View metadata, citation and similar papers at core.ac.uk

Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2016, Article ID 5676217, 12 pages
http://dx.doi.org/10.1155/2016/5676217

Research Article

brought to you by .{ CORE

provided by Crossref

Hindawi

Dirichlet Boundary Value Problem for the Second Order

Asymptotically Linear System

A. Gritsans,' F. Sadyrbaev,"” and I. Yermachenko'

!Institute of Life Sciences and Technologies, Daugavpils University, Parades iela 1°, Daugavpils LV-5400, Latvia
*Institute of Mathematics and Computer Science, University of Latvia, Raina bulv. 29, Riga LV-1459, Latvia

Correspondence should be addressed to A. Gritsans; arminge@inbox.lv

Received 27 July 2016; Accepted 5 October 2016

Academic Editor: Qingkai Kong

Copyright © 2016 A. Gritsans et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider the second order system x"" = f(x) with the Dirichlet boundary conditions x(0) = 0 = x(1), where the vector field
f € C'(R", R") is asymptotically linear and f(0) = 0. We provide the existence and multiplicity results using the vector field rotation

theory.

1. Introduction

The theory of nonlinear boundary value problems (BVPs in
short) is intensively developed since the first works on calcu-
lus of variations where BVPs naturally appear in a classical
problem of minimizing the integral functional considered
on curves with fixed end points. The Euler equation for the
problems of the calculus of variations can be written in the
form

= f (t, X, x') ¢))
and the boundary conditions are
x(a) = A,
)
x(b)=B

if the problem of fixed end points is considered. The methods
for investigation of this problem are diverse. For the existence
of a solution, a lot of papers use topological approaches. The
main scheme is the following. Imagine f in (1) is continuous
and one is looking for classical (x € C?([a, b))) solution of
the problem. If f is bounded, then problem (1) and (2) is
solvable. This is true for scalar and vectorial cases. If f is
not bounded, then a priori estimates for a possible solution
should be proved first in order to reduce given problem to
that with bounded nonlinearity. The interested reader may

consult books [I, Ch. 12] and [2-4] for details. We would
like to mention also articles [5-8]. The diverse approaches to
the subject were used in relatively recent contributions to the
theory [9-16].

In all the above-mentioned references, the main question
is about the existence of a solution. The problem of the
uniqueness of a solution is the next important one, especially
for purposes of numerical investigation. It is to be mentioned
that both problems (existence and uniqueness) are closely
related for linear problems. Indeed, the linear problem x” +
k*x = 0,x(0) = A,x(1) = B has at most one solution
for any A,B € R if k is not multiple of 7. The condition
k # 0 (mod ) is also sufficient for solvability of the problem
for any A, B.

This is not the case for nonlinear problems. The solvability
and multiplicity of solutions may be observed simultaneously.
The problem x" = =x°, x(0) = 0,x(1) = 0 is solvable and
has a countable number of solutions. Another phenomenon
was observed. Consider the problem x” + f(x) = 0 together
with Sturm-Liouville boundary conditions a, x(0) +a2x'(0) =
0,b,x(1) —bzx'(l) = 0. Itis convenient to look at this problem
in a phase plane (x, x"). Suppose that f(x) = k®x at zero and
f(x) = I*x at infinity, where k and [ are essentially different
constants. Then, the problem generally has multiple solutions
due to the fact that trajectories of solutions of the equation
have essentially different rotation speed near the origin and
at infinity. This is evident geometrically and one of the first
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works employing this type of arguments is in the book [17,
Ch. 15].

When passing to systems of the second-order differential
equations, the analogous approach can be applied. The
geometrical interpretation fails however. One should think of
a substitute for the rotation (angular) speed. It appears that
apparatus of vector fields is good enough. It is possible to
construct special vector fields (based on the form of boundary
conditions and on the behaviour of nonlinearities of a system)
in the vicinity of the origin and “at infinity.” This approach
was applied to study BVPs for a system of the two second-
order nonlinear differential equations in the work [16]. The
considered system was supposed to be asymptotically linear
(of one kind) at zero and quasi-linear (linear plus bounded
nonlinearity) of another kind at infinity. Special vector fields
were considered and the appropriate rotation numbers were
invented.

The current article considers the case of n second-order
differential equations. The approach is the same. However,
there is need for employing the respective results concerning
rotation of n-dimensional vector fields. The main object is
a system of the second-order ordinary differential equations
given together with the Dirichlet type boundary conditions.
The main difference compared with paper [16] is that the
computation of rotation numbers at zero and “at infinity” is
more complicated and uses an advanced technique.

The structure of the work is the following. In Section 2,
the general idea is discussed and useful references and needed
definitions are given. In Section 3, the analysis of the vector
field at zero (i.e., for solutions with small initial values) is
carried out. The similar work is done in Section 4 for the
infinity. Section 5 contains the main result. The example and
the conclusions complete the article.

