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Privacy-preserving in wireless sensor networks is one of the key problems to be solved in practical applications. It is of
great significance to solve the problem of data privacy protection for large-scale applications of wireless sensor networks. The
characteristics of wireless sensor networks make data privacy protection technology face serious challenges. At present, the
technology of data privacy protection in wireless sensor networks has become a hot research topic, mainly for data aggregation, data
query, and access control of data privacy protection. In this paper, multiorder fusion data privacy-preserving scheme (MOFDAP) is
proposed. Random interference code, random decomposition of function library, and cryptographic vector are introduced for our
proposed scheme. In multiple stages and multiple aspects, the difficulty of cracking and crack costs are increased. The simulation
results demonstrate that, compared with the typical Slice-Mix-AggRegaTe (SMART) algorithm, the algorithm proposed in this
paper has a better data privacy-preserving ability when the traffic load is not very heavy.

1. Introduction

Nowadays, the application of Internet of things (IoT) is
becoming more diverse. As an important part of the Internet
of things, the wireless sensor network (WSN) has been widely
used in all aspects of our lives (e.g., military surveillance,
patientmonitoring, forestmonitoring, etc.). Awireless sensor
network is a self-organizing network composed of a large
number of sensor nodes. It has the characteristics of being
resource constrained, distributed, multihop, wireless com-
munication, and so on. WSN sensor nodes are placed in the
public, untrusted, and even malicious intrusion environment
and exchange the data using wireless communication. These
make the data easy to intercept for WSN. WSN faces serious
privacy data leakage risk. Especially in medical and military
applications, data security requirements are very high. It is
necessary to study the privacy protection of WSN.

It is the main task for wireless sensor networks to collect
useful information, relying on a large number of nodes
scattered in the environment, so that people can analyze and
process the information. Data fusion technology is one of the

key technologies for WSN. Many of the existing researches
have increased the privacy protection function on the basis of
data fusion. For instance, in [1], Conti et al. design a private
data aggregation protocol that does not leak individual sensed
values during the data aggregation process. It enhances the
robustness, and the node computing complexity and data
transmission are not large.

In [2–5], Wenbo et al. proposed the privacy-preserving
algorithms based on data fusion. The SMART algorithm
is widely used in these algorithms. In SMART, the data
is divided into slices, and then the slices are sent to the
randomly selected neighbor nodes; finally, the data fusion
is carried out along the data fusion tree. In this paper,
the method of decomposing data by random function is
proposed. We make some improvements to SMART. We use
the random function to decompose the data to increase the
difficulty of cracking the data in the data aggregation point.

The purpose of privacy protection is to increase the cost
and difficulty of acquisition for eavesdropper.The generation
of interference information can greatly increase the cost and
difficulty of eavesdropping.
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Generally, the energy resources of the sampled sensors
are limited. Energy resources are related to the lifetime of the
whole WSN, so the energy consumption is usually the key
problem of data fusion in WSNs. Now most of the wireless
sensor networks take sleep strategies which randomly select
a node as a sentinel node, to achieve compressive sampling,
but now most of the compressed sampling schemes do not
provide privacy protection. In fact, interference information
can be generated by nodes randomly selected from the sleep
nodes. In this paper, we propose a method to generate
interference codes in the multiorder fusion data protection
algorithm.

In the traditional password protection work, Girao et al.
proposed a privacy-preserving solution for data fusion in
[6, 7]. They use homomorphic encryption so that nodes can
effectively fuse the data without decrypting data. In order to
increase the defeat solution difficulty, this paper puts forward
the strategy of password vector protection.

Now the eavesdropper’s crack technology is richer. It is
difficult to protect the security of wireless sensor networks
with only one method. A variety of methods need to be
organically combined so that layers of protection are formed.
For this purpose, this paper proposes a privacy-preserving
mechanism combined with active protection and passive
protection and adopts multiorder fusion protection strategy
forWSN, to increase the cost and difficulty of interception or
eavesdropping in a nonlinear way.

The rest of this paper is organized as follows. Section 2
provides some related work. Section 3 describes the model
of privacy-preserving data aggregation in WSN. Section 4
provides our multiorder fusion algorithms for private data
aggregation. Section 5 evaluates the proposed schemes for
cost and difficulty.We summarize our work and lay out future
research direction in Section 6.

