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We study the existence of periodic solutions for third-order nonlinear differential equations. The method of proof relies on
Schauder’s fixed point theorem applied in a novel way, where the original equation is transformed into second-order integrod-
ifferential equation through a linear integral operator. Finally, examples are presented to illustrate applications of the main results.

1. Introduction

Questions on the existence and the multiplicity of periodic
solutions are important topics in qualitative analysis of dif-
ferential equations. Much work related to periodic solutions
for second-order differential equations has been done by
using various theorems and methods of nonlinear functional
analysis; see [1–10] and references therein. In this paper, we
investigate existence of periodic solutions of the following
differential equation:

𝑢


(𝑡) = 𝑔 (𝑢 (𝑡)) − 𝑓 (𝑡, 𝑢 (𝑡)) , (1)

where 𝑔(𝑢) : 𝑅 → 𝑅, 𝑓(𝑡, 𝑢) is 𝜔-periodic in 𝑡, and 𝜔 >
0. Third-order differential equations of the above type arise,
for example, in various fields of agriculture, biology, eco-
nomics, and physics [11–14]. Questions related to this class
of differential equations have recently attracted considerable
attention from the researcher community; see, for example,
[15–19].

A naive idea in study of higher-order (in particular third-
order) differential equations is to translate the equation into
a first-order system of differential equations by defining 𝑥

1
=

𝑥, 𝑥
2
= 𝑥

, 𝑥
3
= 𝑥

, . . .. This method works well, if the task

is to show the existence of periodic solutions.However, it does
not obviously lead to existence proofs for positive periodic

solutions, since the condition 𝑥 = 𝑥
1
≥ 0 of positivity for

the higher-order equation is different from the natural pos-
itivity condition (𝑥

1
, 𝑥
2
, . . . ≥ 0) for the corresponding sys-

tem.
Another frequently used approach is to transform the

third-order equation into a corresponding integral equation
and to establish the existence of positive periodic solutions
based on a fixed point theorem in cones. In order to follow
this path, one needs an explicit representation of Green’s
function for corresponding ordinary equation; see [20, 21].
In [20], Agarwal gave the explicit Green function for the 𝑛th-
order and 2𝑚th-order differential equations. Futhermore,
Anderson has studied Green’s function for a third-order
boundary value problem in [21].

It should be noted that (1) includes many important
models. For example, it arises in many fields of science and
technology, such as physics, mechanics, and engineering. We
refer the reader to [22–27] for recent results on such models.

The main purpose of this paper is to show the existence
of periodic solutions of (1) by means of Schauder’s fixed point
theorem. The method of proof used in this paper is based on
a simple but novel idea, and it consists of two steps as follows.

(1) Thefirst step is to transform the original equation into
a second-order integrodifferential equation through a
linear integral operator.
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(2) The second step is to apply Schauder’s fixed point
theorem.

After the above steps, the existence of a single periodic
solution for (1) has been established under suitable behavior
of functions 𝑔 and 𝑓 on some closed set. In addition, some
information on the location of a periodic solution is obtained,
leading to results on the multiplicity of solutions. To our
belief, neither this method nor similar results can be found
in the literature.

The paper is organized as follows. In Section 2 we intro-
duce a lemma, which is crucial in proving the main results.
Section 3 is devoted to the existence results on solutions of
(1). In Section 4 we give some examples to illustrate potential
applications of the main results.

2. Preliminaries

Let𝑋 = {𝑢 ∈ 𝐶(𝑅, 𝑅) : 𝑢(𝑡 + 𝜔) = 𝑢(𝑡) for all 𝑡 ∈ 𝑅} with the
norm ‖𝑢‖ = max

𝑡∈[0,𝜔]
|𝑢(𝑡)|; then𝑋 is a Banach space.