2. The Vector Field ¢ Associated with the
Dirichlet Boundary Value Problem

Consider the system
X' =f(x), 3)
given with the boundary conditions
x(0)=0=x(1) (4)
and the initial conditions
x(0) =0,
, (5)
X (0) = ﬁr

where 0 = (0,0,...,0)" € R".
We suppose that the following conditions are fulfilled.
(AD) f € CHR",R™).

(A2) £(0) = 0, and hence system (3) has the trivial solution
x=0.
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(A3) The vector field f is asymptotically linear; that is, there
exists n X n matrix f' (co) with real entries such that

LR A GOL

x| —c0 [Ix|]

(6)

The norms are standard everywhere. The matrix f'(c0) is
called the derivative of the vector field f at infinity [18].
It follows from the above conditions that

f(x)=f (co)x+h(x), VxeR" (7)
where h € C'(R", R"), h(0) = 0, and
Il _

Ixl—co |||

(8)

It follows from (7) and (8) that the vector field f is asymptot-
ically linear if and only if for any € > 0 there exists M(e) > 0
such that

[h(X)[| < M (e) +e|x]|, VxeR" 9)

The asymptotically linear vector field f is linearly bounded.
Indeed, fix g, > 0 and consider the corresponding M, =
M(gy) > 0. Then, it follows from (7) and (9) that

I GOl < || (co)||| Ixll + My + & )]

=a, +b x|, VxeR",

where [|[f' (c0)||| = max”ﬁ":lllf'(oo)ﬁll >0,a, = M, > 0,and
b, = [If' (c0)l] + &5 > 0.
Rewrite system (3) in the equivalent form

7 =F(z), (1)

where F(z) = (y, fx),z = (x, y)T e RY, y = x,and N =
2n.

Proposition 1. Suppose that conditions (Al), (A2), and (A3)
are fulfilled. Then, the vector field F has the following proper-
ties.

(1) F € C'(RY,RY).
(2) F(0) = 0 € RN, where 0 = (0,0)".

(3) The vector field F is asymptotically linear since there
exists N X N matrix

! On In
F' (00) = (f, (o) On>’ (12)

where 1, and O,, are n x n unity and zero matrices,
respectively, such that

|F @) - F (002 , _

Izll 5

(13)

llzlly—00

(4) The vector field F is linearly bounded.
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Proof. (1) and (2) follow from (A1) and (A2).

(3) For every z = (x,y)T € RY, one has that F(z) =
F'(00)z + H(z), where H(z) = (0, h(x))”. Then, for any € > 0
there exists M(e) > 0 such that for every z = (x, y)T e RN

H(2)lly = hx)]| < M (e) + ellxl| < M (e) +ellzl - (14)

(4) It follows that asymptotic linearity of the vector field F
implies its linear boundedness. O

Since the vector field F ¢ CYRM,RY) is linearly
bounded, then [19, 20] its flow ®'(p) = z(t; p) is complete and
@' e CHRY,RN) for any t € R, where z(t;p) is the solution
to the Cauchy problem

7 =F(z),

z(0) =y.

(15)

Let y = (& B) € RYN. We consider for our purposes the
restriction of time one flow d)llazo(y) = (x(l;ﬁ),x’(l;ﬁ)),
where x(1; ) is the solution to Cauchy problem (3) and (5).
Denote the first component of ®'|,_, by ¢; that is,

¢(B) =x(1:B), VBeR" (16)

Then, ¢ € C'(R",R"). The singular points of the vector field
¢ are B € R" such that ¢(B) = 0 and they are in one-to-
one correspondence with the solutions to Dirichlet boundary
value problem (3) and (4). It follows from condition (A2)
that ¢(0) = 0 and hence the singular point § = 0 of the
vector field ¢ corresponds to the trivial solution to problem
(3) and (4). Any singular point B # 0 of the vector field
¢ generates a nontrivial solution to problem (3) and (4). In
what follows, we investigate singular points of the vector field
¢ in terms of rotation numbers and provide the conditions
which guarantee the existence of a solution (nontrivial) for
the boundary value problem under consideration.

Consider a bounded open set Q ¢ R". Suppose that the
vector field ¢ is nonsingular on the boundary 0Q); that is,

¢ (B)+0, VBeoQ. (17)

Then [21, 22], there is an integer y(¢, 2), which is associated
with the vector field and called the rotation of the vector field
¢ on the boundary 0Q.

A singular point B, € R" of the vector field ¢ is called
isolated [21, 22], if there is neighbourhood B,.(B,) = {lIB -
Boll < r, B € R"} containing no other singular points. In this
case, the rotation y(¢, B,(f3,)) is the same for any sufficiently
small radius 7. This common value ind (f,,¢) is called the
index of the isolated singular point B, € R".

If the vector field ¢ is nonsingular for all B € R" of
sufficiently large norm, then by definition the point co is
an isolated singular point of ¢. In this case, the rotation
y(¢, Bx(0)) is the same for sufficiently large radius R. This
common value ind (0o, ¢) is called the index of the isolated
singular point co [21, 22].