2. Related Work

In typical wireless sensor networks, sensor nodes are usually
limited in resources and energy.Data aggregation is necessary
for wireless sensor networks. Based on the management
pattern of cluster structure, in [1], Conti et al. proposed a
privacy-preserving algorithm for data fusion. In particular,
neither the base station (BS) nor other nodes are able to
compromise the privacy of an individual node’s sensed value.
Bista et al. proposed a new set of data fusion privacy pro-
tection solutions. The proposed scheme applies the additive
property of complex numbers in [8, 9]. All of them have the
advantages of computational complexity and small amount of
data transmission.

In [2–5], Wenbo et al. proposed the privacy-preserving
data aggregation (PDA), which includes two algorithms,
cluster-based private data aggregation (CPDA) and Slice-
Mix-AggRegaTe (SMART). But the amount of calculation
of CPDA is great, and data traffic of SMART is very large.
SMART algorithm in [2] is the most closely related to the
algorithmproposed in this paper.The SMARTalgorithmuses
hop-by-hop data fusion mode and node-to-node encryption
and decryption mode. It can prevent the invasion of external

intruders, in the case of ensuring the accuracy of data fusion.
It can guarantee the internal trusted node to obtain privacy
data. The SMART algorithm is divided into three steps:
slicing, mixing, and aggregating.

In [10–13], some features are added on the basis of
SMART. The privacy-preserving algorithm based on fusion
is extended.The energy consumption is reduced in document
10. Reference [11] focuses on improving the accuracy of data
fusion. Reference [12] adds data integrity verification. The
authors add fault tolerance in [13].

In [6, 7], Girao et al. proposed a privacy-preserving
solution for data fusion.They adopted homomorphic encryp-
tion. This algorithm can make the nodes implement effective
fusion of data, without the need of decrypting data. In order
to increase the difficulty of crack, this paper puts forward the
strategy of using password vector to protect the data.

In [14], the authors proposed a 𝑘-anonymization cluster-
ing method (𝑘-ACM) that provides a 𝑘-anonymity frame-
work with two levels of privacy for WSNs. Zhang et al.
proposed a security privacy-preserving data aggregation
model, which adopts a mixed data aggregation structure of
tree and cluster for the wearable wireless sensors in [15]. In
[16], Cao et al. proposed a privacy-preserving and auditing-
supporting outsourcing data storage scheme by using encryp-
tion and digital watermarking. They used logistic map-based
chaotic cryptography algorithm to preserve the privacy of
outsourcing data.

Thus, it can be seen that there are many schemes about
privacy protection. How to combine a variety of privacy
protection strategies is also an urgent need to solve the
problem. We propose the multiorder fusion data privacy-
preserving (MOFDP) algorithm for wireless sensor networks
by extending the privacy protection.

3. System Model

The MOFDP algorithm is based on the cluster structure
of wireless sensor networks. It is assumed that there is a
cluster head node 𝑁0 which can be a sink node in each
cluster structure. It is a high resource node, which can
be responsible for data collection and integration. It can
also be used as a query node to perform query tasks. In
each cluster structure of WSN, other nodes can be the
subnodes which are responsible for collecting data. Suppose
that the set of subnodes is {Node1,Node2, . . . ,NodeNumNode},
where NumNode is the number of child nodes. The specific
structure of the cluster of WSNs is shown in Figure 1.

The MOFDP algorithm achieves multiorder data privacy
protection. In Figure 1, “—” denotes order-1 data privacy pro-
tection. “- ⋅ -” denotes order-2 data privacy protection. When
NumNode = 4, there are four “—” and “- ⋅ -”, respectively.
“→” represents order-3 data privacy protection.

