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Time-delays of control force calculation, data acquisition, and actuator response will degrade the performance of Active Mass
Damper (AMD) control systems. To reduce the influence, model reduction method is used to deal with the original controlled
structure. However, during the procedure, the related hierarchy information of small eigenvalues will be directly discorded. As a
result, the reduced-order model ignores the information of high-order mode, which will reduce the design accuracy of an AMD
control system. In this paper, a new reduced-order controller based on the improved Balanced Truncation (BT)method is designed
to reduce the calculation time and to retain the abandoned high-ordermodal information. It includes high-order natural frequency,
damping ratio, and vibrationmodal information of the original structure.Then, a control gain designmethod based onGuaranteed
Cost Control (GCC) algorithm is presented to eliminate the adverse effects of data acquisition and actuator response time-delays in
the design process of the reduced-order controller. To verify its effectiveness, the proposed methodology is applied to a numerical
example of a ten-storey frame and an experiment of a single-span four-storey steel frame. Both numerical and experimental results
demonstrate that the reduced-order controller with GCC algorithm has an excellent control effect; meanwhile it can compensate
time-delays effectively.

1. Introduction

ActiveMass Damper (AMD) can be used to control the dyna-
mic response of highly flexible building horizontally under
strongwind or earthquake [1–4]. At present, several problems
restrict the development ofAMDcontrol system, such as slow
calculation speed and long time-delay [5, 6]. They mainly
resulted from data acquisition, control force calculation, and
actuator response.

Regarding high-rise building structures, the excessive
number of degrees of freedom causes the fact that the order
of the designed controller based on the original model will be
extremely large, and the long control force calculation time
induces the fact that the control force is too difficult to fulfill
the requirement of real-time control. Hence, it is necessary
to build a reduced-order controller to reduce calculation

workload and decrease time-delay [7]. Model reduction [8] is
a process that amore complexmodelwill be transformed for a
low-order model that meets the requirements of engineering
precision. For instance, a dynamic condensation method was
proposed for high-rise buildings with Active Tuned Mass
Damper (ATMD) control system; the analysis results showed
the proposed method was efficient for the reduced-order
modeling and reduced calculation time and workload [9].
The dynamic model reduction method was applied to obtain
a reduced-order model of an experimental high-rise building
with an AMD control system, and numerical simulations
showed the low-order controller could be used availably to
mitigate the vibration [10]. BalancedTruncation (BT)method
[11, 12] is more widely used to complete model reduction of
high-rise buildings [9, 13]. According to eigenvalues’ size of
state vectors in a high-rise building, BT method will be used
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to reorder these state vectors to form the internal equilibrium
model. Partial state vectors that correspond to the small
eigenvalues will be omitted. They include high-order modal
information of the original structure. However, the omitted
state vectors will decrease the accuracy of model reduction
method and reduce the control effect of this controller. It is
necessary to reconsider high-order modal information in the
design process of a reduced-order controller.

In addition to control force calculation time-delay, the
compensation design method of the time-delays of data
acquisition and actuator response should be considered.
Obviously, conventional methods of control include pole-
assignment method and linear quadratic regulator cannot be
used in time-delay systems. For instance, Linear Quadratic
Regulator (LQR) [14] is a suitable control strategy for high-
rise buildings, but it requires an accurate mathematical
model. If parameter perturbation or time-delay exists in a
closed-loop system, its stability is difficult to be guaranteed.
Linear Matrix Inequality (LMI) [15] approach is widely used
to analyze the stability of time-delay systems [16–19] and to
design a feedback controller with compensation gain [20–23].
Although compensation gain needs to guarantee the perfor-
mance of systems with time-delay, Guaranteed Cost Control
(GCC) algorithm [24] is a special LQR control method that
is widely used in the fields of electronics, aerospace, mechan-
ical engineering, and automation, and it combines the perfor-
mance and robustness of nonlinear systems with time-delay
[25, 26]. In order to implement GCC for a high-rise building,
a key step is to solve a positive-definite solution of Riccati
matrix equations. Previously, this problem is based on the
Riccati equation method, and several key parameters should
be determined in advance. However, methods for searching
for the optimal values of these parameters are still lacking.
The onlymethod of artificially determined parameters is con-
servative, and the Riccati equation is solved by iterativemeth-
ods; it means that the convergence is not guaranteed [27–
30]. Combined with LMI approach, the Riccati matrix equa-
tions could be solved easily. As a result, the time-delay com-
pensation controller with GCC algorithm can be designed for
high-rise buildings based on LMI approach.

In this paper, a low-order controller based on improved
BT method is proposed and the structural high-order modal
information is considered, and the influence of transfer func-
tions and orders of a low-order model on the control system’s
performance is analyzed. As a result, the performance of this
system can be guaranteed and the order of the controlled
structure can be reduced in maximum extent. The design
problem of a time-delay compensation control gain based
on GGC algorithm can be expressed as a group of nonlinear
matrix inequalities. It can be further transformed into a
group of linear matrix inequalities (LMIs) through variable
substitution method [31]. Finally, the design of the reduced-
order controller with GCC algorithm for high-rise buildings
is performed to compensate its long time-delay. A numerical
example of ten-storey frame and an experiment of a single
span four-storey steel frame will be presented to validate the
effectiveness of the proposed method.

2. The Design Method of Reduced-Order
Controller with GCC Algorithm

2.1. Reduced-Order Controller Design by Improved BTMethod.
The state-space equation of an AMD control systems is

𝑍̇ (𝑡) = 𝐴𝑍 (𝑡) + 𝐵𝑈 (𝑡) ,
𝑌 (𝑡) = 𝐶𝑍 (𝑡) + 𝐷𝑈 (𝑡) , (1)

where 𝐴, 𝐵, 𝐶, and 𝐷 are the state matrix, the control
matrix, the state output matrix, and the direct transmission
matrix, respectively. 𝑍 and 𝑌 are the state vector and the
output vector, respectively.U includes control force and input
excitation.