3. The Vector Field ¢ Near Zero

Suppose that conditions (Al) and (A2) hold. Then, there
exists the derivative f'(0) (the Jacobian matrix) of the vector
field f at zero x = 0 and we can consider the linearized system
at zero

u' =f (0)u, (18)
the Dirichlet boundary conditions
u(0)=0=u(l), (19)
and the initial conditions
u(0) =0,
, (20)
u (0)=p.

If u(t; B) is a solution to Cauchy problem (18) and (20)
and P(t) is the solution to the n x n matrix Cauchy problem

Pt =f (0P,
P(0)=0,, (21)
P'(0) =1,

then u(t; B) = P(t)B foreveryt € Rand B € R". Let us define
the linear vector field ¢, : R" — R™:

¢ (B)=u(;B)=P(1)B, YBeR" (22)

Hence, ¢g(ﬂ) = (/)8(0) = P(1) for every 8 € R".
Let us consider the following condition.

(A4) The linearized system at zero (18) is nonresonant with
respect to boundary conditions (19); that is, linear
homogeneous problem (18) and (19) has only the
trivial solution.

The spectrum o, = {—(j7'r)2 :
Dirichlet boundary value problem

j € N} of the scalar

x" = Ax,
(23)
x(0)=0=x(1)

consists of all A such that boundary value problem (23) has a
nontrivial solution.

Proposition 2. The following statements are equivalent.
(1) Condition (A4) holds.
(2) det ¢y (0) = det P(1) # 0.
(3) B = 0 is the unique singular point of the vector field ¢,,.

(4) No eigenvalue of matrix £'(0) belongs to the spectrum
op, of scalar Dirichlet boundary value problem (23).



Proof. The nonzero singular points of the vector field ¢, are
in one-to-one correspondence with the nontrivial solutions
to Dirichlet boundary value problem (18) and (19). Hence, the
equivalence (1) & (2) & (3) follows from (22).

Let us prove that (2) & (4).

If J is the real Jordan form [23] of matrix f'(0), then there
exists a real nonsingular matrix M such that ] = M ' (0)M.
Cauchy problem (18) and (20) transforms to the Cauchy
problem

VII = Jv,
v(0) =0, (24)
v (0) =1,

wherev = M 'uandy = M™'B.
If v(t; i) is the solution to Cauchy problem (24) and Q(t)
is the solution to the # x n matrix Cauchy problem

Q" (t)=7]Q(),
Q(0) =0,, (25)

Q) =1,

then v(t;n) = Q(f)n for every t € R and € R". Let us
consider the linear vector field v, : R" — R” such that

v, (n) =v(Ln) =Q()y, VneR" (26)

Hence, 1[/5(11) = 1//8(0) = Q(1) for every 5 € R".

The Jacobian matrices (/){)(ﬁ) and 1[/(')(11) are similar.
Indeed, since v(t;17) = M 'u(t; ) and n = M™', one has
that

$o (B) = M [y, (m)]}; = My, ()
(27)

= My (n) M,

and hence P(1) = MQ(1)M™! and det(/)(')(O) = detP(1) =
det Q(1). Next we shall analyze det Q(1).

The blocks of the real Jordan form J of matrix f' (0) are of
two types [23]: a real eigenvalue A of matrix f'(0) generates
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blocks
A10--00

0A1:-00

BeW=1 0| (28)
000+ A1
00004

where k is the size of the block, but a pair A = a + ib and

A =a—ib (b # 0) of complex conjugate eigenvalues of matrix
£'(0) is associated with blocks

Je D) = Cy (M)

;AN I, O, 0, O
o, C,W I, -~ 0, O
(29)
0, O, 0O, C) I
0, O, O, 0, C)

where k = 2m is the size of the block and

a -b
Cz(}t):<b a)’
10
12:<0 1)’ (30)
0. - 00
2_<0 0)'

Suppose Qi (t) = (g;;()) solves the k x k matrix Cauchy
problem

Qi (1) = T, (M) Q, (),
Qi (0) = O, (31
Q (0) = .
Let A be a real eigenvalue of matrix f'(0) and A = r2sgn A,
where r = \/[A|. Then [15, 24],
Q) =Lt+ % [, W] £ + % e W] £

1
o @+

1 (32)

S U

< 1

=Z(2j+1)!

j=0

e W) 27,

Since
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% (sgn 1)’ *

0 % (sgn A

AN

are upper triangular matrices, then matrix Q.(¢) is upper
triangular also with the diagonal elements

q(t) = Zmﬂ (sgn A)j Al (34)
=0 :

