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Advances in genomic medicine have the potential to change the way we treat human disease, but translating these advances into
reality for improving healthcare outcomes depends essentially on our ability to discover disease- and/or drug-associated clinically
actionable genetic mutations. Integration and manipulation of diverse genomic data and comprehensive electronic health records
(EHRs) on a big data infrastructure can provide an efficient and effective way to identify clinically actionable genetic variants for
personalized treatments and reduce healthcare costs. We review bioinformatics processing of next-generation sequencing (NGS)
data, bioinformatics infrastructures for implementing precision medicine, and bioinformatics approaches for identifying clinically
actionable genetic variants using high-throughput NGS data and EHRs.

1. Introduction

High-throughput genomics technology has made possible
the era of precision medicine, an approach to healthcare that
involves integrating a patient’s genetic, lifestyle, and environ-
mental data and then comparing these data to similar data
collected for thousands of other individuals to predict illness
and determine the best treatments. Precision medicine aims
to tailor healthcare to patients by using clinically actionable
genomic mutations to guide preventive interventions and
clinical decision making [1]. In the past 25 years, more than
4,000 Mendelian disorders have been studied at the genetic
level [2]. In addition, more than 80 million genetic variants
have been uncovered in the human genome [3, 4]. Clinical
pharmacology research using electronic health record (EHR)
systems has recently become feasible as EHRs have been
implemented more widely [5]. Also, studies such as the Elec-
tronic Medical Records and Genomics-Pharmacogenomics
(eMERGE-PGx) project [6], GANI MED project [7], SCAN-
B initiative [8], and Cancer 2015 study [9] have been designed
to assess the value of next-generation sequencing (NGS) in
healthcare.

Combining the functional characterization of identi-
fied genomic mutations with comprehensive clinical data
available in EHRs has the potential to provide compelling
evidence to implicate novel disease- and/or drug-associated
mutations in phenotypically well-characterized patients.
NGS is increasingly used in biomedical research and clinical
practice. NGS technological advances in clinical genome
sequencing and adoption of EHRs will pave the way to create
patient-centered precisionmedicine in clinical practice. NGS
technology is an essential component supporting genomic
medicine but the volume and complexity of the data pose
challenges for its use in clinical practice [10]. Sequencing a
single human genome generates megabytes of data; therefore,
investment in a bioinformatics infrastructure is required to
implement NGS in clinical practice.

The term “big data” is defined differently by different
people [11]. Gartner defines big data as “high-volume, high-
velocity, and/or high-variety information assets that demand
cost-effective, innovative forms of information processing
that enable enhanced insight, decision making, and process
automation” (http://www.gartner.com/it-glossary/big-data/)
while others define it as the 5Vs, which are Volume, Velocity,
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Table 1: Sequencing assays.

Characteristic
DNA sequencing RNA-seq

Targeted genomic
regions Whole exome Whole genome Targeted Transcriptome

profiling

Capture method∗
Amplicon-based
targeting; hybrid

capture; in-solution
capture

Hybrid capture;
in-solution
capture

None

Hybridization only;
hybridization and

extension;
multiplexed PCR

None

Amount of
genome/transcriptome
sequenced

∼150 bp–62Mb (≤2%
of genome)

∼30–60Mb
(1-2% of
genome)

∼3Gb (≥95% of
genome)

Variable: transcripts
of ∼10–1000 genes

Entire
transcriptome

Amplification Yes Yes Not required Yes
Required for
low-quantity
RNA samples

Sequencing depth 100–1000xÜ 80–100xÜ 30–50xÜ 0.3–25 million reads‡ 15–200 million
reads‡

Amount of sequence data
generated per sample ∼0.3–5Gb ∼4-5Gb ∼90Gb ∼0.5–3Gb ∼5-6Gb

bp, base pairs; Mb, megabases; Gb, gigabases; PCR, polymerase chain reaction.
∗Method used to select genomic regions for sequencing.
ÜNumber of times a single base is read during a sequencing run.
‡A greater number of reads are needed to detect rare transcripts.

Variety, Verification/Veracity, and Value [12]. In this review,
we describe how one source of big data, in the form of
genomic data generated by NGS, is processed and being
used to improve healthcare and clinical research. We give
an overview of NGS technologies, bioinformatics process-
ing of NGS data, bioinformatics approaches for identifying
clinically actionable variants in sequence data, guidelines
for maintaining high standards when generating genomic
data for clinical use, bioinformatics infrastructures of studies
aimed at implementing precision medicine, and methods for
ensuring the security of genomic data. We also discuss the
need for the efficient integration of genomic information into
EHRs.