When control force and input excitation are considered
separately, (1) can be described as

𝑍̇ (𝑡) = 𝐴𝑍 (𝑡) + 𝐵2𝑢 (𝑡) + 𝐵1𝑤 (𝑡) ,
𝑌 (𝑡) = 𝐶𝑍 (𝑡) + 𝐷2𝑢 (𝑡) + 𝐷1𝑤 (𝑡) , (2)

where 𝑢 and 𝑤 are the control force and the input excitation,
respectively. 𝐴, 𝐵1, 𝐵2, 𝐶,𝐷1, and𝐷2 can be expressed as

𝐴 = [ 0 𝐼
−𝑀−1𝐾 −𝑀−1𝐶] ,

𝐵1 = [ 0
−𝑀−1𝐵𝑤] ,

𝐵2 = [ 0
−𝑀−1𝐵𝑠] ,

𝐶 = [[[[[
[

𝐼 0
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶
0 0

]]]]]
]
,

𝐷1 =
[[[[[
[

0
0

−𝑀−1𝐵𝑤0

]]]]]
]
,

𝐷2 =
[[[[[
[

0
0

−𝑀−1𝐵𝑠1

]]]]]
]
,

(3)

where 𝑀, 𝐶, and 𝐾 are the mass, damping, and stiffness
matrix of an AMD control system, respectively. 𝐵𝑠 and 𝐵𝑤
are the location matrices of control force and strong wind,
respectively.

The balanced realization system can be obtained by
transforming the state-space equation of the stable system by
BT method. Define

𝑍 (𝑡) = 𝑇𝑍𝑏 (𝑡) , (4)
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where 𝑇 is the transform matrix. 𝑍𝑏 is the state vector of the
balanced realization system.

By substituting (4) into (2), the state-space equation of the
balanced realization system is

𝑍̇𝑏 (𝑡) = 𝐴𝑏𝑍𝑏 (𝑡) + 𝐵𝑏2𝑢 (𝑡) + 𝐵𝑏1𝑤 (𝑡) ,
𝑌𝑏 (𝑡) = 𝐶𝑏𝑍𝑏 (𝑡) + 𝐷𝑏2𝑢 (𝑡) + 𝐷𝑏1𝑤 (𝑡) , (5)

where 𝐴𝑏 = 𝑇−1𝐴𝑇, 𝐵𝑏2 = 𝑇−1𝐵2, 𝐵𝑏1 = 𝑇−1𝐵1, 𝐶𝑏 = 𝐶𝑇,𝐷𝑏2 = 𝐷2, and𝐷𝑏1 = 𝐷1.
According to [32], the transform matrix 𝑇 can be calcu-

lated:

𝑇 = 𝐿𝑐𝑉𝑆−1/2, (6)

where 𝑉 and 𝑆 are the orthogonal and the positive diagonal
matrices that can be obtained by applying the singular value
decomposition technique for the matrix 𝐿𝑇𝑜𝐿𝑐. 𝐿𝑐 and 𝐿𝑜
are the lower triangular matrix of the controllability and the
observability matrices decomposed by Cholesky.

Then the matrix 𝑆 can be described as

𝑆 = diag (𝜎1, 𝜎2, . . . , 𝜎𝑛) , (7)

where 𝜎𝑖 is the diagonal elements that reflect the controllabil-
ity and observability of the state vector.

The diagonal elements 𝜎𝑖 were rearranged in descending
order. When 𝜎𝑟+1 ≪ 𝜎𝑟, r is the reserved order and is twice
the number of the structure vibration modes; it means that
the states 𝑍𝑟+1∼𝑍𝑛 corresponding to the eigenvalues 𝜎𝑟+1∼𝜎𝑛
have lower performance of controllability and observability.
Only the states𝑍1∼𝑍𝑟 are retained in the balanced realization
system. The state-space equation of this system is

𝑍̇𝑏𝑟 (𝑡) = 𝐴𝑏𝑟𝑍𝑏𝑟 (𝑡) + 𝐵𝑏𝑟2𝑢 (𝑡) + 𝐵𝑏𝑟1𝑤 (𝑡) ,
𝑌𝑏𝑟 (𝑡) = 𝐶𝑏𝑟𝑍𝑏𝑟 (𝑡) + 𝐷𝑏𝑟2𝑢 (𝑡) + 𝐷𝑏𝑟1𝑤 (𝑡) , (8)

where 𝐴𝑏𝑟 = 𝐴𝑏(1 : 𝑟, 1 : 𝑟), 𝐵𝑏𝑟2 = 𝐵𝑏2(1 : 𝑟, :), 𝐵𝑏𝑟1 = 𝐸𝑏1(:,1 : 𝑟), 𝐶𝑏𝑟 = 𝐶𝑏(:, 1 : 𝑟),𝐷𝑏𝑟2 = 𝐷𝑏2, and𝐷𝑏𝑟1 = 𝐷𝑏1.
Equation (8) can be described as block matrix:

{𝑍̇𝑏𝑟 (𝑡)𝑍̇𝑏𝑙 (𝑡)} = [ 𝐴𝑏𝑟 𝐴𝑏12𝐴𝑏21 𝐴𝑏22]{
𝑍𝑏𝑟 (𝑡)𝑍𝑏𝑙 (𝑡)} + {𝐵𝑏𝑟2𝐵𝑏𝑙2}𝑢 (𝑡)

+ {𝐵𝑏𝑟1𝐵𝑏𝑙1}𝑤 (𝑡) ,

𝑌𝑏 (𝑡) = [𝐶𝑏𝑟 𝐶𝑏𝑙] ⋅ {𝑍𝑏𝑟 (𝑡)𝑍𝑏𝑙 (𝑡)} + 𝐷𝑏2𝑢 (𝑡)
+ 𝐷𝑏1𝑤 (𝑡) ,

(9)

where 𝑍𝑏𝑟 and 𝑍𝑏𝑙 are the retained and abandoned state
vectors of the balanced realization system, respectively.

