is Υ-Lipschitz with the same constant 𝑘1.
Proposition 11 (see [23]). If Θ1, Θ2 : L → 𝑌 are Υ-Lipschitz
with constants 𝑘1 and 𝑘2, respectively, then Θ1 + Θ2 : L → 𝑌
is Υ-Lipschitz with constant 𝑘1 + 𝑘2.

The following theorem from [23] plays a vital role for our
main result.

Theorem 12. Let Θ : 𝑌 → 𝑌 be Υ-condensing and
𝑆 = {𝑦 ∈ 𝑌 : (∃) 𝜎 ∈ 𝐽 ∋ 𝑦 = 𝜎Θ𝑦} . (16)

If 𝑆 is a bounded set in 𝑌, so there exist 𝑟 > 0 ∋ 𝑆 ⊂ 𝐵𝑟(0);
then the degree

𝐷(𝐼 − 𝜎Θ, 𝐵𝑟 (0) , 0) = 1 (∀) 𝜎 ∈ 𝐽. (17)

Consequently,Θ has at least one fixed point and the set of fixed
points of Θ lies in 𝐵𝑟(0).
Definition 13 (see [31]). An element (𝑦1, 𝑦2) ∈ 𝑌 × 𝑌 is called
“a coupled fixed point of a mapping” 𝑇 : 𝑌 × 𝑌 → 𝑌 if𝑇(𝑦1, 𝑦2) = 𝑦1 and 𝑇(𝑦2, 𝑦1) = 𝑦2.
3. Main Result

Assume that 𝑓 : 𝐽 × R → R and 𝑔 : 𝐽 × R × R → R are
continuous functions. Consider the following hypotheses:

(A1) (𝜕𝑘/𝜕𝑡𝑘)𝑓(𝑡, 𝑥(𝑡))|𝑡=0 = 0.
(A2) There exist 𝑘1 ∈ [0, 1) ∋ ∀(𝑡, 𝑥), (𝑡, 𝑦) ∈ 𝐽 × R,

𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦) ≤ 𝑘1 𝑥 − 𝑦 . (18)

(A3) There exist 𝑐1,𝑁1 ≥ 0, ∋ ∀(𝑡, 𝑥) ∈ 𝐽 ×R,

𝑓 (𝑡, 𝑥) ≤ 𝑐1 |𝑥|𝑝1 + 𝑁1, where 𝑝1 ∈ (0, 1) . (19)

(A4) There exist 𝑐2,𝑁2 ≥ 0, ∋ ∀(𝑡, 𝑥, 𝐼𝛼𝑥) ∈ 𝐽 ×R ×R,
𝑔 (𝑡, 𝑥, 𝐼𝛼𝑥) ≤ 𝑐2 |𝑥|𝑝2 + 𝑁2, where 𝑝2 ∈ (0, 1) . (20)

(A5) There exist a continuous function ℎ ∈ 𝑌 ∋ |𝑔(𝑡, 𝑥(𝑡),𝑦(𝑡))| ≤ ℎ(𝑡), for 𝑥, 𝑦 ∈ R and 𝑡 ∈ 𝐽.
The following lemma is useful in the existence results.

Lemma 14. If H : 𝐽 → R is 𝛼-time integrable and
assuming that the hypothesis (A1) holds, then the solutions of
the multipoints BVPs:
𝑐𝐷𝛼 [𝑥 (𝑡) − 𝑓 (𝑡, 𝑥 (𝑡))] = H (𝑡) , 𝑡 ∈ 𝐽,

𝑐𝐷𝑝𝑥 (0) = 𝜓 (𝑥 (𝜂1)) ,
𝑥 (0) = 0, . . . , 𝑥𝑛−2 (0) = 0,

𝑐𝐷𝑝𝑥 (1) = 𝜓 (𝑥 (𝜂2))
where 𝜓 is linear, 0 < 𝜂1, 𝜂2 < 1,

(21)

are the following integral equation:

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐼𝛼H (𝑡) + 𝑎1𝑡𝑛−1 + 𝑎2,
where 𝑎1, 𝑎2 ∈ R. (22)