It follows from (31) that function q(t) = g (t) solves the
Cauchy problem

q” t) =1 sgnAq (t),
q(0) =0,

35
L =1 (35)

detQ, (1) = [q(1)]".
(a) If A = 0, then the solution to the Cauchy problem
q' =0,
q(0) =0, (36)
g0 =1
is q(t) = t. Hence,
detQ. (1) = [q()] =1 =1>0. (37)

(b)IfA =% > 0 (r > 0), then the solution to the Cauchy
problem

q' ) =r'q@),
q0) =1
is q(t) = sinh(rt)/r. Hence,

sinh*r

— >0. (39

. k
detQ, (1) = [q(l)]k _ [smhr] _

7

(c)IfA = —r? < 0 (r > 0), then the solution to the Cauchy
problem

q" () =-q@),

q0)=1

5
* * *
* * *
(33)
0 - 7% (sgn)t)j *
0 --- 0 7% (sgn 1)’
is q(t) = sin(rt)/r. Hence,
detQ, (1) = [q(1)]F = [ﬂ]k _sin'r Lo
R r - (41)

¢ op.

(d) Suppose A = a+iband A=a—ib(b+0)are complex
conjugate eigenvalues of matrix £'(0) and J,(A) = C,,,(A),
k = 2m. Then [15, 24],

Q,, (1) =Lt + % [Cp W] £ + $ [Cy V] £

1
to [Con W]+

1 J2j+l (42)
+ (2j+ 1)! [CZm (/\)] t +
=§ L__1c,, W],
Sej+1)
The matrices
Ue WY = [Co WY
[C2 ()L)]j * % eee * *
o) GO + - o« %
b [C, W] (43)
0, 0, O, - [Cz (A)]j *
0, 0, 0, 0, [WwY

are k x k upper triangular block matrices of 2 x 2 blocks,

. a—bj S cos i@ —p’sin i
[CZ(A)]J=( ): preost PSR gy
b oa psinjo  p’cos jp



wherea = pcos@and b = psin ¢. Then, Q,,,(¢) is k x k upper
triangular block matrix of 2 x 2 blocks also with diagonal
blocks

(4 0
Z(t)_<v(t) u(t))

=Lt [Cz()t)]t +—[Cz(/\)]

b (GO 4o (15)

+ m [C2 (A)]szﬁ-l +

_ OZO: C2 ()t)]] 2]+1

j= O

where

Pl cos jp )i
ult) = z(2J+1 .

(46)

p’ sin jo i+l
v(t) = Z(z]+1)' )

It follows from (31) that the matrix

D, (t) = (“(t) _V(t)> _ (qk—l,k—l ®) Gr-1k (t)) )
v() u®) Gepr O Gk (1)

solves the matrix Cauchy problem

D} (t)=C,(\) D, (1),
D, (0) = O,, (48)
D, (0) =1,

or
W) =V @) ~ (a —b) (u(t) —v(t))

Vo o) \boa)\ve) uw )
u(0) —v(0) ~ 00

(v(O) u(0) ) B (o 0

u' (0) —v' (0) _(1 0
V) 40 ) \o1

, (49)

)
)

International Journal of Differential Equations

Suppose that A = a + ib = u* = (« + iB)*, where a = o — 8
and b = 2af3 # 0 (o # 0, B # 0). Then, functions u(t) and
v(t) solve the Cauchy problem

u" () = (o - B2 u(t) - Qap)v (D),

V' () = Qap)u ) + (o - B)v(D),

u(0) =0, (50)

' (0)=1,
v(0) =0,
v (0) =
and hence

u(t) = [a sinh (act) cos (Bt)

1
e
+ B cosh (at) sin (Bt)],

(51)

v(t) = [« cosh (at) sin (Bt)

1
peay
— Bsinh (at) cos (Bt)] .
Therefore,

u(l) -v@ )

detD, (1) = () u()

u’ (1) +v* (1)

sinh®a cos? 8 + cosh®a sin? 3
o + 2 ’ (52)
[det D, (1)]™

detQ,,, (1) =

. . m
(smhzoc cos’ 8 + cosh’a sin’ ﬁ)
= > 0.

@ P

The determinant of Q(1) is equal to the product of
the determinants of the blocks Q. (1) corresponding to the
eigenvalues A of matrix £'(0). It follows from the above-
mentioned considerations that det ¢8(0) = detP(1) =
detQ(1) # 0 if and only if the eigenvalues of matrix £f'(0)
do not belong to the spectrum o, = {—(jrr)2 : j € N} of
scalar Dirichlet boundary value problem (23). Hence, (2) &
(4). ([

Proposition 3. Suppose that condition (A4) holds. If matrix
£'(0) does not have negative eigenvalues with odd algebraic
multiplicities, then ind (0, ¢,) = 1. If matrix £'(0) has k (1 <
k < n) different negative eigenvalues A ; (1 < j < k) with odd
algebraic multiplicities, then

ind (0, ¢,) = sgn det ¢ (0) = sgn det P (1)