Block matrix of (4) is

{𝑍𝑏𝑟 (𝑡)𝑍𝑏𝑙 (𝑡)} = [
[
(𝑇−1)

11
(𝑇−1)

12(𝑇−1)
21

(𝑇−1)
22

]
]
{𝑍𝑟 (𝑡)𝑍𝑙 (𝑡)} , (10)

where𝑍𝑟 and𝑍𝑙 are the retained and abandoned state vectors
corresponding to the original system.

Substituting (10) into (9) leads to

{𝑍̇𝑏𝑟 (𝑡)𝑍̇𝑏𝑙 (𝑡)} = [𝐴1 𝐴2𝐴3 𝐴4]{
𝑍𝑟 (𝑡)𝑍𝑙 (𝑡)} + {𝐵𝑏𝑟2𝐵𝑏𝑙2}𝑢 (𝑡)

+ {𝐵𝑏𝑟1𝐵𝑏𝑙1}𝑤 (𝑡) ,

𝑌𝑏 (𝑡) = [𝐶1 𝐶2] {𝑍𝑟 (𝑡)𝑍𝑙 (𝑡)} + 𝐷𝑏2𝑢 (𝑡)
+ 𝐷𝑏1𝑤 (𝑡) ,

(11)

where 𝐴1 = 𝐴𝑏𝑟(𝑇−1)11 + 𝐴𝑏12(𝑇−1)21, 𝐴2 = 𝐴𝑏𝑟(𝑇−1)12 +𝐴𝑏12(𝑇−1)22, 𝐴3 = 𝐴𝑏21(𝑇−1)11 + 𝐴𝑏22(𝑇−1)21, 𝐴4 =𝐴𝑏21(𝑇−1)12 + 𝐴𝑏22(𝑇−1)22, 𝐶1 = 𝐶𝑏𝑟(𝑇−1)11 + 𝐶𝑏𝑙(𝑇−1)21,
and 𝐶2 = 𝐶𝑏𝑟(𝑇−1)12 + 𝐶𝑏𝑙(𝑇−1)22.

The reduced-order model obtained by BTmethod retains
the first few modes of the original structure that is contin-
uous and with large modal mass participating ratio. Modal
mass participation ratio is a coefficient to characterize the
contribution of structural vibration mode to the structural
response. Under an input excitation, the low-order modal
mass participation ratio of a flexible structure is close to 1, and
the high-order modal mass participation ratio is relatively
small. Therefore, the contribution of high-order modes to
the structural response can be ignored, in order to fulfill
the requirement of engineering accuracy (e.g., the minimum
retained modal mass participation ratio of a flexible building
can be defined as 90% [33, 34]). According to (10), 𝑍𝑏𝑙 is
written as

𝑍𝑏𝑙 (𝑡) = (𝑇−1)21 ⋅ 𝑍𝑟 (𝑡) + (𝑇−1)22 ⋅ 𝑍𝑙 (𝑡) = 0. (12)

From (12), 𝑍𝑙 can be written as

𝑍𝑙 (𝑡) = − [(𝑇−1)22]−1 ⋅ (𝑇−1)21 ⋅ 𝑍𝑟 (𝑡) . (13)

Since some state messages of the balanced realization
system in 𝑍𝑙 are directly discarded, this will result in the
inaccuracy of this system.

Substituting (13) into (10) leads to

𝑍𝑏𝑟 (𝑡) = [(𝑇−1)11 − (𝑇−1)12 ⋅ ((𝑇−1)22)−1 ⋅ (𝑇−1)21]
⋅ 𝑍𝑟 (𝑡) = 𝑇𝑟𝑍𝑟 (𝑡) .

(14)

According to (14), 𝑍̇𝑏𝑟(𝑡) that is the derivative of 𝑍𝑏𝑟(𝑡)
with respect to time is expressed as

𝑍̇𝑏𝑟 (𝑡) = 𝑇𝑟𝑍̇𝑟 (𝑡) . (15)

Depending on (11), 𝑍̇𝑏𝑙(𝑡) can be expressed as

𝑍̇𝑏𝑙 (𝑡) = 𝐴3 ⋅ 𝑍𝑟 (𝑡) + 𝐴4 ⋅ 𝑍𝑙 (𝑡) + 𝐵𝑏𝑙2 ⋅ 𝑢 (𝑡) + 𝐵𝑏𝑙1
⋅ 𝑤 (𝑡) = 0. (16)
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From (16), 𝑍𝑙 is
𝑍𝑙 (𝑡) = −𝐴−14 [𝐴3 ⋅ 𝑍𝑟 (𝑡) + 𝐵𝑏𝑙2 ⋅ 𝑢 (𝑡) + 𝐵𝑏𝑙1 ⋅ 𝑤 (𝑡)] . (17)

Substituting (15) and (17) into (11) leads to

𝑍̇𝑟 (𝑡) = 𝑇−1𝑟 (𝐴1 − 𝐴2𝐴−14 𝐴3)𝑍𝑟 (𝑡)
+ 𝑇−1𝑟 (𝐵𝑏𝑟2 − 𝐴2𝐴−14 𝐵𝑏𝑙2) 𝑢 (𝑡)
+ 𝑇−1𝑟 (𝐵𝑏𝑟1 − 𝐴2𝐴−14 𝐵𝑏𝑙1)𝑤 (𝑡) ,