In the privacy-preserving algorithm of this paper, 𝑁0
node is very important. In this paper, it is assumed that𝑁0 is
very difficult to be captured. In this paper, the wireless sensor
network takes the sleeping strategy. The sampling frequency
of the whole network is dynamically adjusted by𝑁0. In each
sampling process, all the subnodes are not sampled at the
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Figure 1: MOFDP model based on cluster structure.

same time, but only one random subnode is sampled. Any
node that takes the sample is determined by the 𝑁0 node
according to the algorithm to generate random values. The
fusion recovery function library and the key vector both are
in the head node𝑁0.The detailed algorithmwill be described
in the rest of this paper.

4. The Protection Mechanisms of
Multiorder Fusion Protection

In this paper, we use three order models to protect data pri-
vacy. The first step is the use of interference code protection.
In the second phase, the data is decomposed by a random
function. In the third stage, we use cryptographic vectors to
secure data.

4.1. Construction of Decomposition Function Library. In [2],
the slice-mixed aggregation (SMART) uses the segmentation

and reorganization technology to complete the privacy-
preserving data aggregation. The basic idea of SMART is
that the sensor node randomly divides the original data into
many data slices; the hop-by-hop encryption mechanism is
adopted, and the exchanged data slices are randomly selected
by the neighbor nodes; it performs the summation operation
for all the received data slices and uploads the results to the
base station; the base station can obtain all the received data
and get the accurate SUM aggregation results.

We do not simply use the fixed method to segment the
data in this paper. The decomposition function is randomly
extracted from the decomposition function library, and then
the collected data are decomposed and sent in separate time
periods. It increases the difficulty of cracking data, because
the decomposition function is random, and the decomposi-
tion function library and the fusion recovery function library
must be obtained at the same time in order to recover the
signal. Due to the implementation of transmitting data in
the interval time, the number of elements in the solution
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vector of decomposition function is not uniform. It is difficult
to determine the number of signals to be intercepted for
cracking data; thus, the difficulty of the crack is increased.

Set 𝐷𝑖(𝑡) as the data collected by the 𝑖th subnode at 𝑡
moment. We define the data decomposition function as

Dec𝑞 (𝐷𝑖 (𝑡)) = DD𝑖

= {𝑑(1,𝑖) (𝑡) , 𝑑(2,𝑖) (𝑡) , . . . , 𝑑(𝑁,𝑖) (𝑡)} , (1)

where DD𝑖 is the solution vector. 𝐷(𝑗,𝑖)(𝑡) (𝑗 = 1, 2, . . . , 𝑁)
denotes the elements of DD𝑖. The number𝑁 of components
of the solution vector is determined by the decomposition
function. The 𝑞 is the index number of the decomposition
function Dec(∗).

The data decomposition function library of subnodes is
denoted as

Decs = {𝑞 ∈ Z | Dec𝑞 (𝐷𝑖 (𝑡))} . (2)

The data fusion recovery function is interpreted as

Cec𝑝 (DD𝑖) = 𝐷𝑖 (𝑡)
= Cec𝑝 ({𝑑(1,𝑖) (𝑡) , 𝑑(2,𝑖) (𝑡) , . . . , 𝑑(𝑁,𝑖) (𝑡)})
= 𝐷𝑖 (𝑡) ,

(3)

where 𝑝 is the index number of the fusion recovery function
Cec(∗).

The fusion recovery function library of sink node is
defined as

Cecs = {𝑝 ∈ Z | Cec𝑝 (DD𝑖)} . (4)

A decomposition function corresponds to a fusion recov-
ery function. The fusion recovery function is the inverse
operation of the decomposition function. The relationship
between them is Dec𝑢(Cec𝑢(DD𝑖)) = Cec𝑢(Dec𝑢(𝐷𝑖(𝑡))) =𝐷𝑖(𝑡), 𝑢 ∈ Z. The total number of functions in the decom-
position function library corresponds to the total number of
functions in the fusion recovery function library.

4.2. End-to-End Encryption Used Key Vectors. In many prac-
tical applications, wireless sensor networks must consider
privacy protection to ensure that the data collected by each
node can only be accessed by the authorized users. Only the
authorized nodes can transmit the data to the sink node to
ensure the correctness and integrity of the data. In this paper,
the idea of encryption is end-to-end encryption.