2. Genomic Data Generation

2.1. Approaches to Sequencing. NGS includes DNA se-
quencing and RNA sequencing (RNA-seq) (Table 1). DNA
sequencing approaches include (1) whole-genome sequenc-
ing (WGS), (2) whole exome sequencing (WES) of the coding
regions of all known genes, and (3) targeted sequencing of
genomic regions or genes implicated in a disease [13]. In addi-
tion, RNA-seq is used in transcriptome profiling to sequence
all RNA transcripts (the transcriptome) in cells at a given
time point to measure gene expression, targeted sequencing
for measuring the expression of transcripts encoded by a
specific genomic region, and sequencing of small RNAs.
Targeted DNA sequencing is already being applied in some
areas of clinical practice such as pharmacogenomics (e.g.,
the eMERGE-PGx project [6]), while WGS, and particularly
WES, is emerging into the clinic for the evaluation of
developmental brain disorders such as intellectual disability
[14], autism [15], and seizures [16].With continuing decreases
in the costs of sequencing, it is expected that the use of
WES/WGS and RNA sequencing in healthcare will become
more common.

2.2. ReadDepth. NGS involves breakingDNA into fragments
and determining the order of the nucleotide bases in each
fragment. The sequence of each fragment is called a “read.”
Because the distribution of reads across the genome is
uneven (due to biases in sample preparation, sequencing-
platform chemistry, and bioinformaticsmethods for genomic
alignment and assembly of the reads) [17, 18], some bases
are present in more reads and others in fewer reads. Read
depth refers to the number of reads that contain a base;
for example, a 10x read depth means that each base was
present in an average of 10 reads. For RNA-seq, read depth
is more often stated in terms of the number of millions of
reads. Variant calling is more reliable with increasing read
depth, and a greater depth is advantageous for detecting
rare genetic variants with confidence.The read depth needed
can depend on multiple factors including guidelines from
the scientific community, the presence of repetitive genomic
regions (these aremore difficult to sequence), the error rate of
the sequencing platform, the algorithm used for assembling
reads into a genomic sequence, and gene expression level (for
RNA-seq). Read depth recommendations from the scientific
literature include 100x for heterozygous single nucleotide
variant detection by WES [19], 35x for genotype detection by
WGS [20], 60x for detecting insertions/deletions (INDELs)
by WGS [21], 10–25 million reads for differential gene
expression profiling by RNA-seq [22], and 50–100 million
reads for allele-specific gene expression by RNA-seq [23].

2.3. Sequencing Technologies

2.3.1. Description of Technologies. Commercially available
sequencing platforms use a variety of methods to generate
sequence data (Table 2). Sequencing-by-synthesis (MiSeq
and HiSeq 4000 platforms) is the enzymatic synthesis of a
DNA strand complementary to a template DNA strand. For
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NGS, the procedure involves DNA fragmentation, creation
of a DNA library by attaching adaptors to each fragment,
amplification of the fragments on a solid surface, synthesis
of a DNA strand complementary to each template DNA
fragment (using DNA polymerase), and fluorescence imag-
ing to identify each newly incorporated nucleotide on the
synthesized DNA strands [24]. Single-molecule, real-time
sequencing (PacBio RS II platform) is a modification of
sequencing-by-synthesis [25]. In this approach, each DNA
polymerase molecule is immobilized at the bottom of a
nanoscale well called a zero-mode waveguide. A laser light
illuminates the well from below and emits a pulse of light
when a fluorescent-labelled nucleotide is added to the nascent
DNA strand by DNA polymerase (bound to a template
DNA fragment), allowing detection of the incorporated
nucleotide. Semiconductor sequencing (Ion S5 platform) is
another modification of sequencing-by-synthesis that uses
a semiconductor-sensing device to detect the addition of
unmodified nucleotides during DNA synthesis [26]. Pyrose-
quencing (454GS FLX Titanium XL+ platform) is a tech-
nique that couples sequencing-by-synthesis to a chemilumi-
nescent enzyme (luciferase) reaction that generates visible
light allowing detection of nucleotide incorporation during
DNA synthesis [27]. Oligonucleotide ligation (SOLiD 5500xl
W platform) involves ligating oligonucleotide probes to
template DNA strands to determine the sequence of the tem-
plate [28]. Sequencing by dideoxynucleotide (ddNTP) chain
termination (Sanger Genetic Analyzer 3500xL platform),
often called Sanger sequencing, involves incorporation of
ddNTPs by DNA polymerase during DNA synthesis [29].
Fluorescence labelling allows identification of each of the
ddNTPs added to the synthesized DNA strands.

2.3.2. Comparison of Sequencers. The MiSeq, PacBio RSII,
and Ion S5 sequencers were designed for targeted sequencing
and sequencing small genomes (e.g., the genomes ofmicroor-
ganisms) whereas the HiSeq 4000, 454GS FLX Titanium
XL+, and SOLiD 5500xl W can be used for WES and WGS
of human genomes (Table 2). The instruments most often
used in precisionmedicine programs performingWES/WGS
of the human genome in clinical care settings are the HiSeq
sequencers [30] that have the advantages of a relatively high
sample throughput and a low sequencing error rate. However,
all of the NGS technologies are being applied to health
research [31–36]. The single-molecule, real-time sequencing
technology generates the longest reads (Table 2), making the
PacBio RS II instrument well suited for de novo sequencing
(by assembly of reads into long contiguous sequences) of the
genomes of organisms that do not have a reference genome
(e.g., many microbial genomes) [37].