Proof. Applying 𝐼𝛼 on 𝑐𝐷𝛼[𝑥(𝑡)−𝑓(𝑡, 𝑥(𝑡))] = H(𝑡) and using
Lemma 3, we obtain

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐼𝛼H (𝑡) + 𝑑0 + 𝑑1𝑡 + 𝑑2𝑡2 + 𝑑3𝑡3
+ 𝑑4𝑡4 + ⋅ ⋅ ⋅ + 𝑑𝑛−2𝑡𝑛−2 + 𝑑𝑛−1𝑡𝑛−1,

where 𝑑𝑖 ∈ R, for 𝑖 = 0, 1, 2, . . . , 𝑛 − 1.
(23)

Now by conditions 𝑥(0) = 0, . . . , 𝑥𝑛−2(0) = 0 and hypothesis(A1), (23) implies 𝑑1 = 𝑑2 = ⋅ ⋅ ⋅ = 𝑑𝑛−2 = 0. Hence,
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐼𝛼H (𝑡) + 𝑑0 + 𝑑𝑛−1𝑡𝑛−1. (24)

Applying 𝑐𝐷𝑝 on (24) and using Lemma 3
𝑐𝐷𝑝𝑥 (𝑡) = 𝑐𝐷𝑝𝑓 (𝑡, 𝑥 (𝑡)) + 𝐼𝛼−𝑝H (𝑡)

+ 𝑑𝑛−1 Γ (𝑛)
Γ (𝑛 − 𝑝)𝑡𝑛−1−𝑝.

(25)

By conditions 𝑐𝐷𝑝𝑥(0) = 𝜓(𝑥(𝜂1)) and 𝑐𝐷𝑝𝑥(1) = 𝜓(𝑥(𝜂2))
and linearity of 𝜓,

0
= 𝜓 (𝑓 (𝜂1, 𝑥 (𝜂1))) + 𝜓 (𝐼𝛼H (𝜂1)) + 𝜓 (𝑑0)
+ 𝑑𝑛−1𝜓 (𝜂𝑛−11 ) ,

(26)

𝑐𝐷𝑝𝑓 (1, 𝑥 (1)) + 𝐼𝛼−𝑝H (1) + 𝑑𝑛−1 Γ (𝑛)
Γ (𝑛 − 𝑝)

= 𝜓 (𝑓 (𝜂2, 𝑥 (𝜂2))) + 𝜓 (𝐼𝛼H (𝜂2)) + 𝜓 (𝑑0)
+ 𝑑𝑛−1𝜓 (𝜂𝑛−12 ) .

(27)
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Subtracting (26) from (27) and rearranging, we get

𝑑𝑛−1
= 1
{𝜓 (𝜂𝑛−12 ) − 𝜓 (𝜂𝑛−11 ) − Γ (𝑛) /𝛿2Γ (𝑛 − 𝑝)} [

𝑐𝐷𝑝𝑓 (1,

𝑥 (1)) + 𝐼𝛼−𝑝H (1) − {𝜓 (𝑓 (𝜂2, 𝑥 (𝜂2)))
− 𝜓 (𝑓 (𝜂1, 𝑥 (𝜂1))) + 𝜓 (𝐼𝛼H (𝜂2)) − 𝜓 (𝐼𝛼H (𝜂1))}] .

(28)

Using (28) in (26), we get

𝑑0 = −𝜓 (𝑓 (𝜂1, 𝑥 (𝜂1))) − 𝜓 (𝐼𝛼H (𝜂1))𝜓 (1)

− 𝜓 (𝜂𝑛−11 )
𝜓 (1) {𝜓 (𝜂𝑛−12 ) − 𝜓 (𝜂𝑛−11 ) − Γ (𝑛) /𝛿2Γ (𝑛 − 𝑝)} [

𝑐𝐷𝑝𝑓 (1,

𝑥 (1)) + 𝐼𝛼−𝑝H (1) − {𝜓 (𝑓 (𝜂2, 𝑥 (𝜂2))) − 𝜓 (𝑓 (𝜂1, 𝑥 (𝜂1)))
+ 𝜓 (𝐼𝛼H (𝜂2)) − 𝜓 (𝐼𝛼H (𝜂1))}] .

