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We consider the second order system x = f(x) with the Dirichlet boundary conditions x(0) = 0 = x(1), where the vector field
f ∈ 𝐶1(R𝑛,R𝑛) is asymptotically linear and f(0) = 0. We provide the existence andmultiplicity results using the vector field rotation
theory.

1. Introduction

The theory of nonlinear boundary value problems (BVPs in
short) is intensively developed since the first works on calcu-
lus of variations where BVPs naturally appear in a classical
problem of minimizing the integral functional considered
on curves with fixed end points. The Euler equation for the
problems of the calculus of variations can be written in the
form 𝑥 = 𝑓 (𝑡, 𝑥, 𝑥) (1)

and the boundary conditions are𝑥 (𝑎) = 𝐴,𝑥 (𝑏) = 𝐵 (2)

if the problem of fixed end points is considered. Themethods
for investigation of this problem are diverse. For the existence
of a solution, a lot of papers use topological approaches. The
main scheme is the following. Imagine 𝑓 in (1) is continuous
and one is looking for classical (𝑥 ∈ 𝐶2([𝑎, 𝑏])) solution of
the problem. If 𝑓 is bounded, then problem (1) and (2) is
solvable. This is true for scalar and vectorial cases. If 𝑓 is
not bounded, then a priori estimates for a possible solution
should be proved first in order to reduce given problem to
that with bounded nonlinearity. The interested reader may

consult books [1, Ch. 12] and [2–4] for details. We would
like to mention also articles [5–8]. The diverse approaches to
the subject were used in relatively recent contributions to the
theory [9–16].

In all the above-mentioned references, the main question
is about the existence of a solution. The problem of the
uniqueness of a solution is the next important one, especially
for purposes of numerical investigation. It is to be mentioned
that both problems (existence and uniqueness) are closely
related for linear problems. Indeed, the linear problem 𝑥 +𝑘2𝑥 = 0, 𝑥(0) = 𝐴, 𝑥(1) = 𝐵 has at most one solution
for any 𝐴, 𝐵 ∈ R if 𝑘 is not multiple of 𝜋. The condition𝑘 ̸= 0 (mod𝜋) is also sufficient for solvability of the problem
for any 𝐴, 𝐵.

This is not the case for nonlinear problems.The solvability
andmultiplicity of solutionsmay be observed simultaneously.
The problem 𝑥 = −𝑥3, 𝑥(0) = 0, 𝑥(1) = 0 is solvable and
has a countable number of solutions. Another phenomenon
was observed. Consider the problem 𝑥 + 𝑓(𝑥) = 0 together
with Sturm-Liouville boundary conditions 𝑎1𝑥(0)+𝑎2𝑥(0) =0, 𝑏1𝑥(1)−𝑏2𝑥(1) = 0. It is convenient to look at this problem
in a phase plane (𝑥, 𝑥). Suppose that 𝑓(𝑥) ≈ 𝑘2𝑥 at zero and𝑓(𝑥) ≈ 𝑙2𝑥 at infinity, where 𝑘 and 𝑙 are essentially different
constants. Then, the problem generally has multiple solutions
due to the fact that trajectories of solutions of the equation
have essentially different rotation speed near the origin and
at infinity. This is evident geometrically and one of the first
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works employing this type of arguments is in the book [17,
Ch. 15].

When passing to systems of the second-order differential
equations, the analogous approach can be applied. The
geometrical interpretation fails however. One should think of
a substitute for the rotation (angular) speed. It appears that
apparatus of vector fields is good enough. It is possible to
construct special vector fields (based on the formof boundary
conditions and on the behaviour of nonlinearities of a system)
in the vicinity of the origin and “at infinity.” This approach
was applied to study BVPs for a system of the two second-
order nonlinear differential equations in the work [16]. The
considered system was supposed to be asymptotically linear
(of one kind) at zero and quasi-linear (linear plus bounded
nonlinearity) of another kind at infinity. Special vector fields
were considered and the appropriate rotation numbers were
invented.

The current article considers the case of 𝑛 second-order
differential equations. The approach is the same. However,
there is need for employing the respective results concerning
rotation of 𝑛-dimensional vector fields. The main object is
a system of the second-order ordinary differential equations
given together with the Dirichlet type boundary conditions.
The main difference compared with paper [16] is that the
computation of rotation numbers at zero and “at infinity” is
more complicated and uses an advanced technique.

The structure of the work is the following. In Section 2,
the general idea is discussed and useful references and needed
definitions are given. In Section 3, the analysis of the vector
field at zero (i.e., for solutions with small initial values) is
carried out. The similar work is done in Section 4 for the
infinity. Section 5 contains the main result. The example and
the conclusions complete the article.

2. The Vector Field 𝜙 Associated with the
Dirichlet Boundary Value Problem

Consider the system

x = f (x) , (3)

given with the boundary conditions

x (0) = 0 = x (1) (4)

and the initial conditions

x (0) = 0,
x (0) = 𝛽, (5)

where 0 = (0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

)𝑇 ∈ R𝑛.
We suppose that the following conditions are fulfilled.

(A1) f ∈ 𝐶1(R𝑛,R𝑛).
(A2) f(0) = 0, and hence system (3) has the trivial solution

x = 0.

(A3) The vector field f is asymptotically linear; that is, there
exists 𝑛 × 𝑛matrix f(∞) with real entries such that

lim
‖x‖→∞

f (x) − f (∞) x‖x‖ = 0. (6)

The norms are standard everywhere. The matrix f(∞) is
called the derivative of the vector field f at infinity [18].

It follows from the above conditions that

f (x) = f (∞) x + h (x) , ∀x ∈ R𝑛, (7)

where h ∈ 𝐶1(R𝑛,R𝑛), h(0) = 0, and

lim
‖x‖→∞

‖h (x)‖‖x‖ = 0. (8)

It follows from (7) and (8) that the vector field f is asymptot-
ically linear if and only if for any 𝜀 > 0 there exists𝑀(𝜀) > 0
such that ‖h (x)‖ ≤ 𝑀 (𝜀) + 𝜀 ‖x‖ , ∀x ∈ R𝑛. (9)

The asymptotically linear vector field f is linearly bounded.
Indeed, fix 𝜀0 > 0 and consider the corresponding 𝑀0 =𝑀(𝜀0) > 0. Then, it follows from (7) and (9) that‖f (x)‖ ≤ f (∞) ‖x‖ +𝑀0 + 𝜀0 ‖(x)‖= 𝑎1 + 𝑏1 ‖x‖ , ∀x ∈ R𝑛, (10)

where |‖f(∞)‖| = max‖𝛽‖=1‖f(∞)𝛽‖ ≥ 0, 𝑎1 = 𝑀0 > 0, and𝑏1 = |‖f(∞)‖| + 𝜀0 > 0.
Rewrite system (3) in the equivalent form

z = F (z) , (11)

where F(z) = (y, f(x))𝑇, z = (x, y)𝑇 ∈ R𝑁, y = x, and 𝑁 =2𝑛.
Proposition 1. Suppose that conditions (A1), (A2), and (A3)
are fulfilled. Then, the vector field F has the following proper-
ties.