Let 𝑝 > 0, ℎ
1
, ℎ
2
∈ 𝑋, and consider the following two

differential equations:

𝑢

− 𝑝𝑢

+ 𝑝
2
𝑢 = ℎ
1
(𝑡) , (2)

𝑢

+ 𝑝𝑢

+ 𝑝
2
𝑢 = ℎ
2
(𝑡) . (3)

Lemma 1. Assume that 0 < 𝑝𝜔 < 2𝜋/√3. Then (2) has a
unique 𝜔-periodic solution 𝑢 satisfying

𝑢 (𝑡) = ∫

𝜔

0

𝐺 (𝑡, 𝑠) ℎ
1
(𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝜔] , (4)

and (3) has a unique 𝜔-periodic solution �̂� satisfying

�̂� (𝑡) = ∫

𝜔

0

𝐻(𝑡, 𝑠) ℎ
2
(𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝜔] , (5)

where

𝐺 (𝑡, 𝑠)

=

1

𝐴

⋅

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑒
(𝑝/2)(𝜔+𝑡−𝑠)

⋅ [sin
√3

2

𝑝 (𝜔 + 𝑡 − 𝑠) + 𝑒
(𝑝/2)𝜔 sin

√3

2

𝑝 (𝑠 − 𝑡)] ,

0 ≤ 𝑡 ≤ 𝑠,

𝑒
(𝑝/2)(𝜔+𝑡−𝑠)

⋅ [sin
√3

2

𝑝 (𝜔 + 𝑠 − 𝑡) + 𝑒
−(𝑝/2)𝜔 sin

√3

2

𝑝 (𝑡 − 𝑠)] ,

𝑡 ≥ 𝑠,

𝐻 (𝑡, 𝑠)

=

1

𝐵

⋅

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑒
−(𝑝/2)(𝜔+𝑡−𝑠)

⋅ [sin
√3

2

𝑝 (𝜔 + 𝑡 − 𝑠) + 𝑒
−(𝑝/2)𝜔 sin

√3

2

𝑝 (𝑠 − 𝑡)] ,

0 ≤ 𝑡 ≤ 𝑠,

𝑒
−(𝑝/2)(𝜔+𝑡−𝑠)

⋅ [sin
√3

2

𝑝 (𝜔 + 𝑠 − 𝑡) + 𝑒
(𝑝/2)𝜔 sin

√3

2

𝑝 (𝑡 − 𝑠)] ,

𝑡 ≥ 𝑠,

𝐴 = √3(

1 + 𝑒
𝑝𝜔

2

− 𝑒
(𝑝/2)𝜔 cos

√3

2

𝑝𝜔)𝑝 > 0,

𝐵 = √3(

1 + 𝑒
−𝑝𝜔

2

− 𝑒
−(𝑝/2)𝜔 cos

√3

2

𝑝𝜔)𝑝 > 0.

(6)

Proof. We only consider (2). Let 𝑢
1
, 𝑢
2
be two 𝜔-periodic

solutions of (2). Then, 𝑢∗ = 𝑢
1
− 𝑢
2
is 𝜔-periodic solution

of the differential equation

𝑢

− 𝑝𝑢

+ 𝑝
2
𝑢 = 0. (7)

Note that 𝑢∗ can be written as

𝑢
∗
= 𝑐
1
𝑒
(𝑝/2)𝑡 cos

√3

2

𝑝𝑡 + 𝑐
2
𝑒
(𝑝/2)𝑡 sin

√3

2

𝑝𝑡. (8)

From 𝑢∗(𝑖)(0) = 𝑢∗(𝑖)(𝜔), 𝑖 = 0, 1, we obtain 𝑐
1
= 𝑐
2
= 0. Thus

𝑢
1
= 𝑢
2
.

Next, we show that

𝑢

− 𝑝𝑢

+ 𝑝
2
𝑢 = ℎ
1
(𝑡) , 𝑡 ∈ [0, 𝜔] ,

𝑢
(𝑖)

(0) = 𝑢
(𝑖)

(𝜔) , 𝑖 = 0, 1.

(9)

By direct computation, we get

𝑢


(𝑡)

=

𝑝

2𝐴

⋅ ∫

𝑡

0

𝑒
(𝑝/2)(𝜔+𝑡−𝑠)

ℎ
1
(𝑠)

⋅ (sin
√3

2

𝑝 (𝜔 + 𝑠 − 𝑡) + 𝑒
−𝑝𝜔/2 sin

√3𝑝

2

(𝑡 − 𝑠)) 𝑑𝑠

+

√3𝑝

2𝐴

⋅ ∫

𝑡

0

𝑒
(𝑝/2)(𝜔+𝑡−𝑠)

ℎ
1
(𝑠)