(29)

From (24), (28), and (29), it follows that

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐼𝛼H (𝑡) + 𝑎1𝑡𝑛−1 + 𝑎2, (30)

where 𝑎1 = 𝜅3𝜓(1)/𝜅2, 𝑎2 = −𝜅𝑜 − (𝜅1/𝜅2)𝜅3, 𝜅𝑜 =(−𝜓(𝑓(𝜂1, 𝑥(𝜂1))) − 𝜓(𝐼𝛼H(𝜂1)))/𝜓(1), 𝜅1 = 𝜓(𝜂𝑛−11 ), 𝜅2 =𝜓(1){𝜓(𝜂𝑛−12 ) − 𝜓(𝜂𝑛−11 ) − Γ(𝑛)/𝛿2Γ(𝑛 − 𝑝)} and 𝜅3 =
𝑐𝐷𝑝𝑓(1, 𝑥(1))+𝐼𝛼−𝑝H(1)+𝜓(𝑓(𝜂1, 𝑥(𝜂1)))−𝜓(𝑓(𝜂2, 𝑥(𝜂2)))+𝜓(𝐼𝛼H(𝜂1)) − 𝜓(𝐼𝛼H(𝜂2)).

In view of Lemma 14, system (10) is equivalent to the
following coupled systems of integral equations:

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐼𝛼𝑔 (𝑡, 𝑦 (𝑡) , 𝐼𝛼𝑦 (𝑡)) + 𝑎1𝑡𝑛−1
+ 𝑎2,

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) + 𝐼𝛼𝑔 (𝑡, 𝑥 (𝑡) , 𝐼𝛼𝑥 (𝑡)) + 𝑏1𝑡𝑛−1
+ 𝑏2,

where 𝑎1, 𝑏1, 𝑎2, 𝑏2 ∈ R.

(31)

Define operators 𝐹1, 𝐹2, 𝐺 : 𝑌 → 𝑌 by

(𝐹1𝑧) 𝑡 = 𝑓 (𝑡, 𝑧 (𝑡)) + 𝑎1𝑡𝑛−1 + 𝑎2,
(𝐹2𝑧) 𝑡 = 𝑓 (𝑡, 𝑧 (𝑡)) + 𝑏1𝑡𝑛−1 + 𝑏2,
(𝐺𝑧) 𝑡 = 𝐼𝛼𝑔 (𝑡, 𝑧 (𝑡) , 𝐼𝛼𝑧 (𝑡)) .

(32)

By virtue of these operators, system (31) can be written as

𝑥 (𝑡) = (𝐹1𝑥) 𝑡 + (𝐺𝑦) 𝑡 = 𝑇1 (𝑥, 𝑦) ,
𝑦 (𝑡) = (𝐹2𝑦) 𝑡 + (𝐺𝑥) 𝑡 = 𝑇2 (𝑥, 𝑦) .

Which implies (𝑥, 𝑦) = (𝑇1, 𝑇2) (𝑥, 𝑦) .
If 𝐹 = (𝐹1, 𝐹2) ,

𝐺 = (𝐺, 𝐺) ,
�̃� = (𝑇1, 𝑇2) ,

then (𝑥, 𝑦) = �̃� (𝑥, 𝑦) ⇒
𝑢 = �̃�𝑢, where 𝑢 = (𝑥, 𝑦) ;

(33)

and solutions of system (10) are fixed points of �̃�.
Lemma 15. Assume that hypotheses (A2) and (A3) hold, then
the operator 𝐹 : 𝑌 × 𝑌 → 𝑌 is Υ-Lipschitz with constant 𝑘1.
Proof. For = (𝑥1, 𝑦1), V = (𝑥2, 𝑦2) ∈ 𝑌 × 𝑌, using (A2), it
follows that(𝐹𝑢) 𝑡 − (𝐹V) 𝑡 = (𝐹1, 𝐹2) (𝑥1, 𝑦1) 𝑡 − (𝐹1, 𝐹2) (𝑥2,