(1) F ∈ 𝐶1(R𝑁,R𝑁).
(2) F(o) = o ∈ R𝑁, where o = (0, 0)𝑇.
(3) The vector field F is asymptotically linear since there

exists𝑁 ×𝑁matrix

F (∞) = ( 𝑂𝑛 𝐼𝑛
f (∞) 𝑂𝑛) , (12)

where 𝐼𝑛 and 𝑂𝑛 are 𝑛 × 𝑛 unity and zero matrices,
respectively, such that

lim
‖z‖𝑁→∞

F (z) − F (∞) z𝑁‖z‖𝑁 = 0. (13)

(4) The vector field F is linearly bounded.
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Proof. (1) and (2) follow from (A1) and (A2).
(3) For every z = (x, y)𝑇 ∈ R𝑁, one has that F(z) =

F(∞)z +H(z), where H(z) = (0,h(x))𝑇. Then, for any 𝜀 > 0
there exists𝑀(𝜀) > 0 such that for every z = (x, y)𝑇 ∈ R𝑁‖H (z)‖𝑁 = ‖h (x)‖ ≤ 𝑀 (𝜀) + 𝜀 ‖x‖ ≤ 𝑀 (𝜀) + 𝜀 ‖z‖𝑁 . (14)

(4) It follows that asymptotic linearity of the vector field F
implies its linear boundedness.

Since the vector field F ∈ 𝐶1(R𝑁,R𝑁) is linearly
bounded, then [19, 20] its flowΦ𝑡(𝛾) = z(𝑡; 𝛾) is complete and
Φ𝑡 ∈ 𝐶1(R𝑁,R𝑁) for any 𝑡 ∈ R, where z(𝑡; 𝛾) is the solution
to the Cauchy problem

z = F (z) ,
z (0) = 𝛾. (15)

Let 𝛾 = (𝛼,𝛽)𝑇 ∈ R𝑁. We consider for our purposes the
restriction of time one flow Φ1|𝛼=0(𝛾) = (x(1;𝛽), x(1;𝛽)),
where x(1;𝛽) is the solution to Cauchy problem (3) and (5).
Denote the first component ofΦ1|𝛼=0 by 𝜙; that is,

𝜙 (𝛽) = x (1;𝛽) , ∀𝛽 ∈ R𝑛. (16)

Then, 𝜙 ∈ 𝐶1(R𝑛,R𝑛). The singular points of the vector field
𝜙 are 𝛽 ∈ R𝑛 such that 𝜙(𝛽) = 0 and they are in one-to-
one correspondence with the solutions to Dirichlet boundary
value problem (3) and (4). It follows from condition (A2)
that 𝜙(0) = 0 and hence the singular point 𝛽 = 0 of the
vector field 𝜙 corresponds to the trivial solution to problem
(3) and (4). Any singular point 𝛽 ̸= 0 of the vector field
𝜙 generates a nontrivial solution to problem (3) and (4). In
what follows, we investigate singular points of the vector field
𝜙 in terms of rotation numbers and provide the conditions
which guarantee the existence of a solution (nontrivial) for
the boundary value problem under consideration.

Consider a bounded open set Ω ⊂ R𝑛. Suppose that the
vector field 𝜙 is nonsingular on the boundary 𝜕Ω; that is,

𝜙 (𝛽) ̸= 0, ∀𝛽 ∈ 𝜕Ω. (17)

Then [21, 22], there is an integer 𝛾(𝜙, Ω), which is associated
with the vector field and called the rotation of the vector field
𝜙 on the boundary 𝜕Ω.

A singular point 𝛽0 ∈ R𝑛 of the vector field 𝜙 is called
isolated [21, 22], if there is neighbourhood 𝐵𝑟(𝛽0) = {‖𝛽 −
𝛽0‖ < 𝑟, 𝛽 ∈ R𝑛} containing no other singular points. In this
case, the rotation 𝛾(𝜙, 𝐵𝑟(𝛽0)) is the same for any sufficiently
small radius 𝑟. This common value ind (𝛽0,𝜙) is called the
index of the isolated singular point 𝛽0 ∈ R𝑛.

If the vector field 𝜙 is nonsingular for all 𝛽 ∈ R𝑛 of
sufficiently large norm, then by definition the point ∞ is
an isolated singular point of 𝜙. In this case, the rotation𝛾(𝜙, 𝐵𝑅(0)) is the same for sufficiently large radius 𝑅. This
common value ind (∞,𝜙) is called the index of the isolated
singular point∞ [21, 22].

3. The Vector Field 𝜙 Near Zero

Suppose that conditions (A1) and (A2) hold. Then, there
exists the derivative f(0) (the Jacobian matrix) of the vector
field f at zero x = 0 and we can consider the linearized system
at zero

u = f (0)u, (18)

the Dirichlet boundary conditions

u (0) = 0 = u (1) , (19)

and the initial conditions

u (0) = 0,
u (0) = 𝛽. (20)

If u(𝑡;𝛽) is a solution to Cauchy problem (18) and (20)
and 𝑃(𝑡) is the solution to the 𝑛 × 𝑛matrix Cauchy problem

𝑃 (𝑡) = f (0) 𝑃 (𝑡) ,𝑃 (0) = 𝑂𝑛,𝑃 (0) = 𝐼𝑛, (21)

then u(𝑡;𝛽) = 𝑃(𝑡)𝛽 for every 𝑡 ∈ R and 𝛽 ∈ R𝑛. Let us define
the linear vector field 𝜙0 : R𝑛 → R𝑛:

𝜙0 (𝛽) = u (1;𝛽) = 𝑃 (1)𝛽, ∀𝛽 ∈ R𝑛. (22)

Hence, 𝜙0(𝛽) = 𝜙0(0) = 𝑃(1) for every 𝛽 ∈ R𝑛.
Let us consider the following condition.

(A4) The linearized system at zero (18) is nonresonant with
respect to boundary conditions (19); that is, linear
homogeneous problem (18) and (19) has only the
trivial solution.

The spectrum 𝜎𝐷 = {−(𝑗𝜋)2 : 𝑗 ∈ N} of the scalar
Dirichlet boundary value problem

𝑥 = 𝜆𝑥,𝑥 (0) = 0 = 𝑥 (1) (23)

consists of all 𝜆 such that boundary value problem (23) has a
nontrivial solution.

Proposition 2. The following statements are equivalent.

(1) Condition (A4) holds.

(2) det𝜙0(0) = det𝑃(1) ̸= 0.
(3) 𝛽 = 0 is the unique singular point of the vector field 𝜙0.

(4) No eigenvalue of matrix f(0) belongs to the spectrum𝜎𝐷 of scalar Dirichlet boundary value problem (23).



4 International Journal of Differential Equations

Proof. The nonzero singular points of the vector field 𝜙0 are
in one-to-one correspondence with the nontrivial solutions
toDirichlet boundary value problem (18) and (19). Hence, the
equivalence (1) ⇔ (2) ⇔ (3) follows from (22).