⋅ (− cos
√3

2

𝑝 (𝜔 + 𝑠 − 𝑡) + 𝑒
−𝑝𝜔/2 cos

√3𝑝

2

(𝑡 − 𝑠)) 𝑑𝑠
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+

𝑝

2𝐴

⋅ ∫

𝜔

𝑡

𝑒
(𝑝/2)(𝜔+𝑡−𝑠)

ℎ
1
(𝑠)

⋅ (sin
√3

2

𝑝 (𝜔 + 𝑡 − 𝑠) + 𝑒
𝑝𝜔/2 sin

√3𝑝

2

(𝑠 − 𝑡)) 𝑑𝑠

+

√3𝑝

2𝐴

⋅ ∫

𝜔

𝑡

𝑒
(𝑝/2)(𝜔+𝑡−𝑠)

ℎ
1
(𝑠)

⋅ (cos
√3

2

𝑝 (𝜔 + 𝑡 − 𝑠) − 𝑒
𝑝𝜔/2 cos

√3𝑝

2

(𝑠 − 𝑡)) 𝑑𝑠,

𝑢


(𝑡)

= −

𝑝
2

2𝐴

⋅ ∫

𝑡

0

𝑒
(𝑝/2)(𝜔+𝑡−𝑠)

ℎ
1
(𝑠)

⋅ (sin
√3

2

𝑝 (𝜔 + 𝑠 − 𝑡) + 𝑒
−𝑝𝜔/2 sin

√3𝑝

2

(𝑡 − 𝑠)) 𝑑𝑠

+

√3𝑝
2

2𝐴

⋅ ∫

𝑡

0

𝑒
(𝑝/2)(𝜔+𝑡−𝑠)

ℎ
1
(𝑠)

⋅ (− cos
√3

2

𝑝 (𝜔 + 𝑠 − 𝑡) + 𝑒
−𝑝𝜔/2 cos

√3𝑝

2

(𝑡 − 𝑠)) 𝑑𝑠

−

𝑝
2

2𝐴

⋅ ∫

𝜔

𝑡

𝑒
(𝑝/2)(𝜔+𝑡−𝑠)

ℎ
1
(𝑠)

⋅ (sin
√3

2

𝑝 (𝜔 + 𝑡 − 𝑠) + 𝑒
𝑝𝜔/2 sin

√3𝑝

2

(𝑠 − 𝑡)) 𝑑𝑠

+

√3𝑝
2

2𝐴

⋅ ∫

𝜔

𝑡

𝑒
(𝑝/2)(𝜔+𝑡−𝑠)

ℎ
1
(𝑠)

⋅ (cos
√3

2

𝑝 (𝜔 + 𝑡 − 𝑠) − 𝑒
𝑝𝜔/2 cos

√3𝑝

2

(𝑠 − 𝑡)) 𝑑𝑠.

(10)

Hence, we have

𝑢

− 𝑝𝑢

+ 𝑝
2
𝑢 = ℎ
1
(𝑡) . (11)

Moreover, it is easy to check that 𝑢(𝑖)(0) = 𝑢(𝑖)(𝜔), 𝑖 = 0, 1.

Remark 2. If 0 < 𝑝𝜔 < 2𝜋/√3, then

𝐺 (𝑡, 𝑠) > 0, 𝐻 (𝑡, 𝑠) > 0, 𝑡, 𝑠 ∈ [0, 𝜔] . (12)

Remark 3. Consider

∫

𝜔

0

𝐺 (𝑡, 𝑠) 𝑑𝑠 =

1

𝑝
2
, ∫

𝜔

0

𝐻(𝑡, 𝑠) 𝑑𝑠 =

1

𝑝
2
. (13)

Define two operators 𝑇, 𝑆 : 𝐶0(𝑋) → 𝐶
2
(𝑋) by

𝑇 : ℎ
1
→ 𝑢 (𝑡) = 𝑇ℎ

1
,

𝑆 : ℎ
2
→ �̂� (𝑡) = 𝑆ℎ

2
.

(14)

From Lemma 1, one can easily check that 𝑇, 𝑆 are compact,
increasing operators for 0 < 𝑝𝜔 < 2𝜋/√3.