𝑌𝑟 (𝑡) = (𝐶1 − 𝐶2𝐴−14 𝐴3)𝑍𝑟 (𝑡)
+ (𝐷𝑏2 − 𝐶2𝐴−14 𝐵𝑏𝑙2) 𝑢 (𝑡)
+ (𝐷𝑏1 − 𝐶2𝐴−14 𝐵𝑏𝑙1)𝑤 (𝑡) ,

(18)

where 𝐴𝑟 = 𝑇−1𝑟 (𝐴1 − 𝐴2𝐴−14 𝐴3), 𝐵𝑟2 = 𝑇−1𝑟 (𝐵𝑏𝑟2 −𝐴2𝐴−14 𝐵𝑏𝑙2), 𝐵𝑟1 = 𝑇−1𝑟 (𝐵𝑏𝑟1 − 𝐴2𝐴−14 𝐵𝑏𝑙1), 𝐶𝑟 = 𝐶1 −𝐶2𝐴−14 𝐴3, 𝐷𝑟2 = 𝐷𝑏2 − 𝐶2𝐴−14 𝐵𝑏𝑙2, and 𝐷𝑟1 = 𝐷𝑏1 −𝐶2𝐴−14 𝐵𝑏𝑙1.
Equation (18) displays a reduced-order model by

improved BT method and can be simplified as

𝑍̇𝑟 (𝑡) = 𝐴𝑟𝑍𝑟 (𝑡) + 𝐵𝑟2𝑢 (𝑡) + 𝐵𝑟1𝑤 (𝑡) ,
𝑌𝑟 (𝑡) = 𝐶𝑟𝑍𝑟 (𝑡) + 𝐷𝑟2𝑢 (𝑡) + 𝐷𝑟1𝑤 (𝑡) . (19)

The truncation error of the reduced-order model shown
as (19) can be defined as

‖𝑒‖∞ ≤ 2 (𝜎𝑟+1 + 𝜎𝑟+2 + ⋅ ⋅ ⋅ + 𝜎𝑛) . (20)

Depending on inequality (20), the model reduction accu-
racy of the reduced-order model is

𝜂 = 1 − ‖𝑒‖∞(2∑𝑛𝑖=1 𝜎𝑖) ≥ 𝜂min, (21)

where 𝜂min = 90%is theminimummodel reduction accuracy.

2.2. Time-Delay Compensation Control Gain Design by GCC
Algorithm. Although the reduced-order controller design
method in Section 2.1 can reduce the adverse effects of
time-delay of control force calculation, the time-delay of the
control system also includes other aspects. Therefore, it is
necessary to design a compensation control gain to compen-
sate other kinds of time-delays that includes the time of data
acquisition and actuator response. The GCC algorithm is a
suitable LQR controller designmethod.When the time-delay
is considered, the control force of the reduced-order control
system is

𝑢𝑑 (𝑡) = −𝐺𝑟𝑍𝑟 (𝑡 − 𝑑) , (22)

where 𝐺𝑟 is a closed-loop feedback gain matrix and 𝑑 is a
time-delay.

By substituting (22) into (19), the state equation of the
system when input excitation is not considered temporarily
is

𝑍̇𝑟 (𝑡) = 𝐴𝑟𝑍𝑟 (𝑡) − 𝐵𝑟2𝐺𝑟𝑍𝑟 (𝑡 − 𝑑) . (23)

Defining 𝐴𝑟 = −𝐵𝑟2𝐺𝑟. If there exist symmetric positive-
definite matrices 𝑃, 𝑆 ∈ 𝑅𝑛×𝑛, then

[
[
𝐴𝑇𝑟𝑃 + 𝑃𝐴𝑟 + 𝑆 𝑃𝐴𝑟

𝐴𝑇𝑟 𝑃 −𝑆 ]]
< 0. (24)

Hence, system (23) is asymptotically stable. Lyapunov
function is defined as follows:

𝑉 (𝑍𝑡) = 𝑍𝑇𝑟 (𝑡) 𝑃𝑍𝑟 (𝑡) + ∫𝑡
𝑡−𝑑

𝑍𝑇𝑟 (𝜏) 𝑆𝑍𝑟 (𝜏) 𝑑𝜏, (25)

where𝑍𝑡 = 𝑍𝑟(𝑡 + 𝛼), 𝛼 ∈ [−𝑑, 0],𝑉(𝑍𝑡) is a positive-definite
matrix and 𝑉̇(𝑍𝑡) is the derivative of 𝑉(𝑍𝑡) with respect to
time. According to the algorithms of the transport matrix,

𝑉̇ (𝑍𝑡) = 𝑍̇𝑇𝑟 (𝑡) 𝑃𝑍𝑟 (𝑡) + 𝑍𝑇𝑟 (𝑡) 𝑃𝑍̇𝑟 (𝑡) + 𝑍𝑇𝑟 (𝑡)
⋅ 𝑆𝑍𝑟 (𝑡) − 𝑍𝑇𝑟 (𝑡 − 𝑑) 𝑆𝑍𝑟 (𝑡 − 𝑑) = [ 𝑍𝑟 (𝑡)𝑍𝑟 (𝑡 − 𝑑)]

𝑇

⋅ [
[
𝐴𝑇𝑟𝑃 + 𝑃𝐴𝑟 + 𝑆 𝑃𝐴𝑟

𝐴𝑇𝑟 𝑃 −𝑆 ]]
[ 𝑍𝑟 (𝑡)𝑍𝑟 (𝑡 − 𝑑)] .

(26)

According to inequality (24), 𝑉̇(𝑍𝑡) is a negative-definite
function. Based on Lyapunov stability theory [35], it proves
that the control system (23) is asymptotically stable.