Let us prove that (2) ⇔ (4).
If 𝐽 is the real Jordan form [23] of matrix f(0), then there

exists a real nonsingular matrix𝑀 such that 𝐽 = 𝑀−1f(0)𝑀.
Cauchy problem (18) and (20) transforms to the Cauchy
problem

k = 𝐽k,
k (0) = 0,
k (0) = 𝜂, (24)

where k = 𝑀−1u and 𝜂 = 𝑀−1𝛽.
If k(𝑡; 𝜂) is the solution to Cauchy problem (24) and 𝑄(𝑡)

is the solution to the 𝑛 × 𝑛matrix Cauchy problem

𝑄 (𝑡) = 𝐽𝑄 (𝑡) ,𝑄 (0) = 𝑂𝑛,𝑄 (0) = 𝐼𝑛,
(25)

then k(𝑡; 𝜂) = 𝑄(𝑡)𝜂 for every 𝑡 ∈ R and 𝜂 ∈ R𝑛. Let us
consider the linear vector field 𝜓0 : R𝑛 → R𝑛 such that

𝜓0 (𝜂) = k (1; 𝜂) = 𝑄 (1) 𝜂, ∀𝜂 ∈ R𝑛. (26)

Hence, 𝜓0(𝜂) = 𝜓0(0) = 𝑄(1) for every 𝜂 ∈ R𝑛.
The Jacobian matrices 𝜙0(𝛽) and 𝜓0(𝜂) are similar.

Indeed, since k(𝑡; 𝜂) = 𝑀−1u(𝑡;𝛽) and 𝜂 = 𝑀−1𝛽, one has
that

𝜙

0 (𝛽) = 𝑀[𝜓0 (𝜂)]𝛽 = 𝑀𝜓0 (𝜂) 𝜂𝛽= 𝑀𝜓0 (𝜂)𝑀−1, (27)

and hence 𝑃(1) = 𝑀𝑄(1)𝑀−1 and det 𝜙0(0) = det𝑃(1) =
det𝑄(1). Next we shall analyze det𝑄(1).

The blocks of the real Jordan form 𝐽 of matrix f(0) are of
two types [23]: a real eigenvalue 𝜆 of matrix f(0) generates

blocks

𝐽𝑘 (𝜆) =((((
(

𝜆 1 0 ⋅ ⋅ ⋅ 0 00 𝜆 1 ⋅ ⋅ ⋅ 0 0... ... ... ⋅ ⋅ ⋅ ... ...0 0 0 ⋅ ⋅ ⋅ 𝜆 10 0 0 ⋅ ⋅ ⋅ 0 𝜆
))))
)

, (28)

where 𝑘 is the size of the block, but a pair 𝜆 = 𝑎 + 𝑖𝑏 and𝜆 = 𝑎− 𝑖𝑏 (𝑏 ̸= 0) of complex conjugate eigenvalues of matrix
f(0) is associated with blocks𝐽𝑘 (𝜆) = 𝐶2𝑚 (𝜆)

=(((
(

𝐶2 (𝜆) 𝐼2 𝑂2 ⋅ ⋅ ⋅ 𝑂2 𝑂2𝑂2 𝐶2 (𝜆) 𝐼2 ⋅ ⋅ ⋅ 𝑂2 𝑂2... ... ... ⋅ ⋅ ⋅ ... ...𝑂2 𝑂2 𝑂2 ⋅ ⋅ ⋅ 𝐶2 (𝜆) 𝐼2𝑂2 𝑂2 𝑂2 ⋅ ⋅ ⋅ 𝑂2 𝐶2 (𝜆)
)))
)

, (29)

where 𝑘 = 2𝑚 is the size of the block and

𝐶2 (𝜆) = (𝑎 −𝑏𝑏 𝑎 ) ,
𝐼2 = (1 00 1) ,
𝑂2 = (0 00 0) .

(30)

Suppose 𝑄𝑘(𝑡) = (𝑞𝑖𝑗(𝑡)) solves the 𝑘 × 𝑘 matrix Cauchy
problem 𝑄𝑘 (𝑡) = 𝐽𝑘 (𝜆)𝑄𝑘 (𝑡) ,𝑄𝑘 (0) = 𝑂𝑘,𝑄𝑘 (0) = 𝐼𝑘. (31)

Let 𝜆 be a real eigenvalue of matrix f(0) and 𝜆 = 𝑟2sgn 𝜆,
where 𝑟 = √|𝜆|. Then [15, 24],

𝑄𝑘 (𝑡) = 𝐼𝑘𝑡 + 13! [𝐽𝑘 (𝜆)] 𝑡3 + 15! [𝐽𝑘 (𝜆)]2 𝑡5+ 17! [𝐽𝑘 (𝜆)]3 𝑡7 + ⋅ ⋅ ⋅+ 1(2𝑗 + 1)! [𝐽𝑘 (𝜆)]𝑗 𝑡2𝑗+1 + ⋅ ⋅ ⋅
= ∞∑
𝑗=0

1(2𝑗 + 1)! [𝐽𝑘 (𝜆)]𝑗 𝑡2𝑗+1.
(32)

Since
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[𝐽𝑘 (𝜆)]𝑗 =(((((
(

𝑟2𝑗 (sgn 𝜆)𝑗 ∗ ∗ ⋅ ⋅ ⋅ ∗ ∗0 𝑟2𝑗 (sgn 𝜆)𝑗 ∗ ⋅ ⋅ ⋅ ∗ ∗... ... ... ⋅ ⋅ ⋅ ... ...0 0 0 ⋅ ⋅ ⋅ 𝑟2𝑗 (sgn 𝜆)𝑗 ∗0 0 0 ⋅ ⋅ ⋅ 0 𝑟2𝑗 (sgn 𝜆)𝑗
)))))
)

(33)

are upper triangular matrices, then matrix 𝑄𝑘(𝑡) is upper
triangular also with the diagonal elements

𝑞 (𝑡) = ∞∑
𝑗=0

1(2𝑗 + 1)! 𝑟2𝑗 (sgn 𝜆)𝑗 𝑡2𝑗+1. (34)

It follows from (31) that function 𝑞(𝑡) = 𝑞𝑘𝑘(𝑡) solves the
Cauchy problem 𝑞 (𝑡) = 𝑟2 sgn 𝜆𝑞 (𝑡) ,𝑞 (0) = 0,𝑞 (0) = 1,

det𝑄𝑘 (1) = [𝑞 (1)]𝑘 .
(35)

(a) If 𝜆 = 0, then the solution to the Cauchy problem𝑞 (𝑡) = 0,𝑞 (0) = 0,𝑞 (0) = 1 (36)

is 𝑞(𝑡) = 𝑡. Hence,
det𝑄𝑘 (1) = [𝑞 (1)]𝑘 = 1𝑘 = 1 > 0. (37)

(b) If 𝜆 = 𝑟2 > 0 (𝑟 > 0), then the solution to the Cauchy
problem 𝑞 (𝑡) = 𝑟2𝑞 (𝑡) ,𝑞 (0) = 0,𝑞 (0) = 1 (38)

is 𝑞(𝑡) = sinh(𝑟𝑡)/𝑟.Hence,
det𝑄𝑘 (1) = [𝑞 (1)]𝑘 = [ sinh 𝑟𝑟 ]𝑘 = sinh𝑘𝑟𝑟𝑘 > 0. (39)

(c) If 𝜆 = −𝑟2 < 0 (𝑟 > 0), then the solution to the Cauchy
problem 𝑞 (𝑡) = −𝑟2𝑞 (𝑡) ,𝑞 (0) = 0,𝑞 (0) = 1 (40)

is 𝑞(𝑡) = sin(𝑟𝑡)/𝑟.Hence,
det𝑄𝑘 (1) = [𝑞 (1)]𝑘 = [ sin 𝑟𝑟 ]𝑘 = sin𝑘𝑟𝑟𝑘 ̸= 0 ⇐⇒ 𝜆∉ 𝜎𝐷. (41)