Remark 4. If ℎ ≡ 𝑐 is a constant function, then

𝑇ℎ =

𝑐

𝑝
2
, 𝑆ℎ =

𝑐

𝑝
2
, (15)

for 0 < 𝑝𝜔 < 2𝜋/√3.
Next, we define two operators 𝐽 and𝐾 on𝑋 by

(𝐽𝑢) (𝑡) = ∫

𝑡+𝜔

𝑡

𝑒
(𝑠−𝑡)𝑝

𝑒
𝑝𝜔
− 1

𝑢 (𝑠) 𝑑𝑠, 𝑢 ∈ 𝑋,

(𝐾𝑢) (𝑡) = ∫

𝑡+𝜔

𝑡

𝑒
(𝑡+𝜔−𝑠)𝑝

𝑒
𝑝𝜔
− 1

𝑢 (𝑠) 𝑑𝑠, 𝑢 ∈ 𝑋,

(16)

where 𝑝 > 0 is a constant. For any 𝑢 ∈ 𝑋, 𝐽𝑢 ∈ 𝑋 ∩ 𝐶1(𝑅)
and𝐾𝑢 ∈ 𝑋 ∩ 𝐶1(𝑅).

Lemma 5. If 𝑢 ∈ 𝑋 ∩ 𝐶2(𝑅) satisfies the differential equation

𝑢

− 𝑝𝑢

+ 𝑝
2
𝑢 = 𝑔 (𝐽𝑢) − 𝑓 (𝑡, 𝐽𝑢) + 𝑝

3

(𝐽𝑢) , (17)

then 𝐽𝑢 is a 𝜔-periodic solution of (1).
If 𝑢 ∈ 𝑋 ∩ 𝐶2(𝑅) satisfies the differential equation

−𝑢

− 𝑝𝑢

− 𝑝
2
𝑢 = 𝑔 (𝐾𝑢) − 𝑓 (𝑡, 𝐾𝑢) − 𝑝

3

(𝐾𝑢) , (18)

then 𝐾𝑢 is a 𝜔-periodic solution of (1).

Proof. Note that

(𝐽𝑢) (𝑡 + 𝜔)

= ∫

𝑡+2𝜔

𝑡+𝜔

𝑒
(𝑠−𝑡−𝜔)𝑝

𝑒
𝑝𝜔
− 1

𝑢 (𝑠) 𝑑𝑠

= ∫

𝑡+𝜔

𝑡

𝑒
(𝑟−𝑡)𝑝

𝑒
𝑝𝜔
− 1

𝑢 (𝑟 + 𝜔) 𝑑𝑟

= (𝐽𝑢) (𝑡) , 𝑢 ∈ 𝑋,

(𝐽𝑢)


(𝑡) = −𝑝 (𝐽𝑢) (𝑡) + 𝑢 (𝑡) .

(19)

If 𝑢 ∈ 𝑋 ∩ 𝐶1(𝑅), 𝐽𝑢 ∈ 𝑋 ∩ 𝐶2(𝑅) and

(𝐽𝑢)


(𝑡) = −𝑝 (𝐽𝑢)


(𝑡) + 𝑢


(𝑡)

= 𝑝
2

(𝐽𝑢) (𝑡) − 𝑝𝑢 (𝑡) + 𝑢


(𝑡) .

(20)
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If 𝑢 ∈ 𝑋 ∩ 𝐶2(𝑅), 𝐽𝑢 ∈ 𝑋 ∩ 𝐶3(𝑅) and

(𝐽𝑢)


(𝑡) = 𝑝
2
(−𝑝 (𝐽𝑢) (𝑡) + 𝑢 (𝑡)) − 𝑝𝑢



(𝑡) + 𝑢


(𝑡)

= −𝑝
3

(𝐽𝑢) (𝑡) + 𝑝
2
𝑢 (𝑡) − 𝑝𝑢



(𝑡) + 𝑢


(𝑡) .