When control force and input excitation are all consid-
ered, the reduced-order control system shown as (19) with
time-delay can be described as

𝑍̇𝑟 (𝑡) = 𝐴𝑟𝑍𝑟 (𝑡) + 𝐴𝑟𝑍𝑟 (𝑡 − 𝑑) + 𝐵𝑟1𝑤 (𝑡)
+ 𝐵𝑟2𝑢 (𝑡) . (27)

If the control force 𝑢(𝑡) = −𝐺𝑟𝑍𝑟, the closed-loop system
is

𝑍̇𝑟 (𝑡) = (𝐴𝑟 − 𝐵𝑟2𝐺𝑟) 𝑍𝑟 (𝑡) + 𝐴𝑟𝑍𝑟 (𝑡 − 𝑑)
+ 𝐵𝑟1𝑤 (𝑡) . (28)

The performance index of system (28) can be defined as

𝐽 = ∫∞
0

(𝑍𝑇𝑟𝑄𝑍𝑟 + 𝑢𝑇𝑟 𝑅𝑢𝑟) 𝑑𝑡
= ∫∞
0

{𝑍𝑇𝑟 [𝑄 + (−𝐺𝑟)𝑇 𝑅 (−𝐺𝑟)] 𝑍𝑟} 𝑑𝑡,
(29)

where weight matrices 𝑄 and 𝑅 are the two important
parameters in LQR algorithm and the selection of weight
matrices reflects the importance of the security and economy
in AMD control systems.
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According to inequality (24), if there exist symmetric
positive-definite matrices 𝑃, 𝑆 ∈ 𝑅𝑛×𝑛, then

[
[
(𝐴𝑟 − 𝐵𝑟2𝐺𝑟)𝑇 𝑃 + 𝑃 (𝐴𝑟 − 𝐵𝑟2𝐺𝑟) + 𝑆 + 𝑄 + (−𝐺𝑟)𝑇 𝑅 (−𝐺𝑟) 𝑃𝐴𝑟

𝐴𝑇𝑟 𝑃 −𝑆 ]]
< 0. (30)

System (28) is asymptotically stable. According to ineq-
uality (30),

[
[
(𝐴𝑟 − 𝐵𝑟2𝐺𝑟)𝑇 𝑃 + 𝑃 (𝐴𝑟 − 𝐵𝑟2𝐺𝑟) + 𝑆 𝑃𝐴𝑟

𝐴𝑇𝑟 𝑃 −𝑆 ]]
< [− [𝑄 + (−𝐺𝑟)𝑇 𝑅 (−𝐺𝑟)] 0

0 0] < 0.
(31)

Depending on (26), inequality (31) is premultiplying[𝑍𝑟(𝑡) 𝑍𝑟(𝑡 − 𝑑)] and postmultiplying [𝑍𝑟(𝑡) 𝑍𝑟(𝑡 − 𝑑)]𝑇;
then

𝑍𝑇𝑟 [𝑄 + (−𝐺𝑟)𝑇 𝑅 (−𝐺𝑟)] 𝑍𝑟 < −𝑉̇ (𝑍𝑡) . (32)

By integrating inequality (32), the performance index of
a system with time-delay satisfies

𝐽 = ∫∞
0

{𝑍𝑇𝑟 [𝑄 + (−𝐺𝑟)𝑇 𝑅 (−𝐺𝑟)] 𝑍𝑟} 𝑑𝑡
≤ [𝑍𝑇0𝑃𝑍0 + ∫0

−𝑑

𝜑𝑇 (𝑡) 𝑆𝜑 (𝑡) 𝑑𝑡] .
(33)

Inequality (30) is pre- and postmultiplying diag{𝑃−1, 𝐼};
then

[
[
𝐻𝑟 𝐴𝑟
𝐴𝑇𝑟 −𝑆]]

< 0, (34)

where𝑋 = 𝑃−1 and𝐻𝑟 = 𝑋(𝐴𝑟 − 𝐵𝑟2𝐺𝑟)𝑇 + (𝐴𝑟 − 𝐵𝑟2𝐺𝑟)𝑋 +𝑋𝑆𝑋 + 𝑋[𝑄 + (−𝐺𝑟)𝑇𝑅(−𝐺𝑟)]𝑋.
Variable substitution method can be used for solving this

problem. Defining 𝑊 = −𝐺𝑟𝑋. From Schur’s complement
[36], inequality (34) can be expressed as

[[[[[[[[[
[

𝐻̃𝑟 𝐴𝑟 𝑋 𝑊𝑇 𝑋
𝐴𝑇𝑟 −𝑆 0 0 0
𝑋 0 −𝑄−1 0 0
𝑊 0 0 −𝑅−1 0
𝑋 0 0 0 −𝑆−1

]]]]]]]]]
]

< 0, (35)

where 𝐻̃𝑟 = 𝐴𝑟𝑋 + 𝐵𝑟2𝑊 + (𝐴𝑟𝑋 + 𝐵𝑟2𝑊)𝑇. Inequality (35)
is pre- and postmultiplying diag{𝐼, 𝑆−1, 𝐼, 𝐼, 𝐼}, and 𝑉 = 𝑆−1.
Inequality (35) can be expressed as

[[[[[[[[[
[

𝐻̃𝑟 𝐴𝑟𝑉 𝑋 𝑊𝑇 𝑋
𝑉𝐴𝑇𝑟 −𝑉 0 0 0
𝑋 0 −𝑄−1 0 0
𝑊 0 0 −𝑅−1 0
𝑋 0 0 0 −𝑉

]]]]]]]]]
]

< 0, (36)

where the optimal solutions of 𝑋󸀠, 𝑊󸀠, and 𝑉󸀠 are obtained
through the LMI toolbox of MATLAB.The optimal feedback
gain matrix of the controller is

𝐺𝑟 = −𝑊󸀠 (𝑋󸀠)−1 . (37)

Then the state feedback control law is

𝑢 (𝑡) = 𝑊󸀠 (𝑋󸀠)−1 𝑍 (𝑡) . (38)

The reduced-order controller with GCC algorithm is
shown in Figure 1. The state-space equation of the reduced-
order system is depicted by the dashed box in the figure,
and the symbol inside the solid box in the figure represents
the time-delay compensation control gain obtained by GCC
algorithm.