(d) Suppose 𝜆 = 𝑎+ 𝑖𝑏 and 𝜆 = 𝑎− 𝑖𝑏 (𝑏 ̸= 0) are complex
conjugate eigenvalues of matrix f(0) and 𝐽𝑘(𝜆) = 𝐶2𝑚(𝜆),𝑘 = 2𝑚. Then [15, 24],

𝑄2𝑚 (𝑡) = 𝐼2𝑚𝑡 + 13! [𝐶2𝑚 (𝜆)] 𝑡3 + 15! [𝐶2𝑚 (𝜆)]2 𝑡5+ 17! [𝐶2𝑚 (𝜆)]3 𝑡7 + ⋅ ⋅ ⋅+ 1(2𝑗 + 1)! [𝐶2𝑚 (𝜆)]𝑗 𝑡2𝑗+1 + ⋅ ⋅ ⋅
= ∞∑
𝑗=0

1(2𝑗 + 1)! [𝐶2𝑚 (𝜆)]𝑗 𝑡2𝑗+1.
(42)

The matrices

[𝐽𝑘 (𝜆)]𝑗 = [𝐶2𝑚 (𝜆)]𝑗

=(((((
(

[𝐶2 (𝜆)]𝑗 ∗ ∗ ⋅ ⋅ ⋅ ∗ ∗𝑂2 [𝐶2 (𝜆)]𝑗 ∗ ⋅ ⋅ ⋅ ∗ ∗... ... ... ⋅ ⋅ ⋅ ... ...𝑂2 𝑂2 𝑂2 ⋅ ⋅ ⋅ [𝐶2 (𝜆)]𝑗 ∗𝑂2 𝑂2 𝑂2 ⋅ ⋅ ⋅ 𝑂2 [𝐶2 (𝜆)]𝑗
)))))
)

(43)

are 𝑘 × 𝑘 upper triangular block matrices of 2 × 2 blocks,
[𝐶2 (𝜆)]𝑗 = (𝑎 −𝑏𝑏 𝑎 )𝑗 = (𝜌𝑗 cos 𝑗𝜑 −𝜌𝑗 sin 𝑗𝜑𝜌𝑗 sin 𝑗𝜑 𝜌𝑗 cos 𝑗𝜑 ) , (44)
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where 𝑎 = 𝜌 cos 𝜑 and 𝑏 = 𝜌 sin 𝜑.Then,𝑄2𝑚(𝑡) is 𝑘×𝑘 upper
triangular block matrix of 2 × 2 blocks also with diagonal
blocks

𝐷2 (𝑡) = (𝑢 (𝑡) −V (𝑡)V (𝑡) 𝑢 (𝑡) )
= 𝐼2𝑡 + 13! [𝐶2 (𝜆)] 𝑡3 + 15! [𝐶2 (𝜆)]2 𝑡5+ 17! [𝐶2 (𝜆)]3 𝑡7 + ⋅ ⋅ ⋅+ 1(2𝑗 + 1)! [𝐶2 (𝜆)]𝑗 𝑡2𝑗+1 + ⋅ ⋅ ⋅
= ∞∑
𝑗=0

1(2𝑗 + 1)! [𝐶2 (𝜆)]𝑗 𝑡2𝑗+1,

(45)

where

𝑢 (𝑡) = ∞∑
𝑗=0

𝜌𝑗 cos 𝑗𝜑(2𝑗 + 1)! 𝑡2𝑗+1,
V (𝑡) = ∞∑

𝑗=0

𝜌𝑗 sin 𝑗𝜑(2𝑗 + 1)! 𝑡2𝑗+1.
(46)

It follows from (31) that the matrix

𝐷2 (𝑡) = (𝑢 (𝑡) −V (𝑡)V (𝑡) 𝑢 (𝑡) ) = (𝑞𝑘−1,𝑘−1 (𝑡) 𝑞𝑘−1,𝑘 (𝑡)𝑞𝑘,𝑘−1 (𝑡) 𝑞𝑘,𝑘 (𝑡) ) (47)

solves the matrix Cauchy problem

𝐷2 (𝑡) = 𝐶2 (𝜆)𝐷2 (𝑡) ,𝐷2 (0) = 𝑂2,𝐷2 (0) = 𝐼2 (48)

or

(𝑢 (𝑡) −V (𝑡)
V (𝑡) 𝑢 (𝑡) ) = (𝑎 −𝑏𝑏 𝑎 )(𝑢 (𝑡) −V (𝑡)V (𝑡) 𝑢 (𝑡) ) ,
(𝑢 (0) −V (0)
V (0) 𝑢 (0) ) = (0 00 0) ,

(𝑢 (0) −V (0)
V (0) 𝑢 (0) ) = (1 00 1) .

(49)

Suppose that 𝜆 = 𝑎 + 𝑖𝑏 = 𝜇2 = (𝛼 + 𝑖𝛽)2, where 𝑎 = 𝛼2 − 𝛽2
and 𝑏 = 2𝛼𝛽 ̸= 0 (𝛼 ̸= 0, 𝛽 ̸= 0). Then, functions 𝑢(𝑡) and
V(𝑡) solve the Cauchy problem𝑢 (𝑡) = (𝛼2 − 𝛽2) 𝑢 (𝑡) − (2𝛼𝛽) V (𝑡) ,

V (𝑡) = (2𝛼𝛽) 𝑢 (𝑡) + (𝛼2 − 𝛽2) V (𝑡) ,𝑢 (0) = 0,𝑢 (0) = 1,
V (0) = 0,
V (0) = 0,

(50)

and hence 𝑢 (𝑡) = 1𝛼2 + 𝛽2 [𝛼 sinh (𝛼𝑡) cos (𝛽𝑡)+ 𝛽 cosh (𝛼𝑡) sin (𝛽𝑡)] ,
V (𝑡) = 1𝛼2 + 𝛽2 [𝛼 cosh (𝛼𝑡) sin (𝛽𝑡)− 𝛽 sinh (𝛼𝑡) cos (𝛽𝑡)] .

(51)

Therefore,

det𝐷2 (1) = 𝑢 (1) −V (1)V (1) 𝑢 (1)  = 𝑢2 (1) + V2 (1)
= sinh2𝛼 cos2𝛽 + cosh2𝛼 sin2𝛽𝛼2 + 𝛽2 > 0,

det𝑄2𝑚 (1) = [det𝐷2 (1)]𝑚
= (sinh2𝛼 cos2𝛽 + cosh2𝛼 sin2𝛽)𝑚(𝛼2 + 𝛽2)𝑚 > 0.