(21)

Hence

(𝐽𝑢)


(𝑡) + 𝑝
3

(𝐽𝑢) (𝑡) = 𝑢


(𝑡) − 𝑝𝑢


(𝑡) + 𝑝
2
𝑢 (𝑡) . (22)

If
𝑢


(𝑡) − 𝑝𝑢


(𝑡) + 𝑝
2
𝑢 (𝑡)

= ℎ ((𝐽𝑢) (𝑡)) := 𝑔 ((𝐽𝑢) (𝑡)) − 𝑓 (𝑡, (𝐽𝑢) (𝑡))

+ 𝑝
3

(𝐽𝑢) (𝑡) ,

(23)

then

(𝐽𝑢)


(𝑡) + 𝑝
3

(𝐽𝑢) (𝑡)

= 𝑔 ((𝐽𝑢) (𝑡)) − 𝑓 (𝑡, (𝐽𝑢) (𝑡)) + 𝑝
3

(𝐽𝑢) (𝑡) .

(24)

If 𝑢 ∈ 𝑋 ∩ 𝐶2(𝑅) satisfies (17), we have

(𝐽𝑢)


(𝑡) = 𝑔 ((𝐽𝑢) (𝑡)) − 𝑓 (𝑡, (𝐽𝑢) (𝑡)) . (25)

Hence, 𝐽𝑢 is a 𝜔-periodic solution of (1).
On the other hand, we have

(𝐾𝑢)


(𝑡) = 𝑝 (𝐾𝑢) (𝑡) − 𝑢 (𝑡) . (26)

If 𝑢 ∈ 𝑋 ∩ 𝐶1(𝑅), then 𝐾𝑢 ∈ 𝑋 ∩ 𝐶2(𝑅) and

(𝐾𝑢)


(𝑡) = 𝑝 (𝐾𝑢)


(𝑡) − 𝑢


(𝑡)

= 𝑝
2

(𝐾𝑢) (𝑡) − 𝑝𝑢 (𝑡) − 𝑢


(𝑡) .

(27)

From the above, we see that if 𝑢 ∈ 𝑋 ∩ 𝐶2(𝑅), then 𝐾𝑢 ∈
𝑋 ∩ 𝐶

3
(𝑅) and

(𝐾𝑢)


(𝑡) = 𝑝
2
(𝑝 (𝐾𝑢) (𝑡) − 𝑢 (𝑡)) − 𝑝𝑢



(𝑡) − 𝑢


(𝑡)

= 𝑝
3

(𝐾𝑢) (𝑡) − 𝑝
2
𝑢 (𝑡) − 𝑝𝑢



(𝑡) − 𝑢


(𝑡) .

(28)

We have

(𝐾𝑢)


(𝑡) − 𝑝
3

(𝐾𝑢) (𝑡) = −𝑝
2
𝑢 (𝑡) − 𝑝𝑢



(𝑡) − 𝑢


(𝑡) .

(29)

If

− (𝑢


(𝑡) + 𝑝𝑢


(𝑡) + 𝑝
2
𝑢 (𝑡))

= ℎ ((𝐾𝑢) (𝑡))

:= 𝑔 ((𝐾𝑢) (𝑡)) − 𝑓 (𝑡, (𝐾𝑢) (𝑡)) − 𝑝
3

(𝐾𝑢) (𝑡) ,

(30)

then

(𝐾𝑢)


(𝑡) − 𝑝
3

(𝐾𝑢) (𝑡)

= 𝑔 ((𝐾𝑢) (𝑡)) − 𝑓 (𝑡, (𝐾𝑢) (𝑡)) − 𝑝
3

(𝐾𝑢) (𝑡) .

(31)

If 𝑢 ∈ 𝑋 ∩ 𝐶2(𝑅) satisfies (18), we have

(𝐾𝑢)


(𝑡) = 𝑔 ((𝐾𝑢) (𝑡)) − 𝑓 (𝑡, (𝐾𝑢) (𝑡)) . (32)

Hence, 𝐾𝑢 is a 𝜔-periodic solution of (1).

Lemma 6 (see [28]). Let 𝑋 be a Banach space so that 𝐷 ⊂ 𝑋
is closed and convex. Assume that 𝑇 : 𝐷 → 𝐷 is a completely
continuous operator. Then 𝑇 has a fixed point in𝐷.

3. Main Results

The following theorems are the main results of this paper.