The sensed data being passed to nonleaf aggregators are
revealed for the sake of middle-way aggregation in the hop-
by-hop aggregation protocols in [17]. Compared with the
hop-by-hop encryption mechanism, the intermediate nodes
in the end-to-end encryption mechanism can save the cost
of encryption and decryption and reduce the time delay.
The end-to-end encryption mechanism is as follows: the
sensor node and the sink node share the key encryption, and
then the sink node implements the decryption process. The
end-to-end encryptionmechanism requires data aggregation

(1) While no error
(2) TSID = Rand(1,NumNode);
(3) TFID = Rand(1,NumFunction);
(4) Send MES to Node(TSID);
(5) Endwhile;

Algorithm 1: Sink node randomly generated number.

on encrypted data. Homomorphic encryption can be used
to achieve the sum or product operation on the cipher-
text, which can effectively support data aggregation in the
encrypted data.

The 𝑖th sampling node:

cd1 = Encode (𝑑(1,𝑖) (𝑡) , 𝑘(𝑖,1),𝑀) = 𝑑(1,𝑖) (𝑡) + 𝑘(𝑖,1) ⊕𝑀;
cd2 = Encode (𝑑(2,𝑖) (𝑡) , 𝑘(𝑖,2),𝑀) = 𝑑(2,𝑖) (𝑡) + 𝑘(𝑖,2) ⊕𝑀;

...
cd𝑁 = Encode (𝑑(𝑁,𝑖) (𝑡) , 𝑘(𝑖,𝑁),𝑀) = 𝑑(𝑁,𝑖) (𝑡) + 𝑘(𝑖,𝑁) ⊕𝑀,

(5)

where⊕ is denoted as themode operation and𝑀 is the system
parameter. CD𝑖 = {cd1, cd2, . . . , cd𝑁} is ciphertext vector.The
key vector 𝐾𝑖 = {𝑘(𝑖,1), 𝑘(𝑖,2), . . . , 𝑘(𝑖,𝑁)} is shared by the 𝑖th
subnode and the head node.

DD𝑖 = {𝑑(1,𝑖)(𝑡), 𝑑(2,𝑖)(𝑡), . . . , 𝑑(𝑁,𝑖)(𝑡)} is the plaintext
vector of sampling node.. The relationship then follows as

Ciphertext fusion value of head node: CD1⋅⋅⋅𝑁 =(Cec𝑝(CD𝑖)) ⊕ 𝑀;
Decryption of head node: Decode(CD1⋅⋅⋅𝑁,Cec𝑝(𝐾𝑖),𝑀) = CD1⋅⋅⋅𝑁 − Cec𝑝(𝐾𝑖) ⊕ 𝑀.

4.3. Sink Node Randomly Generated Number. Because the
sleeping strategy is used in the wireless sensor network in this
paper, under the condition that the probability of abnormal
event is not high, all nodes are not sampled at the same
time, in each sampling process. The sink node randomly
generates the really sampling node number by the algorithm
and notifies its sampling. This truly sampled node is called a
sentinel node.

TSID is denoted as the truly sampling node number.
TFID is in terms of the number of decomposition function.
Active signal group MES = (TSID,TFID,CONDITION),
where CONDITION is the condition to activate node sam-
pling. NumNode is the total number of subnodes. NumFunc-
tion is the total number of functions in the decomposition
function library. The algorithm of randomly generating
number is Algorithm 1.

4.4. Generation of Random Interference Data. It is possible
to randomly select a node to generate interference data. In
this way, the probability that the eavesdropper intercepts
the data in the channel and the information of the source
is determined by the number of interfering data nodes.
Assuming that the number of the real sampling nodes is
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(1) While no error
(2) 𝑡 = 0;
(3) RSC = 0;
(4) IF Receive(MES);
(5) RSC = RSC + 1;
(6) 𝐷TSID(𝑡) = SAMPLE;
(7) 𝐷TSID = DecTFID(𝐷TSID(𝑡))
(8) cd1 = Encode(𝑑(1,𝑖)(𝑡), 𝑘(𝑖,1),𝑀);
(9) cd2 = Encode(𝑑(2,𝑖)(𝑡), 𝑘(𝑖,2),𝑀);
(10) . . .
(11) cd𝑁 = Encode(𝑑(𝑁,𝑖)(𝑡), 𝑘(𝑖,𝑁),𝑀);
(12) For 𝑡𝑡 = 1 to𝑁
(13) SEND(TSID, TFID, cd𝑡𝑡) to sink;
(14) 𝑡𝑡 = 𝑡𝑡 + 1;
(15) Endfor
(16) ELSE IF RSC >= 2||!SAMPLING
(17) Then NOISYFD;
(18) RSC = 0;
(19) SEND FD to sink
(20) ENDIF
(21) ENDIF
(22) 𝑡 = 𝑡 + 1
(23) Endwhile