The sequencers that cost the least are the bench-top Ion S5
andMiSeq instruments (Table 2), and formany laboratories it
would be feasible to buy more than one of these instruments.
While they can be used to perform WES of the human
genome, the sequencing cost per base would be much higher
compared with WES on the HiSeq instrument. The HiSeq
4000, 454GS FLX Titanium XL+, and SOLiD 5500xl W
instruments are more expensive, costing between $500,000
and $900,000 each, but they are capable of sequencing

several human genomes or exomes within a few days to one
week. Large laboratories that expect to assay many samples
routinely byWES/WGSmight consider it cost-efficient to buy
more than one of these sequencers to meet assay demand.
All six next-generation sequencers in Table 2 produce at least
0.5 gigabases per run and most output several gigabases per
run, giving an idea of the volume of data that needs to be
consideredwhen planning for the data storage and processing
capabilities of bioinformatics pipelines to be used in clinical
laboratories that perform NGS assays.

2.3.3. Sequencing Accuracy. With continued refinement in
technology, many NGS platforms have demonstrated a low
rate of errors in variant detection (1/1000 to 1/50 bases
depending on the instrument and read depth) [38, 39].
Previous reports have compared sequencing accuracy among
the technologies presented in Table 2. In a comparison of the
HiSeq 2000 and SOLiD 5500xl platforms for WGS of human
DNA samples, the HiSeq 2000 had higher sensitivity for
calling single nucleotide variants but the SOLiD 5500xl had
a lower false positive rate [40]. When the Ion PGM, MiSeq,
and PacBio RS sequencers were compared by sequencing four
microbial genomes, the PacBioRShad the highest sequencing
error rate, and Ion PGM data had slightly more variant
calls and a higher false positive rate than MiSeq data [41].
Compared with other technologies, the 454 and PacBio RS
platforms have demonstrated the most unbiased read distri-
bution in genomic regions with a highGC content [41, 42], an
important factor affecting the probability of calling a variant
in these regions. However, the 454 platform has a tendency to
assess the length of homopolymer tracts incorrectly, resulting
in false positive single nucleotide variant calls in these tracts
[42].

In comparison with NGS technologies, Sanger sequenc-
ing is widely considered the most accurate sequencing
method (error rate as low as 1 in 10,000 bases) [43] and
remains the gold standard. Genetic variants detected using
NGS should always be validated by an independent method
if the variants are relevant to clinical care or are associated
with health outcomes in research studies. Because of its high
accuracy, Sanger sequencing is often used for validation.
Other methods of validation, especially for common single
nucleotide variants, INDELs, or structural variants, include
polymerase chain reaction (PCR) and genotype/copy number
variant arrays.

3. Genomic Data Processing and
Quality Control

3.1. Data Processing. Data files generated by next-generation
sequencers contain raw sequence reads, each with a unique
identifier, and their quality scores. Sequence reads need to
be evaluated for data quality and to exceed minimum quality
thresholds, before being processed for read alignment [44],
variant calling [45], and variant annotation [46, 47] in a
bioinformatics pipeline (Figure 1). Read alignment involves
aligning the sequence reads to a reference sequence [48, 49]
of the human genome to allow comparison of sequence data
from the patient sample with the reference sequence. Reads
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Raw reads (FASTQ)

Raw reads QC (FastQC, 
PRINSEQ, or QC3)

Preprocessing (Cutadapt, 
Trimmomatic, or PRINSEQ)

Processed reads (FASTQ) 

Align to reference genome
(BWA, Bowtie2, Novoalign,

GMAP)

Read alignment (BAM)

Postalignment processing
(remove read duplicates)

INDEL realignment
(GATK)

Base quality recalibration
(GATK)

Recalibrated reads (BAM)

Variant calling (GATK,
SAMtools, or others)

Called variants (SNVs and
INDELs) (VCF)

Germline 
variants

Variant annotation
(ANNOVAR, SnpEff, or

Annotated variants

Variant prioritization
(VAAST2, Plink/seq, or

others)

others)

Signaling pathway, family 
history, clinical data

Disease/drug-associated
variants

Somatic 
variants

Figure 1: A flow chart of processing next-generation sequencing
data.

with an uncertain alignment location need to be removed
before further data processing. Alignment allows a number of
quality control measures to be determined, for example, the
percentage of all reads that align to a reference sequence, the
percentage of unique reads that align to a reference sequence,
and the number of reads that align at a specific locus (read
depth). These measures influence the reliability of variant
calling, the next step in a NGS bioinformatics pipeline.
Variant calling tools, such as SAMtools [50], GATK [45], and
others, are used to identify differences in sequence between
the patient sample and a reference. These differences can
include changes of one nucleotide (single nucleotide variants,
SNVs), a few nucleotides (small INDELs), or larger regions,
such as copy number variants (CNVs) and other structural
variations (SVs). These software programs allow users to
specify different parameters to adjust for minimizing false
positive and false negative variant calls. Variant annotation
depends on biological knowledge and provides information
on the known or likely impact of variants on gene and protein
function [46, 47]. To produce a patient report, annotated vari-
ants are interpreted in a disease-specific context and are often
classified based on their known or expected clinical impact.
For instance, the ClinVar [51] variant database, released
on May 4, 2015 (http://www.ncbi.nlm.nih.gov/clinvar/), by
the National Center for Biotechnology Information (NCBI),
contained more than 110,000 unique genetic variants having
clinical interpretations [52].