𝑦2) 𝑡 = sup
𝑡∈𝐽

((𝐹1𝑥1) 𝑡, (𝐹2𝑦1) 𝑡)
− ((𝐹1𝑥2) 𝑡, (𝐹2𝑦2) 𝑡) = sup

𝑡∈𝐽

((𝐹1𝑥1) 𝑡
− (𝐹1𝑥2) 𝑡, (𝐹2𝑦1) 𝑡 − (𝐹2𝑦2) 𝑡) = sup

𝑡∈𝐽

[(𝐹1𝑥1) 𝑡
− (𝐹1𝑥2) 𝑡 + (𝐹2𝑦1) 𝑡 − (𝐹2𝑦2) 𝑡]
= sup
𝑡∈𝐽

[𝑓 (𝑡, 𝑥1 (𝑡)) + 𝑎1𝑡𝑛−1 + 𝑎2
− {𝑓 (𝑡, 𝑥2 (𝑡)) + 𝑎1𝑡𝑛−1 + 𝑎2} + 𝑓 (𝑡, 𝑦1 (𝑡))
+ 𝑏1𝑡𝑛−1 + 𝑏2 − {𝑓 (𝑡, 𝑦2 (𝑡)) + 𝑏1𝑡𝑛−1 + 𝑏2}]
= sup
𝑡∈𝐽

[𝑓 (𝑡, 𝑥1 (𝑡)) − 𝑓 (𝑡, 𝑥2 (𝑡)) + 𝑓 (𝑡, 𝑦1 (𝑡))
− 𝑓 (𝑡, 𝑦2 (𝑡))] ≤ 𝑘1 𝑥1 (𝑡) − 𝑥2 (𝑡) + 𝑘1 𝑦1 (𝑡)
− 𝑦2 (𝑡) ≤ 𝑘1 (𝑥1 − 𝑥2 + 𝑦1 − 𝑦2) = 𝑘1 (𝑥1
− 𝑥2, 𝑦1 − 𝑦2) = 𝑘1 ‖𝑢 − V‖ .

(34)

Thus, 𝐹 is Lipschitz with constant 𝑘1. Hence, by Proposi-
tion 10, 𝐹 is Υ-Lipschitz with constant 𝑘1. Moreover, by using
(A3), we get the following condition for 𝐹:𝐹𝑢 ≤ 𝑐1 ‖𝑢‖𝑝1 + 𝑁3, where𝑁3 = 𝑁1 + 𝑎1 + 𝑎2. (35)

Lemma 16. Assume that the hypotheses (A4) and (A5) hold;
then the operator 𝐺 : 𝑌 × 𝑌 → 𝑌 is Υ-Lipschitz with zero
constant.
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Proof. To show that 𝐺 is compact it is enough to show that
𝐺 is uniformly bounded and equicontinuous. Let 𝑆 = {𝑢𝑛 =(𝑥𝑛, 𝑦𝑛) : ‖(𝑥𝑛, 𝑦𝑛)‖ ≤ 𝑅} ⊂ 𝑌 × 𝑌 ∋ (𝑥𝑛, 𝑦𝑛) → (𝑥, 𝑦) as
𝑛 → ∞ in 𝑆. We have to show that ‖𝐺𝑢𝑛 − 𝐺𝑢‖ → 0.

lim
𝑛→∞

{(𝐺𝑢𝑛) 𝑡} = lim
𝑛→∞

{(𝐺, 𝐺) (𝑥𝑛, 𝑦𝑛) 𝑡}
= ( lim
𝑛→∞

(𝐺𝑥𝑛) 𝑡, lim𝑛→∞ (𝐺𝑦𝑛) 𝑡)
= ( lim
𝑛→∞

𝐼𝛼𝑔 (𝑡, 𝑥𝑛 (𝑡) , 𝐼𝛼𝑥𝑛 (𝑡)) ,
lim
𝑛→∞

𝐼𝛼𝑔 (𝑡, 𝑦𝑛 (𝑡) , 𝐼𝛼𝑦𝑛 (𝑡))) = ( 1
Γ (𝛼)

⋅ lim
𝑛→∞

∫𝑡
0
(𝑡 − 𝜉)𝛼−1 𝑔 (𝑡, 𝑥𝑛 (𝑡) , 𝐼𝛼𝑥𝑛 (𝑡)) 𝑑𝜉, 1

Γ (𝛼)
⋅ lim
𝑛→∞

∫𝑡
0
(𝑡 − 𝜉)𝛼−1 𝑔 (𝑡, 𝑦𝑛 (𝑡) , 𝐼𝛼𝑦𝑛 (𝑡)) 𝑑𝜉)

(36)

which by Lebesgue dominated convergence theorem gives

lim
𝑛→∞

{(𝐺𝑢𝑛) 𝑡} = ( 1
Γ (𝛼)