Theorem 7. Assume that there exist constants 𝑚 < 𝑀 such
that

(𝐻
1
) 𝑔 ∈ 𝐶

1
[𝑚,𝑀] and 𝑔(𝑢) < (2𝜋/√3𝜔)3 in 𝑢 ∈ [𝑚,𝑀];

(𝐻
2
) 𝑓(𝑡, 𝑢) ∈ 𝐶(𝑅 × [𝑚,𝑀]) and

𝑔 (𝑚) ≤ 𝑓 (𝑡, 𝑢) ≤ 𝑔 (𝑀) (33)

for any (𝑡, 𝑢) ∈ 𝑅 × [𝑚,𝑀].
Then (1) has at least one 𝜔-periodic solution 𝑢 with 𝑚 ≤

𝑢 ≤ 𝑀.

Proof. From (𝐻
1
), we obtain that there exists a constant 𝑝 ∈

(0, 2𝜋/√3𝜔) with 𝑔(𝑢) < 𝑝3 in 𝑢 ∈ [𝑚,𝑀]. Consider the
differential equation

𝑢

+ 𝑝𝑢

+ 𝑝
2
𝑢 = 𝑓 (𝑡, 𝐾𝑢) + 𝑝

3

(𝐾𝑢) − 𝑔 (𝐾𝑢) . (34)

From Lemma 1 we see that if 𝑢 is a solution of (34), then 𝑢
satisfies

𝑢 = (𝑆 ∘ 𝑊) 𝑢, (35)

where 𝑆 ∘𝑊 is composition of 𝑆 defined by (𝑆 ∘𝑊)𝑢 = 𝑆(𝑊𝑢)
and the operator𝑊 is defined by

(𝑊𝑢) (𝑡) = 𝑓 (𝑡, 𝐾𝑢) + 𝑝
3

(𝐾𝑢) − 𝑔 (𝐾𝑢) . (36)

Set Ω = {𝑢 ∈ 𝑋 : 𝑝𝑚 ≤ 𝑢(𝑡) ≤ 𝑝𝑀, 𝑡 ∈ 𝑅}. For all
𝑢 ∈ Ω, we have 𝑚 ≤ 𝐾𝑢 ≤ 𝑀. Put 𝐺(𝑢) = 𝑝3𝑢 − 𝑔(𝑢); then
𝐺

(𝑢) = 𝑝

3
− 𝑔

(𝑢) > 0 for 𝑢 ∈ [𝑚,𝑀]. Thus

𝑝
3
𝑚 − 𝑔 (𝑚) ≤ 𝐺 (𝑢) ≤ 𝑝

3
𝑀− 𝑔 (𝑀) (37)

for any 𝑢 ∈ [𝑚,𝑀]. Hence, for all 𝑢 ∈ Ω,

𝑝
3
𝑚 − 𝑔 (𝑚) ≤ 𝐺 (𝐾𝑢) = 𝑝

3

(𝐾𝑢) (𝑡) − 𝑔 ((𝐾𝑢) (𝑡))

≤ 𝑝
3
𝑀− 𝑔 (𝑀) .

(38)

Using (𝐻
2
), we obtain that, for all 𝑢 ∈ Ω,

(𝑊𝑢) (𝑡) = 𝑝
3

(𝐾𝑢) − 𝑔 (𝐾𝑢) + 𝑓 (𝑡, 𝐾𝑢)

≤ 𝑝
3
𝑀− 𝑔 (𝑀) + 𝑓 (𝑡, 𝐾𝑢) ≤ 𝑝

3
𝑀,

(𝑊𝑢) (𝑡) = 𝑝
3
𝐾𝑢 (𝑡) − 𝑔 (𝐾𝑢) + 𝑓 (𝑡, 𝐾𝑢)

≥ 𝑝
3
𝑚 − 𝑔 (𝑚) + 𝑓 (𝑡, 𝐾𝑢) ≥ 𝑝

3
𝑚.

(39)

Since 𝑆 is an increasing operator, we obtain that, for 𝑢 ∈ Ω,

𝑆 (𝑝
3
𝑚) ≤ (𝑆 ∘ 𝑊) 𝑢 ≤ 𝑆 (𝑝

3
𝑀) . (40)
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By Remark 4, we have

𝑝𝑚 ≤ (𝑆 ∘ 𝑊) 𝑢 ≤ 𝑝𝑀 (41)

for 𝑢 ∈ Ω; that is, (𝑆 ∘ 𝑊)(Ω) ⊂ Ω.
Also, from the facts that 𝑆 is completely continuous and

𝑊 is continuous it follows that 𝑆∘𝑊 : Ω → Ω is a continuous
and compact map. By Lemma 6, 𝑆 ∘ 𝑊 has at least one fixed
point 𝑢 inΩ and𝑚 ≤ 𝐾𝑢 ≤ 𝑀 is periodic solution of (1).The
proof is complete.