Annotated 
variant files 

(.csv)

VCF files 
(.vcf or
.vcf.gz)

BAM files (.bam or
pileup files generated 

by SAMtools)

Java programing for loading data into HBase by 
MapReduce (parallel processing)

Hadoop distributed file system (HDFS)

HBase

Clinically actionable 
genetic variants and

clinical/environment 
factors

Clinical decision 
support (CDS)Electronic health records (EHRs)

Characterization of clinical data

Java programing for extracting data 
from HBase by MapReduce (parallel 

processing)

Analysis based on a given gene list

Clinical geneticists

Figure 2: The basic framework of SeqHBase for detecting clinically
actionable genetic variants.

3.2. Clinically Actionable Variants. In clinical care, the Amer-
ican College of Medical Genetics and Genomics (ACMG)
has recommended the identification and return of incidental
findings (IFs) for clinically significant variants in a set of
56 “highly medically actionable” genes associated with 24
inherited conditions [53, 54]. Also, the National Heart, Lung,
and Blood Institute (NHLBI) Exome Sequencing Project
(ESP) has reported actionable exomic IFs from 112 genes in
6,503 participants [55]. The 112 genes included 52 ACMG
genes and an additional 60 “actionable” genes. To infer
biological insights from massive amounts of NGS data and
comprehensive clinical data in a short period of time, we
have developed an analysis pipeline within a software frame-
work called SeqHBase [56] (Figure 2) to quickly identify
disease- or drug-associated genetic variants.There weremore
than 27 million unique variants among 300 patients with
WGS data that we analyzed using SeqHBase. In addition to
identifying variants that are annotated as “pathogenic” or
“likely pathogenic” by ClinVar [51], we compiled a list of
low frequency or rare variants that are possibly damaging,
and novel loss-of-function (LoF) variants that are absent in
the ClinVar database, to allow clinical geneticists to review
the potential pathogenicity of these variants further. As
SeqHBase is a big data-based toolset, it takes only a few
minutes to analyze WGS data for 300 individuals and to
generate a candidate list of actionable genomic variants.More
detailed discoveries from theseWGS data will be described in
future reports.



6 Journal of Healthcare Engineering

SeqHBase is one of several, freely accessible bioinformat-
ics tools for prioritization of variants from WES/WGS data.
Daneshjou et al. reported a web-based tool for identifying
clinically actionable variants in the 56 ACMG genes [57], and
Zhou et al. developed a variant characterization framework
for targeted analysis of relevant reads from high-throughput
sequencing data [58]. Other tools include PHIVE [59] which
prioritizes variants in genes responsible for mouse model
phenotypes that are similar to the phenotypes of patients
being tested by WES and OVA [60] that performs prioriti-
zation by integrating data on human and model organism
phenotypes, gene function, and known biological pathways.

Identifying clinically actionable variants remains a chal-
lenge despite the availability of variant prioritization tools.
A workshop convened by the National Human Genome
Research Institute and the Wellcome Trust identified limited
evidence of the clinical significance of genetic variants and
the lack of a comprehensive database of genetic variant-
phenotype associations as barriers to the implementation of
precision medicine [61]. It was noted that existing catalogs of
clinically actionable variants are not standardized, are main-
tained by different entities (e.g., laboratories or government
organizations), and are not designed to interact with EHRs.
To speed the incorporation of genomic data into clinical
care, the workshop advocated for a dynamic, centralized
database that can be updated with available, reliable evidence
on variant pathogenicity. The Clinical Genome Resource
(ClinGen) program [52], developed in response to this
recommendation, provides resources (e.g., ClinVar [51]) to
aid the understanding of genetic variation and the use of
genetic variation in clinical practice.

3.3. Quality Control. Best practices for quality control in the
bioinformatics processing of NGS data have been reported
in the scientific literature [45, 62]. Quality control metrics
include total reads, ratio of unique reads to total reads,
proportion of bases covered at a specified minimum read
depth, mean read depth, raw sequence error rates, ratio of
transitions (pyrimidine-to-pyrimidine or purine-to-purine
mutation) to transversions (pyrimidine-to-purine mutation
or vice versa), missingness (proportion of genomic sites at
which a variant could not be called), homozygosity, heterozy-
gosity, and distribution of known and novel variants relative
to those contained in the dbSNP database. For targeted or
exome sequencing, an additional metric is capture efficiency,
the percentage of targeted bases that are covered by one or
more reads.

These metrics can be calculated using the PLINK/SEQ
(https://atgu.mgh.harvard.edu/plinkseq/) or VCFtools [63]
software programs that can readily be incorporated into a
bioinformatics pipeline, allowing assessment of NGS data
quality in both clinical and research settings. Values for the
first four metrics depend on the type of sequencing assay
performed but, in general, higher values indicate better data
quality.The raw sequence error rates and missingness should
be as low as possible. The ratio of transitions to transversions
(Ti/Tv ratio) is expected to be ∼2.0–2.1 for WGS data overall,
2.10 for known variants in WGS data, 2.07 for new variants
in WGS data, ∼3.0–3.3 for WES data overall, 3.5 for known

variants in WES data, and 3.0 for new variants in WES data
[45]. Homozygosity and heterozygosity depend on the type of
population: heterozygosity is expected to bemore frequent in
admixed populations and homozygosity to be more frequent
in inbred populations. It is estimated that each person has
∼200 novel SNPs not present in the dbSNP database [64];
therefore, a value that is much larger than 200 is indicative
of a high false positive rate of single nucleotide variant calls.
Capture efficiency is reported to range within ∼50–75% [65].