⋅ ∫𝑡
0
(𝑡 − 𝜉)𝛼−1 𝑔 (𝑡, 𝑥 (𝑡) , 𝐼𝛼𝑥 (𝑡)) 𝑑𝜉, 1

Γ (𝛼)
⋅ ∫𝑡
0
(𝑡 − 𝜉)𝛼−1 𝑔 (𝑡, 𝑦 (𝑡) , 𝐼𝛼𝑦 (𝑡)) 𝑑𝜉)

= (𝐼𝛼𝑔 (𝑡, 𝑥 (𝑡) , 𝐼𝛼𝑥 (𝑡)) , 𝐼𝛼𝑔 (𝑡, 𝑦 (𝑡) , 𝐼𝛼𝑦 (𝑡)))
= ((𝐺𝑥) 𝑡, (𝐺𝑦) 𝑡) = (𝐺𝑢) 𝑡.

(37)

Thus, the image of a convergent sequence is convergent, so 𝐺
is a continuous on 𝑆. Moreover, in view of (A4), 𝐺 satisfies
the following condition:

𝐺𝑢 ≤ 𝑐2 ‖𝑢‖𝑝2 + 𝑁2. (38)

Now, using (A5), we obtain
(𝐺𝑢) 𝑡 = ((𝐺𝑥) 𝑡, (𝐺𝑦) 𝑡) = |(𝐺𝑥) 𝑡| + (𝐺𝑦) 𝑡
= 𝐼𝛼𝑔 (𝑡, 𝑥 (𝑡) , 𝐼𝛼𝑥 (𝑡)) + 𝐼𝛼𝑔 (𝑡, 𝑦 (𝑡) , 𝐼𝛼𝑦 (𝑡))
= 1
Γ (𝛼)

∫
𝑡

0
(𝑡 − 𝜉)𝛼−1 𝑔 (𝑡, 𝑥 (𝑡) , 𝐼𝛼𝑥 (𝑡)) 𝑑𝜉

+ 1
Γ (𝛼)

∫
𝑡

0
(𝑡 − 𝜉)𝛼−1 𝑔 (𝑡, 𝑦 (𝑡) , 𝐼𝛼𝑦 (𝑡)) 𝑑𝜉

≤ 1
Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝜉)𝛼−1 𝑔 (𝑡, 𝑥 (𝑡) , 𝐼𝛼𝑥 (𝑡)) 𝑑𝜉

+ 1
Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝜉)𝛼−1 𝑔 (𝑡, 𝑦 (𝑡) , 𝐼𝛼𝑦 (𝑡)) 𝑑𝜉

≤ 2 ‖ℎ‖
Γ (𝛼) ∫ (𝑡 − 𝜉)𝛼−1 𝑑𝜉 =

2 ‖ℎ‖
Γ (𝛼 + 1) 𝑡𝛼.

(39)

Upon using 𝑡 ≤ 1, (39) implies that

𝐺𝑢 ≤ 2 ‖ℎ‖
Γ (𝛼 + 1) . (40)

Hence, 𝐺 is uniformly bounded. Now, for 𝑡1, 𝑡2 ∈ 𝐽, and any
𝑢 ∈ 𝑆, consider

(𝐺𝑢) 𝑡1 − (𝐺𝑢) 𝑡2 = 𝐺 (𝑥, 𝑦) 𝑡1 − 𝐺 (𝑥, 𝑦) 𝑡2
= (𝐺𝑥) 𝑡1 − (𝐺𝑥) 𝑡2, (𝐺𝑦) 𝑡1 − (𝐺𝑦) 𝑡2 = (𝐺𝑥) 𝑡1
− (𝐺𝑥) 𝑡2 + (𝐺𝑦) 𝑡1 − (𝐺𝑦) 𝑡2
= 𝐼𝛼𝑔 (𝑡1, 𝑥 (𝑡1) , 𝐼𝛼𝑥 (𝑡1))
− 𝐼𝛼𝑔 (𝑡2, 𝑥 (𝑡2) , 𝐼𝛼𝑥 (𝑡2))
+ 𝐼𝛼𝑔 (𝑡1, 𝑦 (𝑡1) , 𝐼𝛼𝑦 (𝑡1))
− 𝐼𝛼𝑔 (𝑡2, 𝑦 (𝑡2) , 𝐼𝛼𝑦 (𝑡2)) = 1