3. Numerical Verification

3.1. Transfer Function Analysis of the Reduced-Order Model.
In this paper, a ten-storey frame shown in Figure 2 has been
constructed for numerical analysis.The height and total mass
of this structure are 33m and 892.9 tons, respectively. The
height of each floor is 3.3m, and the height and the width
of the beams along the minor-axis and the major-axis are
500mm × 250mm (Beam 1 and Beam 2). The height and the
width of Beam 3 are 450mm × 200mm, and the dimensions
of the columns are 500mm × 500mm.

The lumpedmassmethod is used to build themassmatrix
for the structure. A unit force is applied to each particle floor
of the structure, and then the displacement at each floor is
obtained and combined into the flexibility matrix. The stiff-
ness matrix can be easily obtained, as the inverse of the flexi-
bility matrix. The AMD control device is assumed to be
installed on the 8th floor and is only used to control the hori-
zontal vibration along the minor axis. Key parameters of
AMD are listed in Table 1. Structural frequencies and modal
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Figure 1: Simulink block diagram of the reduced-order controller with GCC algorithm.
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Table 1: Key parameters of AMD.

Index AMD
Auxiliary mass (kg) 4000
Effective stroke (m) ±1.1
Maximum driving force (kN) 27.5

mass participation ratios [37] of the ten-storey frame are
calculated using the model constructed in MATLAB and
listed in Table 2.

The reduced-order controller can be designed by Simu-
link toolbox in MATLAB. In this paper, the improved BT
method is used to reduce the orders of the originalmodel, and
its characteristics of the transfer functions are compared with

Table 2: Modal mass participation ratios and natural frequencies of
the frame.

Vibration
mode

Modal mass
participation ratio Sum Frequency (Hz)

1 0.7940 0.7940 0.9009
2 0.0985 0.8925 2.8744
3 0.0410 0.9335 5.3248
4 0.0237 0.9572 8.4175
5 0.0156 0.9728 12.2549

the reduced-order model by classical BT method. Regarding
the above ten-storey frame structure, its displacement and
acceleration transfer functions of the top floor with different
orders are shown in Figures 3 and 4. The input and output of
these transfer functions are all top floor. In this figure, ORM
means the structure retains the original model (20 orders),
while 𝑟 is retained orders of 4, 8, 12, and 16. Considering
the structural frequency range, the part between 0.01Hz and
100Hz is shown in the figures.

Figures 3 and 4 show that, with the increase of the
retained order, the difference between the original model and
the reduced-order model by the above two BT methods will
become smaller. FromFigures 3(a) and 4(a), the displacement
transfer functions of the two reduced-order models are basi-
cally consistent with the original model in low frequency.
From Figures 3(b), 3(d), 4(b), and 4(d), since acceleration
response is mainly affected by the higher modes and the
reduced-order model by classical BT method discards some
structural information of high-order modes, its acceleration
transfer function is not well consistent with the original
model in low frequency. Nevertheless, since the improved
BT method presented in this paper can retain this discarded
information, not only the displacement but also the accelera-
tion transfer function of the improvedmodel is basically con-
sistentwith the originalmodel in low frequency,meaning that
the reduced-order model by improved BT method can better
reflect the dynamic characteristics of the original model in
low frequency.

3.2. Mode Number Influence Analysis of the Reduced-Order
Model. The necessity of the reduced-order controller by
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Figure 3: Comparison of transfer functions of the reduced-order model by classical BT method. (a) Magnitude and (c) phase of the
displacement transfer functions. (b) Magnitude and (d) phase of the acceleration transfer functions.

improved BT method is verified by a numerical example
of the above ten-storey frame. From Table 2, the first three
orders of the modal mass participation ratios of the frame are
0.9335 which is greater than 90%, meaning that these orders
contribute a large portion of the resultant structural dynamic
response.The minimum order of the reduced-order model is
defined as 6, and the maximum mode number is defined as
8, meaning that the maximum order is 16.

Fluctuating wind is caused by the irregularity of the wind,
and its intensity is changed with time. Its short period and
dynamic characteristics lead to the random vibration of the
structure. In the paper, a ten-year return period fluctuating
wind speed with Davenport spectrum will be generated, and
mixed autoregressive-moving average (MARMA)model [38]
is proposed to simulate the stochastic process. The wind load
is applied to the ten-storey frame, and it can be calculated by
the following equation:

𝑃𝑖 = 𝜌𝑉 (𝑧) 𝑢𝑖 (𝑧, 𝑡) 𝜇𝑠𝐴, (39)
where 𝑃𝑖 is the fluctuating wind load at 𝑖th floor and 𝜌 is the
air density. 𝑉(𝑧) is the average wind speed at 𝑖th floor. 𝑢𝑖 is

the fluctuating wind speed that is associated with height and
time. 𝜇𝑠 and 𝐴 are the shape coefficient of a building and the
area facing the wind, respectively.

Under the above wind load, the model reduction accu-
racy, the 8th floor’s control effects (defined as the difference
between controlled and uncontrolled responses), and the
AMDparameters of different reduced-ordermodels are listed
in Table 3.

Table 3 shows that since the reduced-order model by
improved BT method presented in this paper can effectively
retain the structural high-order modal information, when
the retained orders are a range from 6 to 16, the maximum
variations of the displacement and acceleration control effects
are 0.0049% and 0.0395%, and themaximumvariations of the
AMD parameters are only 0.0003m and 0.0003 kN, meaning
that the control effects and AMD parameters are all relatively
stable. As a result, the order of the controlled structure can be
reduced by the improved BT method in maximum extent.