(53)
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Proof. Suppose that condition (A4) holds. It follows from
Proposition 2 that det ¢6(0) = detP(1) # 0O and B = 0 is the
unique singular point of the vector field ¢,. Hence [21, 22],

ind (0, ¢,) = sgn det ¢, (0) = sgn det Q (1). (54)

The sign of detQ(1) is equal to the product of the signs
of detQ.(1) for the blocks Qi(1) corresponding to the
eigenvalues A of matrix £'(0). 1t follows from the proof of
Proposition 2 that sgndetQ,(1) = 1 for the blocks Qu(1)
corresponding to nonnegative and complex eigenvalues A of
matrix f'(0). Let A = —r* < 0 (r = +/J]A]) be a negative
eigenvalue of matrix f'(0) with algebraic multiplicity  and
geometric multiplicity y, 1 < y < p < n. Then, matrix
Q(1) has y blocks le(l),...,Qky(l) corresponding to the
eigenvalue A and

k k

sin™! r sin™r r
detle (1)detQky (1): rkl rk'y
(55)
B sinfr Ry g _sinf r
phittk, T g
Therefore,
sgn det Q, (1)-...-sgn detQkY (1)

if u is even, (56)

+1,
B sgnsin \/|]A|, if y is odd.

If matrix f'(0) does not have negative eigenvalues with odd
algebraic multiplicities, then ind (0, ¢,) = 1. If matrix £'(0)
has k (1 < k < n) different negative eigenvalues A; (1 < j <
k) with odd algebraic multiplicities, then formula (53) is valid.

O

Theorem 4. Suppose that conditions (Al), (A2), and (A4)
hold. Then, B = 0 is an isolated singular point of the vector
field ¢ and ind (0, ¢) = ind (0, ¢).

Proof. We already mentioned that the flow ®'(y) = z(t;y)
of the vector field F is of class C' for every t € R, where
z(t;p) is the solution to Cauchy problem (15). Then, there
exist continuous partial derivatives (Bz,-/ayj)(t; y) (,j =
1,2,...,N) forevery t € Randy € RY. Matrix Z(t;y) =
((Bzi/ayj)(t; y)) solves [4, 19] the N x N matrix Cauchy
problem

Z'(5y) = F (2(t:7) Z (57),
zZ (0§ Y) =1Iy

where F'(z(t; 7)) is the Jacobian matrix of the vector field
F along the solution z(t;p). One has for y = (0,f),
taking into account that z = (x, x), that matrix X(t; B =
((ox;/0p j)(t; B)) solves the n x n matrix Cauchy problem

X" (tB) =t (x(t:B) X (t:8),
X(0;8) =0, (58)

(57)

X'(0:B) = L,

where f'(x(t; B)) is the Jacobian matrix of the vector field f
along the solution x(t; 8) to Cauchy problem (3) and (5). If
B = 0, then it follows from condition (A2) that x(¢;0) = 0
and the matrix X(t;0) = ((ax,./a/sj)(t; 0)) solves the n x n
matrix Cauchy problem

X" (£0) = £ (0) X (;0),
X (0;0)=0,, (59)
X' (0;0) =1,

Uniqueness of solutions to 7 x# matrix Cauchy problems (21)
and (59) implies that X(¢;0) = P(t) for every t € R. Hence,
X(1;0) = P(1). Notice that X(1;0) = ((9x;/96;)(1;0)) =
¢'(0). Therefore, ¢'(0) = P(1). Since P(1) = (l)(')(O), one
has that ¢'(0) = (/)8(0). It follows from Proposition 2 that
det ¢’(0) = det (/)8(0) # 0. Hence, [21, 22] B = 0 is an isolated
singular point of the vector field ¢ and

ind (0, ) = sgn det ¢’ (0) = sgn det ¢;, (0)

=ind (0,¢,) .

(60)

O

4. The Vector Field ¢ at Infinity

Suppose that conditions (Al) and (A3) hold. Then, there
exists the derivative ' (co) of the vector field f at infinity and
we can consider the linearized system at infinity

w' =1 (co)w, (61)
the Dirichlet boundary conditions
w(0)=0=w(1), (62)
and the initial conditions
w(0) =0,
, (63)
w (0) = .

If w(t; B) is the solution to Cauchy problem (61) and (63)
and S(¢) is the solution to n x n matrix Cauchy problem

§" () =f'(c0)S (1),
$(0)=0,, (64)
so)=1,

then w(t; B) = S(t)B forevery t € Rand 8 € R". Let us define
the linear vector field ¢ : R" — R",

b0 (B) =w(L;B) =SB, VBeR" (65)

Hence, ¢;0(ﬁ) = (l)go(O) = S(1) for every B € R".



Let us consider the following condition.

(A5) The linearized system at infinity (61) is nonresonant
with respect to boundary conditions (62); that is,
linear homogeneous problem (61) and (62) has only
the trivial solution.

Proposition 5. The following statements are equivalent.

(1) Condition (A5) holds.
(2) det¢! (0) = detS(1) # 0.