There are no existing, quality control standards that relate
to generating clinical interpretations for genetic variants.
However, substantial efforts are being made to identify
clinically actionable pharmacogenetics variants, and it is
instructive to review the approach being used. The Coriell
Personalized Medicine Collaborative [66], the Clinical Phar-
macogenetics Implementation Consortium [67], the Phar-
macogeneticsWorkingGroup established by the Royal Dutch
Association for the Advancement of Pharmacy [68], and
the Evaluation of Genomic Applications in Practice and
Prevention initiative sponsored by the Centers for Disease
Control and Prevention [69] have independently developed
similar processes for selecting candidate drugs, reviewing
the published literature to identify drug-gene associations,
scoring the evidence supporting associations between genetic
variants and drug response, and interpreting the evidence to
provide treatment guidelines.

This approach involving review and interpretation of the
scientific literature by an expert committee can be considered
the gold standard for determining whether a variant is
clinically relevant or actionable but also can be expensive
and time-consuming. It will not be feasible for experts,
either individually or in committees, to review the large
number of genetic variants identified in NGS data. Tools
such as POLYPHEN-2 [70], VEP [71], MutationAssessor
[72], and SIFT [73] can be used to predict variant effects.
However, because these tools are sometimes inaccurate [74]
and often differ in their predictions for the same variant
[75, 76], there will likely be many variants that have no clear
predicted, clinical interpretation. Furthermore, an additional
problem is that the predictions made by these tools are not
specific to a given gene or class of genes. For example, many
genes would tolerate the substitution of glycine for another
amino acid, but, in a gene that encodes a collagen fibril,
loss of a glycine would impair fiber assembly resulting in
a significant phenotype [77]. New methods that are both
accurate and efficient need to be developed for predicting the
pathogenicity of genetic variants found by NGS.

A limitation of using the ClinVar database [51] to identify
clinically actionable genomic mutations is that a genetic vari-
ant in ClinVar can be described as having a different potential
for pathogenicity by different submitters. For example, of the
12,895 unique variants with multiple clinical interpretations
that have been submitted by more than one laboratory, 2,229
(17%) were interpreted differently by different submitters,
with one- or two-step differences between any of three
major levels: “pathogenic or likely pathogenic,” “uncertain
significance,” and “likely benign or benign” [52]. Differences
in interpreting the pathogenicity of variants have also been
reported by the Clinical Sequencing Exploratory Research
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Figure 3: Overview of steps for a laboratory to obtain accreditation by the College of American Pathologists.

(CSER) program [30], an initiative designed to trial the use of
WES/WGS data in clinical practice. The program compared
CSER laboratories on their clinical interpretations of 98
variants and observed one-step differences in interpretation
for 42% of variants and two-step or larger differences for 20%
of variants [78]. To estimate and interpret the pathogenicity
of new variants that are absent in the ClinVar database
and to achieve some level of consensus on the clinical
interpretations of variants, evaluations from experts, such
as clinical geneticists, and/or further biological functional
studies are needed.

4. Guidelines for Bioinformatics Processes

4.1. Summary of Guidelines. Bioinformatics pipelines are
constituted of multiple databases and software programs to
convert raw sequence reads to a list of clinically action-
able or candidate variants. To promote the transparency
of pipeline processes and data flow, the ACMG [79], the
College of American Pathologists (CAP) [80], Weiss et al.
[81], and Gargis et al. [82] have offered guidelines for NGS
and the operation of bioinformatics pipelines in a clinical
setting. The recommendations of these guidelines include
thorough documentation of the pipeline and of deviations
from pipeline standard operating procedures (e.g., software
updates, changes in software settings, operator error, hard-
ware failure, or other failures in the pipeline), validation of
the pipeline, development of a pipeline quality management
program, and implementation of policies to ensure secure
data storage and data transfer.

The recommendations for written patient reports state
that gene names should be provided according to HUGO
Gene Nomenclature Committee nomenclature (http://www
.genenames.org/) and genetic variants according to the
nomenclature guidelines of the Human Genome Varia-
tion Society (http://www.hgvs.org/). Laboratories should
follow the recommendations of the ACMG [53, 54] for
interpreting the clinical significance of variants. Patient
reports should also include the genome build and reference
sequence used for variant detection, the genomic coordi-
nates of identified variants, and mention of whether clini-
cally significant variants were confirmed by an independent
assay method [81]. Laboratories should also report genetic
variant data (gene name, zygosity, cDNA nomenclature,
protein nomenclatures, exon number, and clinical signifi-
cance) in a structured format according to HL7 standards
(HL7 version 2 Implementation Guide: Clinical Genomics,

http://www.hl7.org/implement/standards/). This is aimed at
providing sufficient data to facilitate both clinical decision
support and the display of genetic information in the EHR.

