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A theoretic formulation on how traffic time information distributed by ITS operations influences the trajectory of network flows is
presented in this paper. The interactions between users and ITS operator are decomposed into three parts: (i) travel time induced
path flow dynamics (PFDTT); (ii) demand induced path flow dynamics (PFDD); and (iii) predicted travel time dynamics for
an origin-destination (OD) pair (PTTDOD). PFDTT describes the collective results of user’s daily route selection by pairwise
comparison of path travel time provided by ITS services. The other two components, PTTDOD and PFDD, are concentrated on
the evolutions of system variables which are predicted and observed, respectively, by ITS operators to act as a benchmark in guiding
the target system towards an expected status faster. In addition to the delivered modelings, the stability theorem of the equilibrium
solution in the sense of Lyapunov stability is also provided. A Lyapunov function is developed and employed to the proof of stability
theorem to show the asymptotic behavior of the aimed system.The information of network flow dynamics plays a key role in traffic
control policy-making.The evaluation of ITS-based strategieswill not be reasonablewithout awell-establishedmodeling of network
flow evolutions.

1. Introduction

In general, a realizable adjustment process of network flowvia
intelligent transportation systems (ITS) servicesmust include
mechanisms for alleviating congested facilities. Recent devel-
opments in communication and information technologies
offer opportunities for distributing traffic information to
road users and thereby improving system performance. To
evaluate ITS-related strategies, it is essential to design a
mechanism being able to estimate the interaction between
traffic information provision and the corresponding feed-
backs of users. Nonequilibrium approach of dynamic traf-
fic assignment (DTA) provides opportunities to relax the
restrictive equilibrium assumption and to model phenomena
of evolving disequilibria. This inherent property makes it
possible to incorporate ITS-based learning mechanism with

evolutionary system behaviour more flexibly. Experimental
evidence of user decision-making behaviour that involved
100 commuters over a 24-day period had been performed [1,
2].The results of these serial studies revealed that route choice
of commuters had indicated that the learning and adaptive
process for route choice may take weeks. Recently, a similar
experimental study is referred to [3]. However, simulation-
based method cannot provide a satisfied theoretical analysis
of system state to sustain issues of existence, uniqueness, and
stability [4]. In the context of day-to-day network dynamics,
especially in presence of information, it is likely that users’
perception of network performance will vary depending on
their experience, accessibility to ITS, personal attributes, and
so forth. By allowing the weights to vary across individuals,
an extension was used in the experimental study [5, 6].
Acting as an essential role to have the consequent results
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of route choice, various perception models of travel time
were reported [7]. By considering different route choice,
dynamical systemmodels were reported and studied, where a
tatonnement process inmicroeconomic theory formodelling
the transition of disequilibria from one state to another was
examined [8], where a dynamical system composed of non-
linear ordinary differential equations successfully conquering
issues of existence and uniqueness was investigated [9–11].
The adaptive-learning behaviour of commuters was actually
observed in historical studies. Nonequilibrium approaches
are better than equilibrium methods [12–14] with respect
to modelling the temporal evolutions between information
provision and the consequent responses of users. Analytical
techniques own much richness in theoretic issues of system
behaviours. However, a definite treatment of how flows shift
among routes is extremely necessary for evolutionarymodels.
It will be an interesting study for us to model and study day-
to-day flow evolution of an advanced ITS vehicular network.

The focus of this study is to provide a formulation to
describe the daily network flow dynamics interacting with
the travel cost information distributed by intelligent trans-
portation systems. Even the system behavior/characteristics
discussed is assumed to be deterministic, one-day time-lag,
and without perception of uncertainty, it still provides a
simple but essential formulation to illustrate systemdynamics
which a traffic control cannot work without. As already well-
known, there are a lot of mature studies in automatic control
which is basically the same problem nature as dynamic
control in traffic engineering, for example, the 𝐻

∞
fuzzy

control of uncertain active suspension systems [15], the
output feedback 𝐻

∞
control for a class of active quarter-car

suspension systems with control delay [16], and the fault-
tolerant control of Markovian jump stochastic systems [17].
And, there are many studies involving identification and
adaptive control of nonlinear dynamical systems using neural
networks [18–23]. Similar methodology had been applied in
traffic control, for example, [24–26]. It can be found that
all these automatic control based approaches cannot work
without an essential component to describe system dynamics
which is the focus of this study.

This paper attempts to formulate how traffic information
distributed by ITS operations influences the temporal tra-
jectory of network flows in a theoretical viewpoint. Based
on two behavioral assumptions, minimal-travel-time seek-
ing and adaptive-learning process, the interactions between
road users and ITS operator are decomposed into three
parts: travel time induced path flow dynamics (PFDTT),
demand induced path flow dynamics (PFDD), and predicted
travel time dynamics for an origin-destination (OD) pair
(PTTDOD). PFDTT describes the collective results of user’s
daily travel decision by swap to less congested path with
path travel time information provided by ITS services. The
other two components, PTTDOD and PFDD, are concentrated
on the evolutionary behavior of system variables predicted
by ITS operators to act as a benchmark in guiding whole
systems towards an expected and preferable status based
on the observed situations by ITS surveillance system. In
addition to the delivered modeling, the stability theorem of
the equilibrium solution in the sense of Lyapunov stability

is developed and a Lyapunov function is provided and
employed to the proof of stability theorem to show the
asymptotic behavior of the whole system theoretically. This
paper is organized as follows. In Section 2, the proposed
model is fully described. Issues of stability are prepared in
Section 3.The conclusions of this study are given in Section 4.