Γ (𝛼)
∫
𝑡
1

0
(𝑡1

− 𝜉)𝛼−1 𝑔 (𝜉, 𝑥 (𝜉) , 𝐼𝛼𝑥 (𝜉)) 𝑑𝜉 − ∫𝑡2
0
(𝑡2 − 𝜉)𝛼−1

⋅ 𝑔 (𝜉, 𝑥 (𝜉) , 𝐼𝛼𝑥 (𝜉)) 𝑑𝜉 +
1

Γ (𝛼)
∫
𝑡
1

0
(𝑡1

− 𝜉)𝛼−1 𝑔 (𝜉, 𝑦 (𝜉) , 𝐼𝛼𝑦 (𝜉)) 𝑑𝜉 − ∫𝑡2
0
(𝑡2 − 𝜉)𝛼−1

⋅ 𝑔 (𝜉, 𝑦 (𝜉) , 𝐼𝛼𝑦 (𝜉)) 𝑑𝜉
= 1
Γ (𝛼)

[∫
𝑡
1

0
(𝑡1 − 𝜉)𝛼−1 𝑔 (𝜉, 𝑥 (𝜉) , 𝐼𝛼𝑥 (𝜉)) 𝑑𝜉

− ∫𝑡1
0
(𝑡2 − 𝜉)𝛼−1 𝑔 (𝜉, 𝑥 (𝜉) , 𝐼𝛼𝑥 (𝜉)) 𝑑𝜉

+ ∫𝑡1
0
(𝑡2 − 𝜉)𝛼−1 𝑔 (𝜉, 𝑥 (𝜉) , 𝐼𝛼𝑥 (𝜉)) 𝑑𝜉

− ∫𝑡2
0
(𝑡2 − 𝜉)𝛼−1 𝑔 (𝜉, 𝑥 (𝜉) , 𝐼𝛼𝑥 (𝜉)) 𝑑𝜉]


+ 1
Γ (𝛼)

[∫
𝑡
1

0
(𝑡1 − 𝜉)𝛼−1 𝑔 (𝜉, 𝑦 (𝜉) , 𝐼𝛼𝑦 (𝜉)) 𝑑𝜉

− ∫𝑡1
0
(𝑡2 − 𝜉)𝛼−1 𝑔 (𝜉, 𝑦 (𝜉) , 𝐼𝛼𝑦 (𝜉)) 𝑑𝜉

+ ∫𝑡1
0
(𝑡2 − 𝜉)𝛼−1 𝑔 (𝜉, 𝑦 (𝜉) , 𝐼𝛼𝑦 (𝜉)) 𝑑𝜉

− ∫𝑡2
0
(𝑡2 − 𝜉)𝛼−1 𝑔 (𝜉, 𝑦 (𝜉) , 𝐼𝛼𝑦 (𝜉)) 𝑑𝜉]
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= 1
Γ (𝛼)

[∫
𝑡
1

0
[(𝑡1 − 𝜉)𝛼−1 − (𝑡2 − 𝜉)𝛼−1]

⋅ 𝑔 (𝜉, 𝑥 (𝜉) , 𝐼𝛼𝑥 (𝜉)) 𝑑𝜉 + ∫𝑡1
0
(𝑡2 − 𝜉)𝛼−1

⋅ 𝑔 (𝜉, 𝑥 (𝜉) , 𝐼𝛼𝑥 (𝜉)) 𝑑𝜉 + ∫0
𝑡
2

(𝑡2 − 𝜉)𝛼−1

⋅ 𝑔 (𝜉, 𝑥 (𝜉) , 𝐼𝛼𝑥 (𝜉)) 𝑑𝜉]
+ 1
Γ (𝛼)

[∫
𝑡
1

0
[(𝑡1 − 𝜉)𝛼−1 − (𝑡2 − 𝜉)𝛼−1]

⋅ 𝑔 (𝜉, 𝑦 (𝜉) , 𝐼𝛼𝑦 (𝜉)) 𝑑𝜉 + ∫𝑡1
0
(𝑡2 − 𝜉)𝛼−1

⋅ 𝑔 (𝜉, 𝑦 (𝜉) , 𝐼𝛼𝑦 (𝜉)) 𝑑𝜉 + ∫0
𝑡
2

(𝑡2 − 𝜉)𝛼−1

⋅ 𝑔 (𝜉, 𝑦 (𝜉) , 𝐼𝛼𝑦 (𝜉)) 𝑑𝜉]
≤ ‖ℎ‖
Γ (𝛼) [

∫
𝑡
1

0
{(𝑡1 − 𝜉)𝛼−1 − (𝑡2 − 𝜉)𝛼−1} 𝑑𝜉


+ ∫
𝑡
1

𝑡
2

(𝑡2 − 𝜉)𝛼−1 𝑑𝜉
]