Challenges to implementing these guidelines include the
constantly evolving nature ofNGS technologies, bioinformat-
ics tools (necessitating frequent updates of the bioinformat-
ics pipeline), clinical interpretation (necessitating frequent
updates of genetic variant annotation), the limited capacity
of health care organizations/laboratories to store the volumi-
nous data generated by NGS platforms (data storage options
considered must ensure security of the stored genetic data),
and the need for personnel trained in bioinformatics and
statistics to develop a bioinformatics pipeline and to process
and analyze NGS data. However, these challenges are not
insurmountable, and it is likely that health care institutions
that want to use NGS data in clinical care will attempt to
overcome these hurdles and follow the guidelines.

4.2. Accreditation from the College of American Pathologists
(CAP). Clinical laboratories that develop Clinical Labora-
tory Improvement Amendments- (CLIA-) certified NGS
assays based on CAP standards [80] can seek accreditation
fromCAP, an agency that can provide accreditation on behalf
of theCLIAprogram.The accreditation process involves a site
visit inspection by a peer institution/laboratory once every
two years and a self-inspection in alternate years (Figure 3).
For the self-inspection, CAP sends the laboratory a list of
items, specific to the NGS assay, that need to be checked
by the laboratory. Completing the self-inspection for a NGS
assay would allow the laboratory to determine how closely
it adheres to the CAP standards for the assay. For the site
visit, the inspectors would observe a sample being taken
through the entire assay procedure. Any deficiencies found
must be corrected, and CAP should be provided with a
report describing the correctivemeasures within 30 days after
the site visit. Through the mechanism of CAP accreditation,
the laboratory would inform external entities that it pro-
vides a CLIA-certified assay that meets CAP standards for
the assay.

5. Bioinformatics Infrastructure for
Genomic Data

5.1. Separate Databases for Different Types of Data. Welch
et al. have proposed an infrastructure comprised of inde-
pendent, interacting databases for processing and storing
genomic data in a clinical setting [83] (Figure 4). These
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databases include a “full variant database” to store all genetic
variants for each patient, a clinical genome database to
store only the clinically relevant variants for each patient,
a clinical decision support knowledge base that integrates
decision rules and guidelines for providing care (e.g., drug
dosing rules) with genomic and clinical information, and
a genome variant knowledge base to store known genetic
variants and their clinical interpretations. ClinVar [51] is
an example of a freely accessible genome variant knowl-
edge base but clinical laboratories will likely also maintain
their own internal genome variant knowledge bases (based
on the genomic data of patients they test). The proposed
infrastructure can potentially accommodate large amounts
of genomic data because it involves warehousing the data
external to EHRs. However, it would require investment
in data storage capacity external to the EHR database sys-
tem and the development and maintenance of interfaces
between the genomic databases and the EHRdatabase system
[84].

5.2. Cloud Computing. Cloud computing, involving the use
of remote servers to store and access data and software
programs (Figure 5), has also been proposed for genomic
data processing and storage. Cloud computing providers
offer infrastructure, software, and programming platforms as
services and incur the costs for developing and maintaining
these services [85]. Because clients pay only for the services
they use, cloud computing offers an economical approach
to genomic data management compared with investment
in the creation and maintenance of databases by healthcare
entities to house genomic data. Hadoop is an open-source
programming platform that is already being used to develop
software for genomic data processing in a cloud computing
environment [85]. Hadoop breaks data into small fragments,
distributes the fragments over many computers, distributes
computation to where the fragments are located so all
fragments are processed in parallel, and aggregates the results
at the end of computation [85]. The parallel processing
of many small pieces of data greatly reduces computation
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time. Examples of open-source software developed on the
Hadoop platform for processing genomic data are Crossbow
[86], GATK [87], and Hadoop-BAM [88]. Challenges to
the use of cloud computing for genomic data include the
long data transfer times for uploading NGS data files to
the cloud, the perceived lack of data security in the cloud
computing environment, and the need for advanced pro-
gramming skills in Java to develop software using Hadoop
[85].

5.3. Infrastructure for Data Sharing. The separation of
genomic and clinical data repositories facilitates the use of
genomic data in research as well as clinical care. To engage
in collaborative research, infrastructure for sharing genomic
data with researchers internal and external to the institution
that generated the data is required. The Global Alliance for
Genomics and Health (GA4GH) [89], an international coali-
tion of healthcare and academic centers that aims to advance
the sharing of genomic and clinical data to improve health,
has launched efforts to create such an infrastructure. The
group has developed an application programming interface
(API) to support the sharing of data on DNA sequences and
genomic variants across organizations and bioinformatics
pipelines [90]. GA4GH is also developing APIs for other
types of genomics-related data including variant annotations,
RNA-seq, and genotype-phenotype associations. These tools
will allow genomic data from multiple organizations to be
analyzed in aggregate, increasing statistical power to identify
genetic variants that have a clinical effect.