Theorem 8. Assume that there exist constants 𝑚 < 𝑀 such
that

(𝐻
3
) 𝑔 ∈ 𝐶

1
[𝑚,𝑀] and 𝑔(𝑢) ≥ −(2𝜋/√3𝜔)

3 in 𝑢 ∈
[𝑚,𝑀];

(𝐻
4
) 𝑓(𝑡, 𝑢) ∈ 𝐶(𝑅 × [𝑚,𝑀]) and

𝑔 (𝑀) ≤ 𝑓 (𝑡, 𝑢) ≤ 𝑔 (𝑚) (42)

for any (𝑡, 𝑢) ∈ 𝑅 × [𝑚,𝑀].
Then (1) has at least one 𝜔-periodic solution 𝑢 with 𝑚 ≤

𝑢 ≤ 𝑀.

Proof. From (𝐻
3
), we obtain that there exists a constant 𝑝 ∈

(0, 2𝜋/√3𝜔) with 𝑔(𝑢) ≥ −𝑝3 in 𝑢 ∈ [𝑚,𝑀]. Consider the
differential equation

𝑢

− 𝑝𝑢

+ 𝑝
2
𝑢 = 𝑔 (𝐽𝑢) − 𝑓 (𝑡, 𝐽𝑢) + 𝑝

3

(𝐽𝑢) . (43)

From Lemma 1, if 𝑢 is a solution of (43), 𝑢 satisfies

𝑢 = (𝑇 ∘ 𝑉) 𝑢, (44)

where 𝑇 ∘ 𝑉 is composition of 𝑇 and 𝑉 defined as (𝑇 ∘ 𝑉)𝑢 =
𝑇(𝑉𝑢), and the operator 𝑉 is defined as

(𝑉𝑢) (𝑡) = 𝑔 (𝐽𝑢) + 𝑝
3

(𝐽𝑢) − 𝑓 (𝑡, 𝐽𝑢) . (45)

Set Ω = {𝑢 ∈ 𝑋 : 𝑝𝑚 ≤ 𝑢(𝑡) ≤ 𝑝𝑀, 𝑡 ∈ 𝑅}, where 𝑝 ∈
(0, 2𝜋/√3𝜔) with 𝑔(𝑢) ≥ −𝑝3 in [𝑚,𝑀]. We set 𝐼(𝑢) = 𝑢 +
(1/𝑝
3
)𝑔(𝑢); then 𝐼(𝑢) = 1 + (1/𝑝3)𝑔(𝑢) ≥ 0; we have

𝑚 +

1

𝑝
3
𝑔 (𝑚) ≤ 𝐼 (𝑢) ≤ 𝑀 +

1

𝑝
3
𝑔 (𝑀) , (46)

for any 𝑢 ∈ [𝑚,𝑀]. Hence, for all 𝑢 ∈ Ω, we have

𝑚 +

1

𝑝
3
𝑔 (𝑚) ≤ 𝐼 (𝐽𝑢) ≤ 𝑀 +

1

𝑝
3
𝑔 (𝑀) . (47)

Using (𝐻
4
), we obtain that, for all 𝑢 ∈ Ω,

(𝑉𝑢) (𝑡) = 𝑝
3

(𝐽𝑢) + 𝑔 (𝐽𝑢) − 𝑓 (𝑡, 𝐽𝑢)

≤ 𝑝
3
𝑀+ 𝑔 (𝑀) − 𝑓 (𝑡, 𝐽𝑢) ≤ 𝑝

3
𝑀,

(𝑉𝑢) (𝑡) = 𝑝
3

(𝐽𝑢) + 𝑔 (𝐽𝑢) − 𝑓 (𝑡, 𝐽𝑢)

≥ 𝑝
3
𝑚 + 𝑔 (𝑚) − 𝑓 (𝑡, 𝐽𝑢) ≥ 𝑝

3
𝑚.