(52)

The determinant of 𝑄(1) is equal to the product of
the determinants of the blocks 𝑄𝑘(1) corresponding to the
eigenvalues 𝜆 of matrix f(0). It follows from the above-
mentioned considerations that det 𝜙0(0) = det𝑃(1) =
det𝑄(1) ̸= 0 if and only if the eigenvalues of matrix f(0)
do not belong to the spectrum 𝜎𝐷 = {−(𝑗𝜋)2 : 𝑗 ∈ N} of
scalar Dirichlet boundary value problem (23). Hence, (2) ⇔(4).
Proposition 3. Suppose that condition (A4) holds. If matrix
f(0) does not have negative eigenvalues with odd algebraic
multiplicities, then ind (0,𝜙0) = 1. If matrix f(0) has 𝑘 (1 ≤𝑘 ≤ 𝑛) different negative eigenvalues 𝜆𝑗 (1 ≤ 𝑗 ≤ 𝑘) with odd
algebraic multiplicities, then

ind (0,𝜙0) = sgn det𝜙0 (0) = sgn det𝑃 (1)
= sgn ( 𝑘∏

𝑗=1

sin√𝜆𝑗) . (53)
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Proof. Suppose that condition (A4) holds. It follows from
Proposition 2 that det 𝜙0(0) = det𝑃(1) ̸= 0 and 𝛽 = 0 is the
unique singular point of the vector field 𝜙0. Hence [21, 22],

ind (0,𝜙0) = sgn det𝜙0 (0) = sgn det𝑄 (1) . (54)
The sign of det𝑄(1) is equal to the product of the signs
of det𝑄𝑘(1) for the blocks 𝑄𝑘(1) corresponding to the
eigenvalues 𝜆 of matrix f(0). It follows from the proof of
Proposition 2 that sgn det𝑄𝑘(1) = 1 for the blocks 𝑄𝑘(1)
corresponding to nonnegative and complex eigenvalues 𝜆 of
matrix f(0). Let 𝜆 = −𝑟2 < 0 (𝑟 = √|𝜆|) be a negative
eigenvalue of matrix f(0) with algebraic multiplicity 𝜇 and
geometric multiplicity 𝛾, 1 ≤ 𝛾 ≤ 𝜇 ≤ 𝑛. Then, matrix𝑄(1) has 𝛾 blocks 𝑄𝑘1(1), . . . , 𝑄𝑘𝛾(1) corresponding to the
eigenvalue 𝜆 and

det𝑄𝑘1 (1) ⋅ . . . ⋅ det𝑄𝑘𝛾 (1) = sin𝑘1 𝑟𝑟𝑘1 ⋅ . . . ⋅ sin𝑘𝛾 𝑟𝑟𝑘𝛾
= sin𝑘1+⋅⋅⋅+𝑘𝛾 𝑟𝑟𝑘1+⋅⋅⋅+𝑘𝛾 = sin𝜇 𝑟𝑟𝜇 ̸= 0. (55)

Therefore,
sgn det𝑄𝑘1 (1) ⋅ . . . ⋅ sgn det𝑄𝑘𝛾 (1)
= {{{+1, if 𝜇 is even,

sgn sin√|𝜆|, if 𝜇 is odd. (56)

If matrix f(0) does not have negative eigenvalues with odd
algebraic multiplicities, then ind (0,𝜙0) = 1. If matrix f(0)
has 𝑘 (1 ≤ 𝑘 ≤ 𝑛) different negative eigenvalues 𝜆𝑗 (1 ≤ 𝑗 ≤𝑘)with odd algebraicmultiplicities, then formula (53) is valid.

Theorem 4. Suppose that conditions (A1), (A2), and (A4)
hold. Then, 𝛽 = 0 is an isolated singular point of the vector
field 𝜙 and ind (0,𝜙) = ind (0,𝜙0).
Proof. We already mentioned that the flow Φ𝑡(𝛾) = z(𝑡; 𝛾)
of the vector field F is of class 𝐶1 for every 𝑡 ∈ R, where
z(𝑡; 𝛾) is the solution to Cauchy problem (15). Then, there
exist continuous partial derivatives (𝜕𝑧𝑖/𝜕𝛾𝑗)(𝑡; 𝛾) (𝑖, 𝑗 =1, 2, . . . , 𝑁) for every 𝑡 ∈ R and 𝛾 ∈ R𝑁. Matrix 𝑍(𝑡; 𝛾) =((𝜕𝑧𝑖/𝜕𝛾𝑗)(𝑡; 𝛾)) solves [4, 19] the 𝑁 × 𝑁 matrix Cauchy
problem 𝑍 (𝑡; 𝛾) = F (z (𝑡; 𝛾))𝑍 (𝑡; 𝛾) ,𝑍 (0; 𝛾) = 𝐼𝑁, (57)

where F(z(𝑡; 𝛾)) is the Jacobian matrix of the vector field
F along the solution z(𝑡; 𝛾). One has for 𝛾 = (0,𝛽),
taking into account that z = (x, x), that matrix 𝑋(𝑡;𝛽) =((𝜕𝑥𝑖/𝜕𝛽𝑗)(𝑡;𝛽)) solves the 𝑛 × 𝑛matrix Cauchy problem𝑋 (𝑡;𝛽) = f (x (𝑡;𝛽))𝑋 (𝑡;𝛽) ,𝑋 (0;𝛽) = 𝑂𝑛,𝑋 (0;𝛽) = 𝐼𝑛, (58)

where f(x(𝑡;𝛽)) is the Jacobian matrix of the vector field f
along the solution x(𝑡;𝛽) to Cauchy problem (3) and (5). If
𝛽 = 0, then it follows from condition (A2) that x(𝑡; 0) = 0
and the matrix 𝑋(𝑡; 0) = ((𝜕𝑥𝑖/𝜕𝛽𝑗)(𝑡; 0)) solves the 𝑛 × 𝑛
matrix Cauchy problem𝑋 (𝑡; 0) = f (0)𝑋 (𝑡; 0) ,𝑋 (0; 0) = 𝑂𝑛,𝑋 (0; 0) = 𝐼𝑛. (59)

Uniqueness of solutions to 𝑛×𝑛matrix Cauchy problems (21)
and (59) implies that 𝑋(𝑡; 0) = 𝑃(𝑡) for every 𝑡 ∈ R. Hence,𝑋(1; 0) = 𝑃(1). Notice that 𝑋(1; 0) = ((𝜕𝑥𝑖/𝜕𝛽𝑗)(1; 0)) =
𝜙(0). Therefore, 𝜙(0) = 𝑃(1). Since 𝑃(1) = 𝜙0(0), one
has that 𝜙(0) = 𝜙0(0). It follows from Proposition 2 that
det𝜙(0) = det𝜙0(0) ̸= 0. Hence, [21, 22] 𝛽 = 0 is an isolated
singular point of the vector field 𝜙 and

ind (0,𝜙) = sgn det 𝜙 (0) = sgn det𝜙0 (0)= ind (0,𝜙0) . (60)

4. The Vector Field 𝜙 at Infinity

Suppose that conditions (A1) and (A3) hold. Then, there
exists the derivative f(∞) of the vector field f at infinity and
we can consider the linearized system at infinity

w = f (∞)w, (61)

the Dirichlet boundary conditions

w (0) = 0 = w (1) , (62)

and the initial conditions

w (0) = 0,
w (0) = 𝛽. (63)

If w(𝑡;𝛽) is the solution to Cauchy problem (61) and (63)
and 𝑆(𝑡) is the solution to 𝑛 × 𝑛matrix Cauchy problem𝑆 (𝑡) = f (∞) 𝑆 (𝑡) ,𝑆 (0) = 𝑂𝑛,𝑆 (0) = 𝐼𝑛, (64)

thenw(𝑡;𝛽) = 𝑆(𝑡)𝛽 for every 𝑡 ∈ R and 𝛽 ∈ R𝑛. Let us define
the linear vector field 𝜙∞ : R𝑛 → R𝑛,

𝜙∞ (𝛽) = w (1;𝛽) = 𝑆 (1)𝛽, ∀𝛽 ∈ R𝑛. (65)

Hence, 𝜙∞(𝛽) = 𝜙∞(0) = 𝑆(1) for every 𝛽 ∈ R𝑛.
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Let us consider the following condition.