5.4. Security of Genomic Data. Genomic data is protected
health information; therefore, its privacy and confidentiality
should be maintained similarly to other protected health
information. Safeguards include the use of data encryption,
password protected files, secure data transfer, audits of data
transfer processes, and the implementation of institutional
policies against data breeches and malicious use of the data
[91]. The use of cloud computing presents added security
concerns because data storage and/or processing services are
provided by an entity external to the healthcare organization.
Measures that the cloud service provider can take to address
these concerns include logging access to the data, creating
a role-based access system (level of access depends on the
type of user), complying with third-party certifications for
information security (e.g., the International Organization for
Standardization/International Electrotechnical Commission
21001:2013 information security standard http://www.iso.org/
iso/home/standards/management-standards/iso27001.htm/),
protecting the security of the computer network, using
notification alarms to track when changes are made to stored
data, and guaranteeing the complete removal of data from
its servers once the cloud storage service is no longer being
used [92].

6. Examples of Implementing Genomic Data in
Clinical Care

6.1. Clinical Sequencing Exploratory Research Program. Asur-
vey of six health centers participating in theCSER consortium

has described how the centers have integrated genomic data
into the EHR [30]. Five centers performed sequencing at their
own laboratories, and one site used an external laboratory
but confirmed variants on-site using Sanger sequencing. Each
center created a local bioinformatics pipeline for variant
annotation, but all used multiple online catalogs of variants
(e.g., ClinVar [51] and dbSNP) for annotation. Each site also
built andmaintained its own genome variant knowledge base
(based on genetic variants ascertained in patients at the site)
and created tools to use data from this internal database
in variant annotation. Additionally, sites used manual or
semiautomated methods to search the scientific literature or
online gene-specific databases to determine the clinical sig-
nificance of variants. EHR software was obtained from com-
mercial providers at four centers and was locally developed
at two centers. The laboratories at all six centers generated a
human-readable PDF document, containing genetic results,
that was designed to be incorporated into the EHR. The two
sites with custom-built EHRs, and one site with commercial
EHR software, also reported results in a structured, machine-
readable format. Active clinical decision support (automated
alerts through the EHR) for genetic variants was available
at two of the centers. Only one center had an automated
system for sending alerts to physicians when new genomic
findings resulted in the reclassification of a genetic variant’s
clinical significance (e.g., a variant initially classified as being
of unknown significancewas subsequently discovered to have
serious clinical consequences).

6.2. eMERGE Network Pharmacogenetics Study. Sites in the
eMERGE network are also engaged in pilot efforts to incor-
porate genomic data, particularly data relevant to pharmaco-
genetics, into EHRs [6]. At one eMERGE site, separate data
repositories were created for unprocessed sequence/genotype
data and for variants of known pharmacogenetics relevance
[93]. Software that applied approved pharmacogenetics-
medication guidelines to patients’ genetic data was used
to determine a patient’s pharmacogenetics phenotype (e.g.,
predicted poor metabolizer of a specific drug), and the
phenotype data were stored as a laboratory result in the
EHR. The site developed software that extended its existing,
custom-built medication alert system, enabling the system to
check for a relevant pharmacogenetics laboratory result when
a physician prescribes a pharmacogenetics-related drug. If
a patient has a pharmacogenetics phenotype, the system
sends an alert to the physician and suggests alternative treat-
ment. Another eMERGE site reported developing similar
infrastructure that supported storage of all genetic variants
separately from variants with pharmacogenetics relevance,
the translation of genetic data into genotype-phenotype asso-
ciations, and active clinical decision support for physicians
prescribing pharmacogenetics-related drugs [94]. Changes
in the clinical interpretation of genetic variants (based on
new knowledge) that resulted in phenotype reassignment
prompted the site to update its genotype-phenotype trans-
lation database to reflect the newly determined genotype-
phenotype relationships. Because this database was linked to
the site’s clinical information system, pharmacogenetics data
in the EHR was automatically updated.
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6.3. Lessons from CSER and eMERGE. The CSER and
eMERGE pharmacogenetics programs are in progress and
have not yet reported on improvements in patient outcomes
as a result of incorporating genomic data into clinical care.
Each site in these programs had its own customized bioinfor-
matics pipeline, laboratory informationmanagement system,
clinical decision support capabilities, and electronic health
records that would not be generalizable to other sites. This
presents a challenge as a more uniform infrastructure for
genomic data processing could be adopted more widely and
easily. Based on their experiences, sites in both programs
identified a number of factors that need to be addressed to
facilitate the integration of genomic data into healthcare: (1)
the requirement for active clinical decision support; (2) tools
to examine and interpret sequence variants, especially new,
undefined variants; (3) approaches to update changes in the
clinical significance of sequence variants over time; (4) giving
healthcare providers access to consultants trained in genetics;
(5) infrastructure for secure and reliable delivery of results to
external healthcare providers; and (6)methods for explaining
genomic information to patients.