(3) B = 0 is the unique singular point of the vector field
boo-

(4) No eigenvalue of the matrix f'(co) belongs to the spec-
trum oy, of scalar Dirichlet boundary value problem
(23).

Proposition 6. Suppose that condition (A5) holds. If the
matrix f'(0co) does not have negative eigenvalues with odd
algebraic multiplicities, then ind (0,¢.) = 1. If the matrix
f'(00) has s (1 < s < n) different negative eigenvalues p; (1 <
i < s) with odd algebraic multiplicities, then

ind (0,¢,,) = sgndet¢  (0) = sgndetS(1)

(66)

The proofs of Propositions 5 and 6 are analogous to the
proofs of Propositions 2 and 3, respectively.

Theorem 7. Suppose that conditions (Al), (A3), and (A5)
hold. Then, the point oo is an isolated singular point of the
vector field ¢ and ind (co, ¢) = ind (0, ¢__).

Proof. First of all, we shall prove that the vector field ¢ is
asymptotically linear with the derivative at infinity ¢'(co) =
¢;O (0) = S(1). We proceed in the following steps.

Step 1 (auxiliary linear nonhomogeneous initial value prob-
lem). Let us consider the function p(¢; 8) = (1/]BI)x(t; B) —
w(t; B/IBl) for every t € R and B € R" \ {0}, where x(t; B)
is the solution to Cauchy problem (3) and (5) and w(t; ) is
the solution to Cauchy problem (61) and (63). The function
p(t; B) solves the Cauchy problem

p' (8)=f (co)p(t; B) +g(t:B),
p(0:8) =0,
p (0;8) =0

(67)

(B#0),
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where g(t; B) = (1/lBIDh(x(t; B)) for everyt € Rand B €
R"™\ {0}. One can find [24, 25] that

p(tp) = i [ ()] @ape (1),

k=0

Le-o)" (68)
—8 (t:B) dr,

fpm(t;ﬁ)=L
(m=0,1,2,...),

¢, (5B) =9, (58),
o3 (5B) =9, (5B),

95 (58) =9, (5B),

) (69)
¢, (B) =8B,

o3 (5B) =9, (5 B)

95 (5B) =95 (5 B),

Step 2 (estimates for |¢,,(1; B) (m = 0,1,2,...)). Suppose
B # 0 and consider

1 _\m
0, 1P - | 7

g (npdr oo

(m=0,1,2,...).

Taking into account (9) for any € > 0, one concludes that there
exists M(g) > 0 such that

[h(x(z; B))|| < M (e) + e|x (s B)]|, VT el0,1]. (71)
Since 0 < 1 -7 < 1, one has

H 1-o" 11-7|" |h(x(z: 8))|
m! m! 18]

1
< 1Al I (x (= B)|

8(rif)] -

(72)

1
< Al (M (&) +¢|x (: B)]) »

VYVt e [0,1].

In accordance with Proposition 1, the vector field F is asymp-
totically linear, and hence there exist A,B > 0 such that
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IF(z)|| < A+Blz|| foreveryz = (x, y)T € RN,y = x'. Consider
the integral equation z(7;y) =y + J}; F(z(s;y))ds equivalent
to the Cauchy problem z (1 y) = F(z(1;9)), z(0;y) =y =
(0,)". Then,

()l <ol + ar+ B[ fe(sylds. 3)
Using Gronwall’s inequality [20], one has that
J2 (x5l < (] + Av) ™ 74
Therefore,
le(@y)] < A+ |y, vre[o1].  (75)
Since [|x(z; Bl < llz(7; p)l and [yl =
I (Bl < A"+ 8],

It follows from (72) and (76) that

1_ m
| g <

| Bll, we obtain

vr € [0,1]. (76)

M (¢) + eAe® N £
m! | B m!’ (77)
VvVt e [0,1].

Therefore,

1 (l_T)m '
——s(np)dr

b - |

< [
- M (¢) + eAe® . £
Comlgl om
M (¢) + eAeP . ﬁ

migl om

a-o"
m!

(78)

>

lo,., (18)] <

Step 3. Let us prove that lim"ﬁ"_,ooﬂp(l; Bl =o.
(1) Suppose that f'(00) = O,,. It follows from (68) and

(78) that
wmm=mmmhﬁ%ﬁﬁim% 79)

Hence,
Jim [p(158)] < )

Since € > 0 can be arbitrary, lim"ﬁ"_,ooﬂp(l; Bl =o.
(2) Suppose that B = f'(c0) # O,.. Then,

1811 = max |8 > o. (81)

Let us prove that the series Y2, B, (1; B) is absolutely

convergent; that is, the number series Z,‘:ZO ||93k<p2k RIeHL
is convergent. It follows from (78) that

| @ri1 (13 B)] < ||| I (13 B)
Bl (M(s) + eAe® B> (82)
< +ee |.
ke i\ Al
The series Z;ZO(|||93|||k/(2k + DN((M(e) + sAeB)/||[5|| + seB)
converges and the sum is