(A5) The linearized system at infinity (61) is nonresonant
with respect to boundary conditions (62); that is,
linear homogeneous problem (61) and (62) has only
the trivial solution.

Proposition 5. The following statements are equivalent.

(1) Condition (A5) holds.

(2) det𝜙∞(0) = det 𝑆(1) ̸= 0.
(3) 𝛽 = 0 is the unique singular point of the vector field
𝜙∞.

(4) No eigenvalue of the matrix f(∞) belongs to the spec-
trum 𝜎𝐷 of scalar Dirichlet boundary value problem
(23).

Proposition 6. Suppose that condition (A5) holds. If the
matrix f(∞) does not have negative eigenvalues with odd
algebraic multiplicities, then ind (0,𝜙∞) = 1. If the matrix
f(∞) has 𝑠 (1 ≤ 𝑠 ≤ 𝑛) different negative eigenvalues 𝜇𝑖 (1 ≤𝑖 ≤ 𝑠) with odd algebraic multiplicities, then

ind (0,𝜙∞) = sgn det𝜙∞ (0) = sgn det 𝑆 (1)
= sgn ( 𝑠∏

𝑖=1

sin√𝜇𝑖) . (66)

The proofs of Propositions 5 and 6 are analogous to the
proofs of Propositions 2 and 3, respectively.

Theorem 7. Suppose that conditions (A1), (A3), and (A5)
hold. Then, the point ∞ is an isolated singular point of the
vector field 𝜙 and ind (∞,𝜙) = ind (0,𝜙∞).
Proof. First of all, we shall prove that the vector field 𝜙 is
asymptotically linear with the derivative at infinity 𝜙(∞) =
𝜙∞(0) = 𝑆(1). We proceed in the following steps.

Step 1 (auxiliary linear nonhomogeneous initial value prob-
lem). Let us consider the function p(𝑡;𝛽) = (1/‖𝛽‖)x(𝑡;𝛽) −
w(𝑡;𝛽/‖𝛽‖) for every 𝑡 ∈ R and 𝛽 ∈ R𝑛 \ {0}, where x(𝑡;𝛽)
is the solution to Cauchy problem (3) and (5) and w(𝑡;𝛽) is
the solution to Cauchy problem (61) and (63). The function
p(𝑡;𝛽) solves the Cauchy problem

p (𝑡; 𝛽) = f (∞)p (𝑡;𝛽) + g (𝑡;𝛽) ,
p (0;𝛽) = 0,
p (0;𝛽) = 0 (𝛽 ̸= 0) ,

(67)

where g(𝑡;𝛽) = (1/‖𝛽‖)h(x(𝑡;𝛽)) for every 𝑡 ∈ R and 𝛽 ∈
R𝑛 \ {0}. One can find [24, 25] that

p (𝑡;𝛽) = ∞∑
𝑘=0

[f (∞)]𝑘 𝜑2𝑘+1 (𝑡;𝛽) ,
𝜑𝑚 (𝑡;𝛽) = ∫𝑡

0

(𝑡 − 𝜏)𝑚𝑚! g (𝜏;𝛽) 𝑑𝜏,
(𝑚 = 0, 1, 2, . . .) ,

(68)

𝜑

1 (𝑡;𝛽) = 𝜑0 (𝑡;𝛽) ,
𝜑3 (𝑡;𝛽) = 𝜑2 (𝑡;𝛽) ,...
𝜑

5 (𝑡;𝛽) = 𝜑4 (𝑡;𝛽) ,...
𝜑

1 (𝑡;𝛽) = g (𝑡;𝛽) ,
𝜑

3 (𝑡;𝛽) = 𝜑1 (𝑡;𝛽)...
𝜑

5 (𝑡;𝛽) = 𝜑3 (𝑡;𝛽) ,... .

(69)

Step 2 (estimates for ‖𝜑𝑚(1;𝛽)‖ (𝑚 = 0, 1, 2, . . .)). Suppose
𝛽 ̸= 0 and consider

𝜑𝑚 (1;𝛽) = ∫1
0

(𝑡 − 𝜏)𝑚𝑚! g (𝜏;𝛽) 𝑑𝜏
(𝑚 = 0, 1, 2, . . .) . (70)

Taking into account (9) for any 𝜀 > 0, one concludes that there
exists𝑀(𝜀) > 0 such thath (x (𝜏;𝛽)) ≤ 𝑀 (𝜀) + 𝜀 x (𝜏;𝛽) , ∀𝜏 ∈ [0, 1] . (71)

Since 0 ≤ 1 − 𝜏 ≤ 1, one has (1 − 𝜏)𝑚𝑚! g (𝜏;𝛽) = |1 − 𝜏|𝑚𝑚! h (x (𝜏;𝛽))𝛽≤ 1𝑚! 𝛽 h (x (𝜏;𝛽))≤ 1𝑚! 𝛽 (𝑀 (𝜀) + 𝜀 x (𝜏;𝛽)) ,∀𝜏 ∈ [0, 1] .
(72)

In accordance with Proposition 1, the vector field F is asymp-
totically linear, and hence there exist 𝐴, 𝐵 ≥ 0 such that
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‖F(z)‖ ≤ 𝐴+𝐵‖z‖ for every z = (x, y)𝑇 ∈ R𝑁, y = x. Consider
the integral equation z(𝜏; 𝛾) = 𝛾 + ∫𝜏

0
F(z(𝑠; 𝛾))𝑑𝑠 equivalent

to the Cauchy problem z(𝜏; 𝛾) = F(z(𝜏; 𝛾)), z(0; 𝛾) = 𝛾 =(0,𝛽)𝑇. Then,z (𝜏; 𝛾) ≤ 𝛾 + 𝐴𝜏 + 𝐵∫𝜏
0

z (𝑠; 𝛾) 𝑑𝑠. (73)

Using Grönwall’s inequality [20], one has thatz (𝜏; 𝛾) ≤ (𝛾 + 𝐴𝜏) 𝑒𝐵𝜏. (74)

Therefore, z (𝜏; 𝛾) ≤ 𝐴𝑒𝐵 + 𝑒𝐵 𝛾 , ∀𝜏 ∈ [0, 1] . (75)

Since ‖x(𝜏;𝛽)‖ ≤ ‖z(𝜏; 𝛾)‖ and ‖𝛾‖ = ‖𝛽‖, we obtainx (𝜏;𝛽) ≤ 𝐴𝑒𝐵 + 𝑒𝐵 𝛽 , ∀𝜏 ∈ [0, 1] . (76)

It follows from (72) and (76) that (1 − 𝜏)𝑚𝑚! g (𝜏;𝛽) ≤ 𝑀 (𝜀) + 𝜀𝐴𝑒𝐵𝑚! 𝛽 + 𝜀𝑒𝐵𝑚! ,∀𝜏 ∈ [0, 1] . (77)