The above ten-storey frame structure is recommended
to retain 6 orders. The analysis whether the reduced-order
system can effectively save the calculation time is given in
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Figure 4: Comparison of transfer functions of the reduced-order model by improved BT method. (a) Magnitude and (c) phase of the
displacement transfer functions. (b) Magnitude and (d) phase of the acceleration transfer functions.

Table 3: Comparison of the performances of control system under different orders.

Order Model reduction
accuracy (%)

Displacement control
effect (%)

Acceleration control
effect (%) AMD strokes (m) AMD control forces (kN)

6 80.94 34.4379 33.7841 0.0540 8.8061
8 84.02 34.4401 33.8022 0.0541 8.8062
10 86.82 34.4425 33.8152 0.0543 8.8064
12 89.54 34.4428 33.8073 0.0543 8.8064
14 92.21 34.4410 33.8201 0.0543 8.8063
16 94.86 34.4404 33.8236 0.0543 8.8063

this paper, and calculation times of the reduced-order system
under different orders are shown in Table 4. The calculation
time of the reduced-order system under 6 orders is regarded
as the comparison target, and then the accelerated ratios of
calculation time of the reduced-order system under different
orders are obtained in the table.

Table 4 shows that, (1) with the increase of the retained
order, the calculation time of control force will become larger.(2)Themaximumretained order of the reduced-order system
is 16, and its calculation time of control force is 3.9583 ×
10−6 s. Nevertheless, the control force’s calculation time of
the reduced-order system with 6 retained orders is only
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Figure 5: Comparison of structural responses to 8th floor. (a) and (c) Under uncontrolled and controlled by LQR algorithm without time-
delay. (b) and (d) Under uncontrolled and controlled with GCC compensation.

Table 4: Comparison of the calculation time of control force under
different orders

Order Calculation time (×10−6 s) Accelerated ratios (%)
6 2.9167 —
8 3.1250 6.6656
10 3.3750 13.5793
12 3.5833 18.6030
14 3.7917 23.0767
16 3.9583 26.3143

2.9167 × 10−6 s. The accelerated ratio between two reduced-
order systems is 26.3143%. It is proved that the reduced-order
controller can not only guarantee the performance of the

control system (from Table 3), but also effectively reduce the
control force calculation time.

3.3. Performance Analysis of the Reduced-Order Controller
with GCC Algorithm. A reduced-order controller with GCC
algorithm for the ten-storey frame is designed to compare
with the classical controller based on LQR algorithm, and
GCC compensation stands for a system with time-delay and a
designed reduced-order compensation controller with GCC
algorithm. Under a ten-year return period wind load, the
structural responses and the AMD parameters of different
control systems with and without time-delay (time-delay in
this paper is assumed as 0.5 s) are shown in Figures 5 and 6.
The corresponding control effects and AMD parameters are
listed in Table 5.
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Figure 6: Comparison of AMD parameters, (a) AMD control forces, and (b) AMD strokes.

Table 5: Comparison of control effects (%) and AMD parameters of different control systems.

Floor Index
Without time-delay
and classical LQR
algorithm (%)

With time-delay and
classical LQR
algorithm (%)

With time-delay and
GCC compensation

(%)

8th
Displacement (m) 34.8069 −14.4568 34.4633
Velocity (m/s) 35.3560 −15.1235 34.8744

Acceleration (m/s2) 34.5862 −14.1547 33.5514

9th
Displacement (m) 34.7768 −14.3658 34.4344
Velocity (m/s) 34.7299 −14.1469 34.2723

Acceleration (m/s2) 29.0512 −19.5269 28.1406

10th
Displacement (m) 34.7414 −14.4756 34.3974
Velocity (m/s) 34.2854 −14.1975 33.8494

Acceleration (m/s2) 29.4658 −19.3269 28.7185

Control force (kN) 8.4381 8.9587 8.1838
Stroke (m) 0.0524 0.0695 0.0464

From Figures 5 and 6 and Table 5, (1) the system with
time-delay based on the classical LQR algorithm is divergent.(2) After GCC compensating the time-delay, the control
effects and AMD parameters of the system with time-delay
are close to the system without time-delays. In particular,
the maximum variations of the displacement, velocity, and
acceleration control effects are only 0.3440%, 0.4816%, and
1.0348%. Therefore, the reduced-order controller with GCC
algorithm can effectively compensate the time-delay and
decrease the structural response. (3)The reduced-order cont-
roller with GCC algorithm canmaintain the stability of AMD
parameters and are consistent with the system without time-
delay. The AMD parameters of the system only change by
0.2543N and 0.0060m.

4. Experimental Verification

Figure 7 shows an experimental system of a four-storey steel
frame with an AMD control device installed on the fourth
floor [39]. A servo motor can acquire the forces from an
EtherCAT bus system and was used to add these forces to
control the structure. The AMD system mainly consisted of
a servo motor, servo controller, an EtherCAT bus system, a
dSPACE system with a type of DS1103, and a computer.

To validate the efficiency of the developed method, the
reduced-order controller by improved BT method is applied
to the experimental system. The full-order model of the
experimental systemwith AMD is 10, and the retained orders
of the reduced-order model are recommended to be 4, 6,
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Figure 7: Pictures of the steel frame structure. (a) Practicality. (b) Exhibition.

and 8, respectively. The loading frequency of the system is
1Hz; that is, the peak value of the corresponding excitation
force is 45.89N, and the wave form of this force is sinusoidal.
Under the above excitation load, the control effects and
AMD parameters of different control systems are listed in
Table 6, and the structural responses (includes displacement
and acceleration) to 4th floor of different control systems are
shown in Figures 8 and 9. AMD parameters of the 4-order
system are shown in Figure 10.