BN [ M(e) +eAe®
zm+w< 7l *“)

i sinh ([11) (M(s) +eAeB +£es>
TET 18] ‘

One can conclude from (82) by using the comparison test that

the number series Z,‘:ZO ||95’k(p2k + (P is convergent also
and the sum is

3 [ 0 (1:8)]

(83)

(84)

_ sinh (VIT31T) (M(g) + eAe® +£eg)
RUED I8] '

Hence, the series Zii’o B @51+1(1; B) is absolutely convergent
and

Ip (1:8)] =

ZwmAwm
k=0

< ) | 0 (18 (85)
k=0

sinh ( |||<%’|||)<M(s)+£AeB B)
< +ee |.
[Ez] 18]
Therefore, limy g, [Ip(1; )l < ee”(sinh(\/[1Z)/ VII.BIID.

Since ¢ > 0 can be chosen arbitrary, one has that
limy gy oo (15 Bl = 0.

Step 4 (asymptotic linearity of the vector field ¢). If B # 0,
then

¢ (B) = ¢oo (B = X (1:8) - w (1; B)
= |x(1;8) - S) B

(1. 8) B
(LB) - 18IS (1) "ﬂ"H

- sy -t (580 )|

- 1808 e )|
18l I (1 8)]-

(86)
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Hence,

[6(B) ¢ (B _ ¢ (B) - ¢5 0 B

(I]] I8l (87)
=p (18]
Since lim"ﬁ"_m lp(1; Bl =0,

. lé(B) - ¢, @B| N
IB1-c0 18] 7

that is, the vector field ¢ is asymptotically linear with the
derivative at infinity ¢'(oo) = ¢:>O(0). It follows from
Proposition 5 that det ¢>'(oo) = det ¢go(0) # 0. Hence
[21, 22], the point co is an isolated singular point of the vector
field ¢ and

(88)

ind (co,¢) = sgndet¢’ (co) = sgndetd. (0)

=ind (0,¢,,) .

(89)
O

5. The Main Theorem

Let us recall that the singular points of the vector field ¢
are in one-to-one correspondence with solutions to Dirichlet
boundary value problem (3) and (4). A solution x(t; ) of
problem (3) and (4) is called nondegenerate, if the singular
point B of the vector field ¢ is nondegenerate; that is,

det¢'(B) # 0.

Theorem 8. Suppose that conditions (A1) to (A5) hold. Then,
the points B = 0 and oo are isolated singular points of the vector

field ¢.
(a) If ind(0,¢) # ind(co,¢), then boundary value
problem (3) and (4) has a nontrivial solution.
(b) Ifind (0, ¢) # ind (o0, ¢) and boundary value problem
(3) and (4) has a nontrivial nondegenerate solution,

then there exists yet another nontrivial solution to
problem (3) and (4).

Proof. (a) It follows from Theorems 4 and 7 that the points
B = 0 and oo are isolated singular points of the vector field
¢. Hence, one can find positive r, R such that r < R and the
sets

B (0)\{o}={o<|B|<r. peR"},

B (co) = {IB] = R, B e R")

contain no singular points of the vector field ¢. The vector
field ¢ is nonsingular on the spheres S,(0) = 0B,.(0) and
Sg(0) = 0BR(0) and the rotations on these spheres are
different:

(90)

y (¢, B, (0)) = ind (0, ¢) # ind (00, ¢)
=7 (¢ Bz (0)).

(o1
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Using [22, Theorem 2], one can conclude that the n-
dimensional annulus

Ann(r,R)={r <||B| <R, BeR"} (92)

contains a singular point 8, # 0 of the vector field ¢, which
generates a nontrivial solution to Dirichlet boundary value
problem (3) and (4).

(b) Let ind(0,¢) # ind(co,¢) and suppose x(t; ;)
is a nontrivial nondegenerate solution to boundary value
problem (3) and (4), or equivalently 8, € R" is a nonzero
nondegenerate singular point of the vector field ¢. Then
(21, 22], ind (B, ¢) = sgn det¢’(ﬁo) € {-1,1}. Suppose
the contrary that x(t; ,) is the unique nontrivial solution to
boundary value problem (3) and (4) or equivalently f, is the
unique singular point of the vector field ¢ in the set R" \ {0}.
Hence (21, 22],

ind (00, ¢) = ind (0, ¢) + ind (B,, ¢) . (93)

If ind (0co,¢) = 1 and ind(0,¢) = -1, then ind (B,,¢) =
ind (00, ¢) —ind (0,¢) = 1 — (1) = 2. If ind (c0, ¢) = —1 and
ind (0,¢) = 1, then ind (f,,¢) = ind (co,¢) — ind (0,¢) =
—1 — 1 = -2. The contradiction proves that there exists a
singular point 8; € R" \ {0} of the vector field ¢ such that
B, # B, or equivalently that there exists a solution x(t; 3,) to
boundary value problem (3) and (4), which is different from