Therefore, 𝜑𝑚 (1;𝛽) = ∫10 (1 − 𝜏)𝑚𝑚! g (𝜏;𝛽) 𝑑𝜏≤ ∫1
0

 (1 − 𝜏)𝑚𝑚! g (𝜏;𝛽) 𝑑𝜏≤ 𝑀(𝜀) + 𝜀𝐴𝑒𝐵𝑚! 𝛽 + 𝜀𝑒𝐵𝑚! ,𝜑𝑚 (1;𝛽) ≤ 𝑀(𝜀) + 𝜀𝐴𝑒𝐵𝑚! 𝛽 + 𝜀𝑒𝐵𝑚! .
(78)

Step 3. Let us prove that lim‖𝛽‖→∞‖p(1;𝛽)‖ = 0.
(1) Suppose that f(∞) = 𝑂𝑛. It follows from (68) and

(78) thatp (1;𝛽) = 𝜑1 (1;𝛽) ≤ 𝑀 (𝜀) + 𝜀𝐴𝑒𝐵𝛽 + 𝜀𝑒𝐵. (79)

Hence,

lim
‖𝛽‖→∞

p (1;𝛽) ≤ 𝜀𝑒𝐵. (80)

Since 𝜀 > 0 can be arbitrary, lim‖𝛽‖→∞‖p(1;𝛽)‖ = 0.
(2) Suppose thatB = f(∞) ̸= 𝑂𝑛. Then,|‖B‖| = max

‖𝛽‖=1

B𝛽 > 0. (81)

Let us prove that the series ∑∞𝑘=0B𝑘𝜑2𝑘+1(1;𝛽) is absolutely
convergent; that is, the number series ∑∞𝑘=0 ‖B𝑘𝜑2𝑘+1(1;𝛽)‖
is convergent. It follows from (78) thatB𝑘𝜑2𝑘+1 (1;𝛽) ≤ B𝑘 𝜑2𝑘+1 (1;𝛽)

≤ |‖B‖|𝑘(2𝑘 + 1)! (𝑀(𝜀) + 𝜀𝐴𝑒𝐵𝛽 + 𝜀𝑒𝐵) . (82)

The series ∑∞𝑘=0(|‖B‖|𝑘/(2𝑘 + 1)!)((𝑀(𝜀) + 𝜀𝐴𝑒𝐵)/‖𝛽‖ + 𝜀𝑒𝐵)
converges and the sum is

∞∑
𝑘=0

|‖B‖|𝑘(2𝑘 + 1)! (𝑀 (𝜀) + 𝜀𝐴𝑒𝐵𝛽 + 𝜀𝑒𝐵)
= sinh (√|‖B‖|)√|‖B‖| (𝑀 (𝜀) + 𝜀𝐴𝑒𝐵𝛽 + 𝜀𝑒𝐵) . (83)

One can conclude from (82) by using the comparison test that
the number series ∑∞𝑘=0 ‖B𝑘𝜑2𝑘+1(1;𝛽)‖ is convergent also
and the sum is

∞∑
𝑘=0

B𝑘𝜑2𝑘+1 (1;𝛽)
≤ sinh (√|‖B‖|)√|‖B‖| (𝑀 (𝜀) + 𝜀𝐴𝑒𝐵𝛽 + 𝜀𝑒𝐵) . (84)

Hence, the series∑∞𝑘=0B𝑘𝜑2𝑘+1(1;𝛽) is absolutely convergent
andp (1;𝛽) = ∞∑𝑘=0B𝑘𝜑2𝑘+1 (1;𝛽)


≤ ∞∑
𝑘=0

B𝑘𝜑2𝑘+1 (1;𝛽)
≤ sinh (√|‖B‖|)√|‖B‖| (𝑀 (𝜀) + 𝜀𝐴𝑒𝐵𝛽 + 𝜀𝑒𝐵) .

(85)

Therefore, lim‖𝛽‖→∞‖p(1;𝛽)‖ ≤ 𝜀𝑒𝐵(sinh(√|‖B‖|)/√|‖B‖|).
Since 𝜀 > 0 can be chosen arbitrary, one has that
lim‖𝛽‖→∞‖p(1;𝛽)‖ = 0.
Step 4 (asymptotic linearity of the vector field 𝜙). If 𝛽 ̸= 0,
then𝜙 (𝛽) − 𝜙∞ (𝛽) = x (1;𝛽) − w (1;𝛽)= x (1;𝛽) − 𝑆 (1)𝛽= x (1;𝛽) − 𝛽 𝑆 (1) 𝛽𝛽= x (1;𝛽) − 𝛽w(1; 𝛽𝛽)= 𝛽  1𝛽x (1;𝛽) − w(1; 𝛽𝛽)= 𝛽 p (1;𝛽) .

(86)
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Hence, 𝜙 (𝛽) − 𝜙∞ (𝛽)𝛽 = 𝜙 (𝛽) − 𝜙∞ (0)𝛽𝛽= p (1;𝛽) . (87)

Since lim‖𝛽‖→∞‖p(1;𝛽)‖ = 0,
lim
‖𝛽‖→∞

𝜙 (𝛽) − 𝜙∞ (0)𝛽𝛽 = 0; (88)

that is, the vector field 𝜙 is asymptotically linear with the
derivative at infinity 𝜙(∞) = 𝜙∞(0). It follows from
Proposition 5 that det𝜙(∞) = det𝜙∞(0) ̸= 0. Hence
[21, 22], the point∞ is an isolated singular point of the vector
field 𝜙 and

ind (∞,𝜙) = sgn det𝜙 (∞) = sgn det𝜙∞ (0)= ind (0,𝜙∞) . (89)

5. The Main Theorem

Let us recall that the singular points of the vector field 𝜙
are in one-to-one correspondence with solutions to Dirichlet
boundary value problem (3) and (4). A solution x(𝑡;𝛽) of
problem (3) and (4) is called nondegenerate, if the singular
point 𝛽 of the vector field 𝜙 is nondegenerate; that is,
det𝜙(𝛽) ̸= 0.
Theorem 8. Suppose that conditions (A1) to (A5) hold. Then,
the points𝛽 = 0 and∞ are isolated singular points of the vector
field 𝜙.

(a) If ind (0,𝜙) ̸= ind (∞,𝜙), then boundary value
problem (3) and (4) has a nontrivial solution.

(b) If ind (0,𝜙) ̸= ind (∞,𝜙) and boundary value problem
(3) and (4) has a nontrivial nondegenerate solution,
then there exists yet another nontrivial solution to
problem (3) and (4).

Proof. (a) It follows from Theorems 4 and 7 that the points
𝛽 = 0 and∞ are isolated singular points of the vector field
𝜙. Hence, one can find positive 𝑟, 𝑅 such that 𝑟 < 𝑅 and the
sets 𝐵𝑟 (0) \ {0} = {0 < 𝛽 ≤ 𝑟, 𝛽 ∈ R𝑛} ,𝐵𝑅 (∞) = {𝛽 ≥ 𝑅, 𝛽 ∈ R𝑛} (90)

contain no singular points of the vector field 𝜙. The vector
field 𝜙 is nonsingular on the spheres 𝑆𝑟(0) = 𝜕𝐵𝑟(0) and𝑆𝑅(0) = 𝜕𝐵𝑅(0) and the rotations on these spheres are
different: 𝛾 (𝜙, 𝐵𝑟 (0)) = ind (0,𝜙) ̸= ind (∞,𝜙)= 𝛾 (𝜙, 𝐵𝑅 (0)) . (91)

Using [22, Theorem 2], one can conclude that the 𝑛-
dimensional annulus

Ann (𝑟, 𝑅) = {𝑟 < 𝛽 < 𝑅, 𝛽 ∈ R𝑛} (92)

contains a singular point 𝛽0 ̸= 0 of the vector field 𝜙, which
generates a nontrivial solution to Dirichlet boundary value
problem (3) and (4).