7. Discussion

The ideal, preventivemodel of patient care is to understand as
much about a patient as possible, as early in his/her life as pos-
sible, to detect warning signs of serious but preventable illness
at an early stage so that preemptive health interventions can
be simpler and/or less expensive than treatment implemented
at a later stage. Also, knowing a person’s individual char-
acteristics is often relevant for providing effective treatment
against disease because patients can respond differently to the
same treatment. By facilitating precision medicine, advances
in genomics have the potential to change the way we prevent
and treat diseases. However, the translation of these advances
into reality for patient care depends mainly on our ability to
discover disease- and/or drug-associated clinically actionable
genetic mutations and on our understanding of the roles of
these mutations in the disease process.

Healthcare centers that are conducting pilot studies of the
integration of genomic data into clinical care have developed
a bioinformatics infrastructure for processing NGS data that
consists of a group of databases ancillary to the EHR [30,
93, 94]. The infrastructures were, for the most part, locally
developed and proprietary, but this is because these centers
are among the first healthcare providers to use genomic data
in clinical care and there are no established infrastructures
to meet their bioinformatics needs. The infrastructures were
built along the same general plan: a bioinformatics pipeline
for processing NGS data, a database for storing all genetic
variants detected in patient samples, a genome variant knowl-
edge base for storing known genetic variants and their clinical
interpretation, a database for the subset of variants deemed
to be clinically actionable (with variants linked to a specific
clinical phenotype), links between databases allowing data
transfer, and a method for reporting the results of clinically
actionable variants in the EHR. Developing and maintaining
a bioinformatics infrastructure for NGS data requires sub-
stantial investment in resources and personnel and can be too

expensive for small clinical laboratories. However, because
genetic variant databases are maintained separately from the
EHR, it might be possible for multiple, small laboratories to
pool resources to build and share a common bioinformatics
infrastructure. The storage and bioinformatics processing of
raw NGS data output by sequencing platforms might exceed
the infrastructure capacity of even some large healthcare
organizations. Therefore, healthcare providers might want
to consider cooperatively establishing a cloud computing
service designed to store and process genomic data securely
for the healthcare community. Clinical laboratories must
also consider the cost of sequencing instruments as part of
infrastructure costs. Bench-top instruments used for targeted
sequencing are less expensive and output less data than
instruments that perform WES/WGS. For these reasons,
more laboratories are likely to perform targeted sequencing
before, or instead of, attempting to build infrastructure to
support WES/WGS.

A major challenge to incorporating genomic data into
clinical care is the lack of standards for generating NGS data,
bioinformatics processing, data storage, and clinical decision
support. Standards would promote consistency in data qual-
ity, and adherence to standards would facilitate the routine
use of genomic data in clinical practice, but it is difficult to
create standards when NGS technology and bioinformatics
software are constantly evolving. Further, approaches to
clinical decision support vary across healthcare institutions
[30]. In a survey of 17 health centers participating in theCSER
program or the eMERGE network, most centers did not
have active clinical decision support for genetic data in the
EHR although there were existing mechanisms for clinically
actionable information to trigger alerts in the majority of
the EHR systems [95]. Centers with active clinical decision
support either built their own software locally or customized
the clinical decision support capabilities of commercial EHR
software [30].Most centers reported that genetics results were
available as a portable document format (PDF) file in the
EHR and recommended the development of clinical decision
support for disease-defining and pharmacogenetics variants
and creation of a clinical decision support knowledge base
to advise on appropriate clinical actions (e.g., a change in
treatment).

Appropriately integrating EHRs with genomic data for
the discovery of clinically actionable variants can generate
new insights into disease mechanisms and provide bet-
ter predictions about effective treatments, all leading to
improved targeting of interventions to patients. To generate
knowledge on the nature of disease from comprehensive
EHR data, new methods such as machine learning, natural
language processing, and other artificial intelligencemethods
are needed. However not all patients are likely to benefit
from the use of big data in healthcare due to our current
knowledge gaps on how to extract useful information from
large-volume genomic and clinical data and how to interpret
discovered genetic variants appropriately. At the same time,
targeted therapies are not yet available for many important
genes, and regulatory issues need to be resolved before some
useful bioinformatics tools can be applied in a healthcare
setting.
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Finally, as EHRs are extremely personal, measures to
protect patient data have to be put in place to make certain
that patient information is only shared with those who need
to see it. Despite this challenge, the potential advantages
that genomic data can bring to healthcare far outweigh the
potential disadvantages. The growing trend towards integra-
tion of genomic data and EHRs will cause concern, but as
long as patient privacy and data security can be rigorously
maintained, genomic data is certain to play an essential role
in precision medicine.

8. Conclusion

To reach the goal of precision medicine, healthcare insti-
tutions need to invest in a bioinformatics infrastructure
and in personnel trained in bioinformatics and genetics, to
develop the capacity to process, store, and interpret genomic
data and to link these data with EHRs. In addition, more
efforts are needed to distinguish genetic variants that are
truly clinically actionable; that is, the variants are useful
for guiding clinical decisions regarding interventions to
improve health outcomes. Clinical research studies of the
implementation of genomic data in healthcare can provide
valuable lessons about how genomic data should bemanaged,
and patient privacy protected, when incorporating genomic
data into clinical practice on a larger scale. These lessons
can alert healthcare institutions to the scientific and technical
challenges of using genomic data in precision medicine.
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