X(f; ﬁo) [}

Remark 9. The practical implementation of Theorem 8 is
based on Propositions 3 and 6 and Theorems 4 and 7. Firstly
the eigenvalues of the matrices f'(0) and f'(co) must be
calculated. If the eigenvalues do not belong to spectrum
op = {~(jm)* : j € N} of scalar Dirichlet boundary value
problem (23), then the indices ind (0, ¢) and ind (oo, ¢) must
be calculated accordingly with Propositions 3 and 6. If these
indices are different, then Theorem 8 is applicable and the
existence of a nontrivial solution to boundary value problem
(3) and (4) can be concluded.

Remark 10. Suppose that conditions (Al) to (A5) hold and
ind (0,¢) # ind (oo, ¢). If boundary value problem (3) and
(4) has an odd number of nontrivial nondegenerate solutions
x(t;B;,) (i = 0,1,...,2k), where B, # 0 and det¢'([5i) +
0@ =0,1,...,2k), then there exists yet another nontrivial
solution to problem (3) and (4). Suppose the contrary that the
set R" \ {0} contains only an odd number of singular points
B; (i = 0,1,...,2k) of the vector field ¢ and these points
are nondegenerate. Then [21, 22], ind (co,¢) — ind (0,¢) =
Z,-zfo ind (B;, ¢), where the left hand side is equal to +2, but
the right hand side is odd.

6. Example

Consider the system

x| = —K’arctan (x, + x,),

(94)
" 2
x, = —m-arctan (x; — x,),
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where k and m are nonzero integers, together with the [rev—— ) o —— )
boundary conditions 0l L e e I'. e e e
1 ! 1 3
X1 (0) =X (0) :0:_x1 (1) :xz(l). (95) 9t : e o ‘|| ‘e o o L
: 2 2 81 e o \‘p e o |
Consider the vector field f : R* — R*: 1 | \ !
7t j O O ] e e
£ (x) 6 E o o o“l \\‘ o o i
T m ! |\ b !
= (—kzarctan (x, + x,), — m*arctan (x; — xz)) , (96) 5t LI 2 e
T 4t e e e ‘\‘ ‘o o i
vx = (x,x,) € R% 5| e o ot \ .
1 1 \ 1
Obviously conditions (Al) and (A2) are fulfilled. Due to 2t \\‘o e o ‘o‘ e i
the boundedness of arctan function, the vector field f is L E ] “. . |
asymptotically linear and f'(co) = O,, and hence condition | ] ! i
(A3) is fulfilled also. b, Feeeeeoel | egeen
Matrix f'(co) has the only eigenvalue y = 0 ¢ o, and o 12 3 4 5 6 7 8 910
hence matrix f'(co) does not have negative eigenvalues with

odd algebraic multiplicities. It follows from Proposition 6 and

Theorem 7 that ind (co, ¢) = 1.

The matrix f'(0) = (__ij ;r’fzz
equation

pA) =12 —(m* -k )A-2k’m* =0

and the eigenvalues are

AI,Z =

m? — k* \/(k2 +m?2)” + 4k2m?
P 2 '

Since \/(k2 +m?)? +4kPm? > k* + m* > m? — k%, one has
that A, > 0and A, < 0. Obviously A, ¢ op, = {-(jn)* :
j € N}. Note that A, ¢ o, also since A, is an algebraic
number (A, is the root of the characteristic polynomial
p(A) with rational coefficients), but the spectrum o7, consists
of the transcendental numbers (the product —( jrr)2 of the
algebraic number —j* with the transcendental number 7

is transcendental number). Theorem 8 is applicable, taking

into account Proposition 3 and Theorem 4, if ind (0,¢) =
sgnsin \/[A,] = ~1. Hence, Theorem 8 guarantees the
existence of a nontrivial solution to boundary value problem
(94) and (95) for all nonzero integers k and m such that

sin

\/(k2 +m?) +4k2m? 2 g2

<0.
2 2

(99)

The pairs (k,m) (1 < k,m < 10) with integer coordinates
which satisfy condition (99) are depicted in Figure 1.

7. Conclusions

For an asymptotically linear system of n the second-order
ordinary differential equations that are assumed to have the
trivial solution to the conditions for existence of nontrivial
solutions of the Dirichlet boundary value problem are given.
The technique and concepts of the theory of rotation of n-
dimensional vector fields are used. The existence conditions

) has the characteristic

(97)

(98)

FIGURE 1: The points (k,m) (1 < k,m < 10) with integer coordinates

such that k and m satisfy condition (99).

are formulated in terms of eigenvalues of coefficient matrices
of linearized systems at zero (at the trivial solution) and at

infinity. The proposed approach is applicable to other two-

point boundary conditions such as the Neumann problem
and mixed problem.
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