Algorithm 2: Subnode really sample and generate interference
data.

Numdatanodes, the number of nodes generating the inter-
ference data is Numdatainter, and the probability 𝑝 of the
eavesdropper intercepting the false data is

𝑝 ≈ Numdatainter
Numdatanodes

. (6)

In case there are one node generating the interference
data and one real sampling node, the probability 𝑝 of the
eavesdropper intercepting the false data approximately equals
50%. If there are two nodes generating the interference data
and one real sampling data, the probability 𝑝 approximately
equals 33.33%.

The selection problem of nodes generating interference
data must be considered. If the head node notifies the subn-
odes to generate random interference codes, this increases
the communication cost and instability. The method of this
paper is shown in Algorithm 2. In 𝑛 − 1 nonsampling nodes,
each node’s sampling threshold is used to decide whether to
transmit random values which can be used as the interference
data. Since the real sampling nodes are random, the nodes
that generate the interference data byAlgorithm2 are random
too.

5. Data Privacy-Preserving Algorithm
Based on Multiorder Fusion Protection

In order to ensure that the wireless sensor networks can
securely collect data and secure the data collected by wireless
sensor networks (user privacy information, especially, is not
stolen), MOFDP algorithm has increased the difficulty of
cracking from three aspects to achieve the 3-order stereo

protection, based on the idea of increasing the difficulty of
hacking.

In the aspect of data decomposition and reception, the
random selection function in the function library is used
to decompose and fuse data. In data encryption, the use
of key vector for the end-to-end encryption has increased
the difficulty of breaking. In addition, data is protected by
sending interference data. Finally, multiorder data privacy
protection in wireless sensor networks is achieved.

5.1. The Algorithm of Data Sampling and Sending for Subnode.
In the process of sampling, each node is sampled once and
then accumulated once. RSC is denoted as a cumulative
variable.

The sampling time is 𝑡. SAMPLE is denoted as sam-
pling, quantization, and coding to obtain sampled data.
DecTFID(𝐷TSID(𝑡)) denotes that the decomposition function
is called by TFID from the decomposition function library.
In this algorithm the ciphertext is sent out in separate time
periods. The symbol 𝑡𝑡 is accumulator for each time period,
which is determined by decomposition function. NOISYFD
denotes that false interference data are randomly generated.
FD is in terms of false data.

5.2. The Algorithm of Data Fusion Recovering for Head Node.
See Algorithm 3.

6. Discussion and Simulation Experiment

6.1. Protection Cost. In this paper, the real sampling node
number and the interference node number are randomly gen-
erated and distributed uniformly. Thus, the energy balance
of wireless sensor networks is guaranteed, and the service
lifetime is effectively prolonged.

Most of the computational work ofMOFDP is focused on
head node. Because the head node is a high resource node,
the calculation of energy consumption and communication
energy consumption has been adequately supported and
guaranteed.

6.2. Crack Cost. Since the aim is to extract the encryption
function and the decryption function randomly from the
library function in this paper’s algorithm, it is necessary
to break all the functions to ensure the success rate of
crack function. The cost of cracking function is in terms of
costgetfun. The cost of cracking all functions in the library is
NumFuntion × costgetfun.