(b) Let ind (0,𝜙) ̸= ind (∞,𝜙) and suppose x(𝑡;𝛽0)
is a nontrivial nondegenerate solution to boundary value
problem (3) and (4), or equivalently 𝛽0 ∈ R𝑛 is a nonzero
nondegenerate singular point of the vector field 𝜙. Then
[21, 22], ind (𝛽0,𝜙) = sgn det𝜙(𝛽0) ∈ {−1, 1}. Suppose
the contrary that x(𝑡;𝛽0) is the unique nontrivial solution to
boundary value problem (3) and (4) or equivalently 𝛽0 is the
unique singular point of the vector field 𝜙 in the set R𝑛 \ {0}.
Hence [21, 22],

ind (∞,𝜙) = ind (0,𝜙) + ind (𝛽0,𝜙) . (93)

If ind (∞,𝜙) = 1 and ind (0,𝜙) = −1, then ind (𝛽0,𝜙) =
ind (∞,𝜙) − ind (0,𝜙) = 1 − (−1) = 2. If ind (∞,𝜙) = −1 and
ind (0,𝜙) = 1, then ind (𝛽0,𝜙) = ind (∞,𝜙) − ind (0,𝜙) =−1 − 1 = −2. The contradiction proves that there exists a
singular point 𝛽1 ∈ R𝑛 \ {0} of the vector field 𝜙 such that
𝛽1 ̸= 𝛽0 or equivalently that there exists a solution x(𝑡;𝛽1) to
boundary value problem (3) and (4), which is different from
x(𝑡;𝛽0).
Remark 9. The practical implementation of Theorem 8 is
based on Propositions 3 and 6 and Theorems 4 and 7. Firstly
the eigenvalues of the matrices f(0) and f(∞) must be
calculated. If the eigenvalues do not belong to spectrum𝜎𝐷 = {−(𝑗𝜋)2 : 𝑗 ∈ N} of scalar Dirichlet boundary value
problem (23), then the indices ind (0,𝜙) and ind (∞,𝜙)must
be calculated accordingly with Propositions 3 and 6. If these
indices are different, then Theorem 8 is applicable and the
existence of a nontrivial solution to boundary value problem
(3) and (4) can be concluded.

Remark 10. Suppose that conditions (A1) to (A5) hold and
ind (0,𝜙) ̸= ind (∞,𝜙). If boundary value problem (3) and
(4) has an odd number of nontrivial nondegenerate solutions
x(𝑡;𝛽𝑖) (𝑖 = 0, 1, . . . , 2𝑘), where 𝛽𝑖 ̸= 0 and det𝜙(𝛽𝑖) ̸=0 (𝑖 = 0, 1, . . . , 2𝑘), then there exists yet another nontrivial
solution to problem (3) and (4). Suppose the contrary that the
set R𝑛 \ {0} contains only an odd number of singular points
𝛽𝑖 (𝑖 = 0, 1, . . . , 2𝑘) of the vector field 𝜙 and these points
are nondegenerate. Then [21, 22], ind (∞,𝜙) − ind (0,𝜙) =∑2𝑘𝑖=0 ind (𝛽𝑖,𝜙), where the left hand side is equal to ±2, but
the right hand side is odd.

6. Example

Consider the system𝑥1 = −𝑘2arctan (𝑥1 + 𝑥2) ,𝑥2 = −𝑚2arctan (𝑥1 − 𝑥2) , (94)
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where 𝑘 and 𝑚 are nonzero integers, together with the
boundary conditions𝑥1 (0) = 𝑥2 (0) = 0 = 𝑥1 (1) = 𝑥2 (1) . (95)

Consider the vector field f : R2 → R2:

f (x)= (−𝑘2arctan (𝑥1 + 𝑥2) , − 𝑚2arctan (𝑥1 − 𝑥2))𝑇 ,∀x = (𝑥1, 𝑥2)𝑇 ∈ R2.
(96)

Obviously conditions (A1) and (A2) are fulfilled. Due to
the boundedness of arctan function, the vector field f is
asymptotically linear and f(∞) = 𝑂2, and hence condition
(A3) is fulfilled also.

Matrix f(∞) has the only eigenvalue 𝜇 = 0 ∉ 𝜎𝐷, and
hence matrix f(∞) does not have negative eigenvalues with
odd algebraicmultiplicities. It follows fromProposition 6 and
Theorem 7 that ind (∞,𝜙) = 1.

The matrix f(0) = ( −𝑘2 −𝑘2
−𝑚2 𝑚2

) has the characteristic
equation 𝑝 (𝜆) = 𝜆2 − (𝑚2 − 𝑘2) 𝜆 − 2𝑘2𝑚2 = 0 (97)

and the eigenvalues are

𝜆1,2 = 𝑚2 − 𝑘22 ± √(𝑘2 + 𝑚2)2 + 4𝑘2𝑚22 . (98)

Since √(𝑘2 + 𝑚2)2 + 4𝑘2𝑚2 > 𝑘2 + 𝑚2 > 𝑚2 − 𝑘2, one has
that 𝜆1 > 0 and 𝜆2 < 0. Obviously 𝜆1 ∉ 𝜎𝐷 = {−(𝑗𝜋)2 :𝑗 ∈ N}. Note that 𝜆2 ∉ 𝜎𝐷 also since 𝜆2 is an algebraic
number (𝜆2 is the root of the characteristic polynomial𝑝(𝜆) with rational coefficients), but the spectrum 𝜎𝐷 consists
of the transcendental numbers (the product −(𝑗𝜋)2 of the
algebraic number −𝑗2 with the transcendental number 𝜋2
is transcendental number). Theorem 8 is applicable, taking
into account Proposition 3 and Theorem 4, if ind (0,𝜙) =
sgn sin√|𝜆2| = −1. Hence, Theorem 8 guarantees the
existence of a nontrivial solution to boundary value problem
(94) and (95) for all nonzero integers 𝑘 and𝑚 such that

sin√√(𝑘2 + 𝑚2)2 + 4𝑘2𝑚22 − 𝑚2 − 𝑘22 < 0. (99)

The pairs (𝑘, 𝑚) (1 ≤ 𝑘,𝑚 ≤ 10) with integer coordinates
which satisfy condition (99) are depicted in Figure 1.

7. Conclusions

For an asymptotically linear system of 𝑛 the second-order
ordinary differential equations that are assumed to have the
trivial solution to the conditions for existence of nontrivial
solutions of the Dirichlet boundary value problem are given.
The technique and concepts of the theory of rotation of 𝑛-
dimensional vector fields are used. The existence conditions
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Figure 1:The points (𝑘,𝑚) (1 ≤ 𝑘,𝑚 ≤ 10)with integer coordinates
such that 𝑘 and𝑚 satisfy condition (99).

are formulated in terms of eigenvalues of coefficient matrices
of linearized systems at zero (at the trivial solution) and at
infinity. The proposed approach is applicable to other two-
point boundary conditions such as the Neumann problem
and mixed problem.
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