From Figures 8–10 and Table 6, (1) as the retained orders
of the experimental system are a range from 4 to 10, the
displacement and acceleration control effects andAMDpara-
meters are all relatively stable, meaning that the performance
of the reduced-order controller is consistent with the full-
order controller. Therefore, the retained order 4 of the con-
trolled structure can be reduced by the improved BT method
in maximum extent. (2) Because of the interaction between
the AMD system and the structure as well as the coupling
between the horizontal and vertical vibrations of the struc-
ture, the structural responses do not completely obey the
change regulation of a sine-wave under a sinusoidal load.(3) The acceleration control needs high frequency control
force that will stimulate the structural high-order modes, and
AMD device is placed in the fourth floor of the structure.
Due to above two reasons, the control effect of third floor
is an opposite high-order phase with the fourth floor and
significantly less than the control effects of second and fourth
floors.

The retained order of the experimental can be determined
as 4. Then, to validate the efficiency of the time-delay com-
pensation control method, the compensation controller with

GCC algorithm is applied to the experimental system. The
performance of the compensation controller is compared
with the system without time-delay. Time-delay assumed as
0.5 s in the control system is introduced by a time-delay block
in the programmodules. Under the above excitation load, the
structural responses of different systems are shown in Fig-
ure 11, and the corresponding control effects and AMD para-
meters are listed in Table 7.

Figure 11 and Table 7 show that (1) the displacement and
acceleration control effects of the system without compensa-
tion are all minus numbers, meaning that AMD system may
increase the structural response and play a negative role when
time-delay exists. (2) The control effects and AMD para-
meters of the system with GCC compensation are close to
the system without time-delay. In particular, the maximum
variations of the displacement and acceleration control effects
between two different systems are only 1.7453% and 2.8189%,
and the AMD parameters of the controller with GCC com-
pensation decrease by 1.8515N and 0.0296m. Therefore, the
compensation controller based on GCC algorithm can effec-
tively compensate the long time-delay (e.g., 0.5 s in this paper)
and suppress the structural response.

5. Conclusions

Time-delay has a negative influence in AMD control system.
To address this issue, this paper presents a new reduced-
order controller by improved BT method that can retain
the abandoned high-order modal information of the original
structure to reduce calculation time-delay. Time-delay com-
pensation control gain designed by GCC algorithm is also
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Figure 8: Comparison of displacement responses to 4th floor of the experimental system. (a) 4-order model, (b) 6-order model, (c) 8-order
model, and (d) full-order model.

Table 6: Comparison of control effects of different control systems.

Index Full-order model (%) 4-order model (%) 6-order model (%) 8-order model (%)
Displacement (m)

2nd floor 24.8143 24.2223 24.4342 24.9452
3rd floor 25.5053 24.2089 24.8436 25.3991
4th floor 25.9376 24.5857 25.3514 25.8182

Acceleration (m/s2)
2nd floor 66.2392 67.0423 62.5976 66.4737
3rd floor 59.7265 51.1551 53.8394 54.2685
4th floor 72.4474 68.9787 71.4552 68.7089

AMD control forces (N) 35.1827 35.0064 34.7217 34.9065
AMD strokes (m) 0.1985 0.2167 0.2114 0.1975
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Figure 9: Continued.
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Figure 9: Comparison of acceleration responses to 4th floor of the experimental system. (a) and (b) 4-ordermodel, (c) and (d) 6-ordermodel,
(e) and (f) 8-order model, and (g) and (h) full-order model.
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Figure 10: AMD parameters of the 4-order experimental system. (a) AMD control forces. (b) AMD strokes.

Table 7: Control effectiveness of structural responses (%).

Index No control No compensation GCC compensation
Responses Effect (%) Responses Effect (%)

Displacement (m)
2nd floor 0.0181 0.0191 −5.5249 0.0136 24.8619
3rd floor 0.0262 0.0277 −5.7252 0.0194 25.9542
4th floor 0.0301 0.0318 −5.6478 0.0224 25.5814

Acceleration (m/s2)
2nd floor 0.2267 0.2486 −9.6603 0.0774 65.8580
3rd floor 0.2466 0.2656 −7.7048 0.1135 53.9740
4th floor 0.2478 0.2683 −8.2728 0.0700 71.7514

Peak control force (N) — 33.7858 — 33.1549 —
Peak stroke (m) — 0.1806 — 0.1871 —
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Figure 11: Comparison of structural responses to 4th floor of the experimental system under uncontrolled and controlled without compen-
sation and with GCC compensation. (a) Displacement. (b) Acceleration.

presented to compensate data acquisition and actuator res-
ponse time-delays. Finally, a numerical example and an exp-
eriment are presented to validate the effectiveness of the
proposed method. Based on the results, the following con-
clusions can be drawn.

(1) The improved BTmethod presented in this paper can
retain the abandoned structural high-order modal
information; the acceleration transfer function of the
reduced-order model by improved BT method is
more consistent with the original model in low fre-
quency than the model by classical BT method.

(2) As the modal mass participation ratio of a frame
is larger than 90%, the minimum retained order of
its reduced-order controller by improved BT method
can be obtained. Although the model reduction accu-
racy cannot meet the requirements of 90%, this con-
troller can still keep its control effects and AMDpara-
meters stable.

(3) This new reduced-order controller whose order is
reduced in maximum extent not only guarantees
the performance of the system, but also effectively
reduces calculation time of control force.

(4) The new reduced-order controller based on GCC
algorithm in this paper can significantly improve the
performance under the adverse influence of time-
delay, and its performance is close to the classical
control system without time-delay. As a result, it can
effectively compensate time-delay and enhance the
robustness of the control system.
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