Because of the function decomposition, the cost of
collecting data is increased. If the eavesdropper synthesized
the data, it is needed that he has to break the communication
links between the nodes and spend a certain amount of time
gathering the data. The risk that the eavesdropper is found is
increased.The cost of collecting one piece of data is costgetdata.
Since MOFDP uses the random function extraction, the
eavesdropper has to take the maximum number of function
decomposition components in the function library as the
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(1) While no error
(2) IF Receive(TSID) == TSID and Receive(TFID) == TFID;
(3) CD1⋅⋅⋅𝑁 = (CecTFID(CDTSID))mode𝑀;
(4) Decode(CD1⋅⋅⋅𝑁,CecTFID(𝐾𝑖),𝑀);
(5) Else reject interference data and not receiving
(6) Endif
(7) End while

Algorithm 3: Data fusion recovering of head node.

number of times to collect data every time. The cost of
collecting data is

MAX (𝑁1, 𝑁2, . . . , 𝑁NumFuntion) × costgetdata. (7)

The MOFDP algorithm decomposes the data into many
components, which form a solution vector. In order to
encrypt data for each component, the key vector is intro-
duced. The number of components of the key vector is equal
to the number of decomposition components. The number
of key vectors forms a vector: {𝑁1, 𝑁2, . . . , 𝑁NumFuntion}. The
cost of breaking a key is set as costkey. In the process of
eavesdropping, the cost of cracking passwords is

MAX (𝑁1, 𝑁2, . . . , 𝑁NumFuntion) × costkey (8)

Due to the random interference data, the cost of identify-
ing the authenticity is required. MOFDP uses random nodes
to send interference data, so distinguishing the authenticity
of the data requires the existence of the characteristics of each
interference data of nodes to be analyzed. The cost of setting
up one interference data is costjarm.The cost of identifying the
authenticity is defined as NumNode × costjarm.

MOFDP preventive measures have three stages of protec-
tion. As long as the prevention of any stage cannot break, the
right real data cannot be obtained. The total cracking cost of
MOFDP is defined as

COSTMOFDP = NumFuntion × costgetfun

+MAX (𝑁1, 𝑁2, . . . , 𝑁NumFuntion)
× costgetdata +NumNode × costjarm

+MAX (𝑁1, 𝑁2, . . . , 𝑁NumFuntion)
× costkey

= MAX (𝑁1, 𝑁2, . . . , 𝑁NumFuntion)
× (costkey + costgetdata)
+NumFuntion × costgetfun

+NumNode × costjarm.

(9)

The classic SMART algorithm also uses the idea of data
segmentation. It decomposes the data into 𝐽 slices and then

encrypts and transmits (𝐽 − 1) data. The cracking cost of
SMART approximately is defined as

COSTSMART = (𝐽 − 1) × (costkey + costgetdata) . (10)

MAX(𝑁1, 𝑁2, . . . , 𝑁NumFuntion) and (𝐽 − 1) are all repre-
sentatives of the number of decomposed data into compo-
nents. They can be approximately equal.

Subtract formula (9) and formula (10):
COSTMOFDP − COSTSMART

= NumFuntion × costgetfun +NumNode

× costjarm.
(11)

The actual work found that NumNode is far greater than
NumFuntion. But the value of costgetfun and costjarm is not
small; these two cannot be ignored. It can be seen that the
crack cost of MOFDP algorithm is much larger than the cost
of the SMART algorithm, mainly because of heavy workload
of cracking the function in the library and identifying the true
and false data.

6.3. Crack Probability and Simulation Experiment. In the case
of random interference data in wireless sensor networks,
the probability of obtaining correct data changes with the
number of random interference nodes. The true sampled
node is also a random node. Set JM to indicate the correct
data when sending interference data. The probability is

𝑃 (JM) = 11 + 𝑁jarm
× 1
NumNode

, (12)

where𝑁jarm denotes the number of joining random interfer-
ence nodes. In this paper the value of 𝑁jarm is set as 1, and
NumNode is the total number of subnodes.