+ ‖ℎ‖
Γ (𝛼) [

∫
𝑡
1

0
{(𝑡1 − 𝜉)𝛼−1 − (𝑡2 − 𝜉)𝛼−1} 𝑑𝜉


+ ∫
𝑡
1

𝑡
2

(𝑡2 − 𝜉)𝛼−1 𝑑𝜉
] ≤

2 ‖ℎ‖
Γ (𝛼 + 1) [𝑡𝛼1 − 𝑡𝛼2  + 𝑡2

− 𝑡1𝛼 − 𝑡2 − 𝑡1𝛼] = 2 ‖ℎ‖
Γ (𝛼 + 1) 𝑡𝛼1 − 𝑡𝛼2  .

(41)

Since 𝑡𝛼 is uniformly continuous on 𝐽 for 𝑛 − 1 < 𝛼 ≤ 𝑛, so
for ∈ > 0 ∃𝛿 > 0 ∋ if |𝑡1 − 𝑡2| < 𝛿, then |𝑡𝛼1 − 𝑡𝛼2 | < (Γ(𝛼 +1)/2‖ℎ‖) ∈. Thus, (41) becomes

(𝐺𝑢) 𝑡1 − (𝐺𝑢) 𝑡2 < 2 ‖ℎ‖
Γ (𝛼 + 1)

Γ (𝛼 + 1)
2 ‖ℎ‖ ∈ . (42)

Thus, |(𝐺𝑢)𝑡1 − (𝐺𝑢)𝑡2| < ∈ if |𝑡1 − 𝑡2| < 𝛿; thus, 𝐺
is equicontinuous. Hence, by Arzela-Ascoli Theorem 𝐺 is
compact and by virtue of Proposition 9,𝐺 isΥ-Lipschitz with
zero constant.

Theorem 17. If 𝑓 : 𝑌 × 𝑌 → 𝑌 and 𝑔 : 𝑌 × 𝑌 → 𝑌 satisfying
conditions (A1)–(A5), then the integral equation

𝑢 (𝑡) = (𝑥 (𝑡) , 𝑦 (𝑡)) = (𝑓 (𝑡, 𝑥 (𝑡)) + 𝑎1𝑡𝑛−1 + 𝑎2
+ 𝐼𝛼𝑔 (𝑡, 𝑦 (𝑡) , 𝐼𝛼𝑦 (𝑡)) , 𝑓 (𝑡, 𝑦 (𝑡)) + 𝑏1𝑡𝑛−1 + 𝑏2
+ 𝐼𝛼𝑔 (𝑡, 𝑥 (𝑡) , 𝐼𝛼𝑥 (𝑡))) , 𝑡 ∈ 𝐽,

(43)

has at least one solution 𝑢 ∈ 𝐽 and the set of solutions of system
(10) is bounded in 𝑌.
Proof. Let 𝐹, 𝐺, �̃� : 𝑌 × 𝑌 → 𝑌 be the operators defined
in (32). These are continuous and bounded. By Lemma 15,
it follows that 𝐹 is Υ-Lipschitz with constant 𝑘1. Also by
Lemma 16,𝐺 isΥ-Lipschitz with zero constant.Thus, by using
Proposition 11, �̃� is Υ-Lipschitz with constant 𝑘1. Set

𝑆 = {𝑢 ∈ 𝑌 × 𝑌 : (∃) 𝜎 ∈ 𝐽 ∋ 𝑢 = 𝜎�̃�𝑢} . (44)

We will prove that 𝑆 is bounded in 𝑌 × 𝑌. For this let 𝑢 ∈ 𝑆;
then 𝑢 = 𝜎�̃�𝑢, where 𝜎 ∈ 𝐽. Now by (35) and (38),

‖𝑢‖ = (𝑥, 𝑦) = 𝜎�̃� (𝑥, 𝑦) ≤ �̃� (𝑥, 𝑦)
= 𝐹 (𝑥, 𝑦) + 𝐺 (𝑥, 𝑦)
≤ 𝑐1 ‖𝑢‖𝑝1 + 𝑁3 + 𝑐2 ‖𝑢‖𝑝2 + 𝑁2

1 ≤ 𝑐1‖𝑢‖1−𝑝1 +
𝑁3‖𝑢‖ +

𝑐2‖𝑢‖1−𝑝2 +
𝑁2‖𝑢‖ .