(48)
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Figure 1: A numerical approximation to a 2-periodic solution to
(51). The approximation is obtained by using the built-in NDsolve
function of Mathematica 10.

Since 𝑇 is an increasing operator, we obtain that, for 𝑢 ∈ Ω,

𝑇 (𝑝
3
𝑚) ≤ (𝑇 ∘ 𝑉) 𝑢 ≤ 𝑇 (𝑝

3
𝑀) . (49)

By Remark 4, we have

𝑝𝑚 ≤ (𝑇 ∘ 𝑉) 𝑢 ≤ 𝑝𝑀 (50)

for 𝑢 ∈ Ω; that is, (𝑇 ∘ 𝑉)(Ω) ⊂ Ω.
Also, from the facts that 𝑇 is completely continuous and

𝑉 is continuous, it follows that𝑇∘𝑉 : Ω → Ω is a continuous
and compact map. By Lemma 6, 𝑇 ∘ 𝑉 has at least one fixed
point inΩ. The proof is complete.

4. Some Examples

In this section, two examples are provided to highlight
potential applications of the results obtained in the previous
section.

Example 1. Consider the differential equation

𝑥

= sin𝑥 − cos (𝜋𝑡 + 𝑥2) . (51)

Note that here

𝑔 (𝑥) = sin𝑥, 𝜔 = 2, 𝑓 (𝑡, 𝑥) = cos (𝜋𝑡 + 𝑥2) ,

𝑔


(𝑥) ≤ 1 < (

2𝜋

√3𝜔

)

3

, ∀𝑥 ∈ 𝑅.

(52)

Letting𝑀 = 2𝑛𝜋 + (1/2)𝜋, 𝑚 = 2𝑛𝜋 − 𝜋/2, 𝑛 ∈ 𝑍,

𝑔 (𝑚) = −1 ≤ 𝑓 (𝑡, 𝑥) ≤ 1 = 𝑔 (𝑀) . (53)

By Theorem 7, (51) has infinitely many 2-periodic solutions.
One such solution is illustrated in Figure 1.

Example 2. Consider the differential equation

𝑥

=

1

2

𝑥 (𝑥 − 1) −

1

20

𝑒
𝑥
2
/2+sin 2𝑡/2

. (54)
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Figure 2: A numerical approximation of a 𝜋-periodic solution to
(54). The approximation is obtained by using the built-in NDsolve
function of Mathematica 10.

We claim that (54) has at least two 𝜋-periodic solutions.
Note that here

𝑔 (𝑥) =

1

2

𝑥 (𝑥 − 1) , 𝑓 (𝑡, 𝑥) =

1

20

𝑒
𝑥
2
/2+sin 2𝑡/2

,

𝜔 = 𝜋.

(55)

Let𝑚
1
= −1/2,𝑀

1
= 1/2,𝑚

2
= 1, and𝑀

2
= 2. Then

𝑔


(𝑥) = 𝑥 −

1

2

≥ −1 > −(

2𝜋

√3𝜔

)

3

, ∀𝑥 ∈ [𝑚
1
,𝑀
1
] ,

𝑔


(𝑥) = 𝑥 −

1

2

≤

3

2

< (

2𝜋

√3𝜔

)

3

, ∀𝑥 ∈ [𝑚
2
,𝑀
2
] ,

𝑔 (𝑀
1
) = −

1

8

, 𝑔 (𝑚
1
) =

1

8

,

𝑔 (𝑀
2
) = 1, 𝑔 (𝑚

2
) = 0,

𝑔 (𝑀
1
) <

1

20

< 𝑓 (𝑡, 𝑥) ≤

1

20

𝑒
5/8
<

1

8

= 𝑔 (𝑚
1
) ,

∀𝑥 ∈ [𝑚
1
,𝑀
1
] ,

𝑔 (𝑚
2
) < 𝑓 (𝑡, 𝑥) ≤

1

20

𝑒
5/2
< 1 = 𝑔 (𝑀

2
) ,

∀𝑥 ∈ [𝑚
2
,𝑀
2
] .

(56)

By Theorems 7 and 8, (54) has at least two 𝜋-periodic
solutions 𝑥

𝑖
∈ [𝑚

𝑖
,𝑀
𝑖
], 𝑖 = 1, 2. One such solution is

illustrated in Figure 2.
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