In this paper, we use the idea of data fragmentation
and synthesis to increase the security of true sampling
data. The decomposition function library and the fusion
recovery function library are used. The vector of numbers
of solution vector components of decomposition function
in the function library is {𝑁1, 𝑁2, . . . , 𝑁𝑞, . . . , 𝑁NumFunction},
where 𝑁𝑞 represents the number of components which is
the result that the 𝑞th decomposition function Dec𝑞(𝐷𝑖(𝑡))
decomposes the 𝐷𝑖(𝑡). Since the decomposition function
and the fusion recovery function are one-to-one reciprocal
operations, decomposition function can be cracked, but also
can break the fusion recovery function. The probability that
the decomposition function can be cracked is denoted as
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[Decs, 𝑃] = [[[
[
Dec1 (𝐷𝑖 (𝑡)) Dec2 (𝐷𝑖 (𝑡)) ⋅ ⋅ ⋅ Dec𝑞 (𝐷𝑖 (𝑡)) ⋅ ⋅ ⋅ DecNumFunction (𝐷𝑖 (𝑡))
𝑃 (FunDec1) 𝑃 (FunDec2) ⋅ ⋅ ⋅ 𝑃 (FunDec𝑞) ⋅ ⋅ ⋅ 𝑃 (FunDecNumFunction)

pcf1 pcf2 ⋅ ⋅ ⋅ pcf𝑞 ⋅ ⋅ ⋅ pcfNumFunction

]]]
]
, (13)

where Decs(𝑞) is the decomposition function library.
NumFunction is the capacity of the function library, or,
alternatively, the total number of decomposition functions.
The channel is set up between the sampling node and
the sink node to transmit the data in separate time. The
eavesdropper cannot intercept the correct data at once.
They have to intercept the component many times in the
channel. The more the components that get decomposed, the
smaller the probability of intercepting the correct data. In
case the decomposition function is cracked, the probability
in which the listener can intercept one component is𝑃(GetCom𝑖 | FunDec), where 𝑖 is denoted as the 𝑖th
component. The probability value is determined by the
technology and conditions of the eavesdropper. Here we set
it as 𝑝compon.

𝑃 (GetCom𝑖 | FunDec) = 𝑝compon. (14)

In this paper, we investigate the probability of capturing
each component as equal probability. The probability that
the eavesdropper intercepts all components after they break
down the decomposition function is 𝑃(GetComs | FunDec).
There are two steps for our method in this paper: the first
step is to extract a function from the decomposition function
library. The probability of extracting the function from the
decomposition function library obeys uniform distribution.
The probability of obtaining the function to implement
decomposition is 𝑃(Getchosfun); then

𝑃 (Getchosfun) = 1
NumFunction

. (15)

The second step is to decompose the real sampling data
with the random function. According to the full probability
formula, the probability of information exposure in the
procedure of function decomposition protection is denoted
as

𝑃 (GetComs) = 𝑃 (Getchosfun) × (𝑃 (FunDec1)

× 𝑖=𝑁1∏
𝑖=1

𝑃 (GetCom𝑖 | FunDec1) + 𝑃 (FunDec2)

× 𝑖=𝑁2∏
𝑖=1

𝑃 (GetCom𝑖 | FunDec2) + ⋅ ⋅ ⋅

+ 𝑃 (FunDec𝑞) ×
𝑖=𝑁𝑞∏
𝑖=1

𝑃 (GetCom𝑖 | FunDec𝑞)
+ ⋅ ⋅ ⋅ + 𝑃 (FunDec1)
× 𝑖=𝑁NumFunction∏

𝑖=1

𝑃 (GetCom𝑖 | FunDecNumFunction))
= 1
NumFunction

× (pcf1 × 𝑝𝑁1compon + pcf2

× 𝑝𝑁2compon + ⋅ ⋅ ⋅ + pcf𝑞 × 𝑝𝑁𝑞compon + ⋅ ⋅ ⋅
+ pcfNumFunction × 𝑝𝑁NumFunction

compon ) .
(16)

In this paper, the key vector is promoted in the algorithm.
The 𝑖th node and the sink node share the key vector 𝐾𝑖 ={𝑘(𝑖,1), 𝑘(𝑖,2), . . . , 𝑘(𝑖,𝑁)}. The probability of decryption key is

𝑃 (Getkeys) = 𝐾𝑖∑𝑗=NumFunction
𝑗=1 𝑁𝑗 ×

1𝐾𝑖
= 1
∑𝑗=NumFunction
𝑗=1 𝑁𝑗 .