(45)

If ‖𝑢‖ → ∞, then 1 ≤ 0, a contradiction.Thus, ‖𝑢‖ is bounded
in𝑌×𝑌. Consequently, we deduced byTheorem 12 that �̃� has
at least one fixed point which is bounded in 𝑌 × 𝑌.
Remark 18. Here we remark that the conditions (A3), (A4)
hold for 𝑝1 = 𝑝2 = 1. Therefore, in view of this remark,
Theorem 17 is also valid for 𝑝1 = 𝑝2 = 1.

4. Illustrative Example

Example 1. Consider the coupled system of FHDEs given by

𝐷5/2 [𝑥 (𝑡) − cos 𝑡 |𝑥 (𝑡)|
4 (10 + |𝑥 (𝑡)|)] =

𝑡 [𝑦 (𝑡) + 𝐼5/2𝑦 (𝑡)]
10 + 𝑦 (𝑡) ,

𝑡 ∈ 𝐽 = [0, 1] ,
𝑐𝐷5/2 [𝑦 (𝑡) − cos 𝑡 𝑦 (𝑡)4 (10 + 𝑦 (𝑡))]

= 𝑡 [𝑥 (𝑡) + 𝐼5/2𝑥 (𝑡)]
10 + |𝑥 (𝑡)| , 𝑡 ∈ 𝐽 = [0, 1] ,

𝑐𝐷1/2𝑥 (0) = 10∑
𝑘=0

1
20𝑥 (

1
2) ,

𝑥 (0) = 0, . . . , 𝑥𝑛−2 (0) = 0,
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𝑐𝐷1/2𝑥 (1) = 10∑
𝑘=0

1
20𝑥 (

1
2) ,

𝑐𝐷1/2𝑦 (0) = 10∑
𝑘=0

1
20𝑦 (

1
2) ,

𝑦 (0) = 0, . . . , 𝑦𝑛−2 (0) = 0,
𝑐𝐷1/2𝑦 (1) = 10∑

𝑘=0

1
20𝑦 (

1
2) .

(46)

From system (46) we see that 𝑓(𝑡, 𝑥(𝑡)) = cos 𝑡|𝑥(𝑡)|/4(10 +
|𝑥(𝑡)|), 𝑔(𝑡, 𝑥(𝑡), 𝐼𝛼𝑥(𝑡)) = 𝑡[𝑥(𝑡) + 𝐼5/2𝑥(𝑡)]/(10 + |𝑥(𝑡)|),𝜂1 = 𝜂2 = 1/2, 𝛼 = 5/2, 𝑝 = 1/2, 𝜓(𝑥(𝜂1)) = 𝜓(𝑥(𝜂2)) =∑10𝑘=0(1/20)𝑥(1/2). Upon computation, we have 𝑐1 = 1/4,𝑝1 = 1, 𝑁1 = 0, 𝑝2 = 1, 𝑐2 = 1/4, 𝑁2 = 0, 𝑎1 = 0.0055,𝑎2 = 1.0852, and 𝑁3 = 1.0907. In view of Theorem 17,
𝑆 = {𝑢 = (𝑥, 𝑦) ∈ 𝑌 × 𝑌 : 𝑢 = (1/2)�̃�𝑢} is the solution
set; then

‖𝑢‖ ≤ �̃�𝑢 = 𝐹𝑢 + 𝐺𝑢
≤ 𝑐1 ‖𝑢‖𝑝1 + 𝑁3 + 𝑐2 ‖𝑢‖𝑝2 + 𝑁2.

(47)

From which, we have ‖𝑢‖ ≤ 2𝑁3 = 2.1814. Thus, system
(46) has at least one solution and the set of solutions of 𝑆 is
bounded in 𝐶(𝐽,R) × 𝐶(𝐽,R).
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