(17)

The information exposure probability of our algorithm in
this paper is

𝑃 = 𝑃 (Getkeys) × 𝑃 (JM) × 𝑃 (GetComs)
= 1
∑𝑗=NumFunction
𝑗=1 𝑁𝑗 ×

11 + 𝑁jarm
× 1
NumNode

× 1
NumFunction

× (pcf1 × 𝑝𝑁1compon + pcf2

× 𝑝𝑁2compon + ⋅ ⋅ ⋅ + pcf𝑞 × 𝑝𝑁𝑞compon + ⋅ ⋅ ⋅
+ pcfNumFunction × 𝑝𝑁NumFunction

compon )
= 1
∑𝑗=NumFunction
𝑗=1 𝑁𝑗 ×

11 + 𝑁jarm
× 1
NumNode

× 1
NumFunction

× 𝑞=NumFunction∑
𝑞=1

pcf𝑞 × 𝑝𝑁𝑞compon.

(18)
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If𝑁jarm is set to be 1,𝑁jarm = 1, formula (18) can be simplified
as
𝑃
= ∑𝑞=NumFunction

𝑞=1 pcf𝑞 × 𝑝𝑁𝑞compon

2 ×NumFunction ×NumNode × ∑𝑗=NumFunction
𝑗=1 𝑁𝑗 .

(19)

The information exposure probability and the probability
of cracking the function or intercepting the data have positive
correlation.

The SMART algorithm and MOFDP algorithm both
have the idea of chip integration. At the time of each data
aggregation, SMART uses the same function to decompose
and merge, while MOFDP uses decomposition and fusion
of functions that are randomly extracted from the function
library.

In order to further analyze and compare, based on the
classical SMART algorithm, the MOFDP algorithm is imple-
mented in this paper. In this section, we set the probability
that the link level privacy is broken 𝑞 to 0.03 from 0.01.
We compare the percentage that private data is disclosed
in the case of different number of slices 𝐽, the number
of decomposition functions NumFun, and the number of
components of the vector𝑁.

For convenience of comparison, the probability of the
crack function pcf is set to a constant. In this simulation
experiment, pcf takes 0.01.

In the SMART algorithm, 𝐽 stands for data slices, but
only the 𝐽 − 1 data slices are encrypted. In the MOFDP
algorithm, 𝑁 stands for data fragmentation, and all 𝑁 data
slices are encrypted. NumFun stands for function library
capacity. Compare the data exposure rate in the 𝐽 − 1 case of
the SMART algorithm with the𝑁 of the MOFDP algorithm.

When 𝐽 takes 4 in SMART, NumFun takes 3,𝑁 takes up
to 3 in theMOFDP, and the comparison results between them
are shown in Figure 2.

When 𝐽 takes 3 in SMART, NumFun takes 2,𝑁 takes up
to 2 in theMOFDP, and the comparison results between them
are shown in Figure 3.

It is shown that the information exposure rate ofMOFDP
algorithm is obviously lower than that in the SMART algo-
rithmwhen the 𝑞 is greater than 0.022.With the increase of 𝑞,
the gap between the SMART algorithm and the algorithm of
this paper is getting bigger and bigger. With the increase of 𝑞,
the information exposure rate of SMART algorithm increases
greatly, but the information exposure rate of MOFDP algo-
rithm increases slowly. As can be seen from Figure 3, the
number of small pieces of this algorithm in this paper is very
obvious advantages. The probability of information exposure
of MOFDP is very low.The growth rate of SMART algorithm
is raising curve, but the curve about MOFDP algorithm is
very smooth.

7. Conclusions

With the rise of the Internet of things, the privacy protection
of wireless sensor networks has become more important. In
this paper, a multiorder data privacy protection algorithm
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Figure 2: Comparison results when 𝐽 = 4, NumFun = 3,𝑁 = 3.
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Figure 3: Comparison results when 𝐽 = 3, NumFun = 2,𝑁 = 2.

is proposed based on the idea of SMART algorithm. In
this paper, we introduce the interference code protection
and adopt the idea of multiorder fusion to implement our
proposed scheme. We target the difficulty and cost of crack-
ing to improve effective privacy protection. The simulation
results show that the proposed scheme has a better privacy
protection function under low traffic.
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