2. Modelling Network Dynamics

2.1. Assumptions and General Structure of Dynamics. The
main assumptions are: (i) the minimal-travel-time seeking;
and (ii) the adaptive-learning behaviour of daily commuters
with previous experience and information, together with full
travel time information distributed by ITS to determine the
shifting preference of path flow. A structure of stimulus-
response relationship (SR) is now given by

response (𝑡 + 𝑇
𝐿
) = sensivity × stimulus (𝑡) , (1)

which is interpreted as a laggard response (𝑇
𝐿
lag) in pro-

portion to the magnitude of stimulus at time 𝑡. A well-
known application of SR in traffic analysis is the car-following
model [27]. The car-following behaviour is formulated as the
responsive actions (acceleration or deceleration of the follow-
ing car) resulting from the stimulus, the perceived velocity
difference between the leading vehicle and the following one.
To deal with the interaction between information provision
and the follow-up travel decisions in the SR-like structure,
three assumptions are established: (i) all responses and
stimuli discussed hereinafter are macroscopic and divided
into two clusters, users and operator; (ii) the response is
defined as the time change rate of system variable with one-
day lag and denoted as a function of stimulus and sensitivity;
and (iii) the stimulus is specified as the difference between
experienced (or observed) status and expected (or predicted)
status for a system variable. The basic structure of network
dynamics is

�̇�
𝑡

𝑖
≡ 𝐹
𝑖
(𝑆𝑒
𝑖
, 𝑆𝑡
𝑡

𝑖
) ,

𝑆𝑡
𝑡

𝑖
≡ 𝑥
𝑡

𝑖
− 𝑥
𝑡

𝑖
,

(2)

where �̇�𝑡
𝑖
is the time change rate (time derivative) of system

variable 𝑖 at day 𝑡; 𝑆𝑡𝑡
𝑖
is the stimulus 𝑖 at day 𝑡; 𝑆𝑒

𝑖
is

the sensitivity of system variable 𝑖 due to 𝑆𝑡𝑡
𝑖
; 𝐹
𝑖
(𝑆𝑒
𝑖
, 𝑆𝑡
𝑡

𝑖
) is

a function to transform stimulus into response; 𝑥𝑡
𝑖
is the

experienced (or observed) status of system variables 𝑖 at day 𝑡
and𝑥𝑡
𝑖
is the expected (or predicted) status of system variables

𝑖 at day 𝑡; 𝑖 is the index of system variable referred to the
concern of either road users or ITS operators; and ̇𝑦 denotes
the time derivative of 𝑦.

2.2. User Dynamics. The first user dynamics are the travel
time induced path flow dynamics, PFDTT. By similar propo-
sition [28], the intention of developing PFDTT is straightfor-
ward that if users wish to improve travel time tomorrow, they
might select a faster path than today. To accomplish this end,
minimal-travel-time seeking and travel time information
provided by ITS operator are necessarily assumed. To fit SR
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structure, we assume that flow shift is related to travel time
difference between two paths:

ℎ̇
𝑤

𝑝,𝑐
≡ ∑

𝑗∈𝑃
𝑤

𝛼
𝑐

𝑤
(𝑐
𝑤

𝑗
− 𝑐
𝑤

𝑝
) ≅ 𝛼
𝑐

𝑤
𝑃
𝑤
(𝑐
𝑤

− 𝑐
𝑤

𝑝
) ,

∀𝑡, 𝑝 ∈ 𝑃
𝑤
, 𝑤 ∈ 𝑊,

(3)

where ℎ̇𝑤
𝑝,𝑐

is the cost-induced path flowdynamics of path𝑝 ∈
𝑃
𝑤
; 𝑃
𝑤
is the path set of OD pair𝑤 containing 𝑃

𝑤
paths;𝑊 is

the set of OD pairs containing𝑊OD pairs; 𝛼𝑐
𝑤
is the positive

parameter to reflect the sensitivity of path flowdynamics with
respect to the cost difference among the paths connectingOD
pair 𝑤; 𝑐𝑤

𝑝
is the cost of path 𝑝 ∈ 𝑃

𝑤
, 𝑐𝑤
𝑝
= ∑
𝑎∈𝐴

𝛿
𝑝

𝑎
𝑐
𝑎
(𝑓
𝑎
),

𝛿
𝑝

𝑎
= 1 if 𝑎 ∈ path 𝑝, zero otherwise, 𝐴 is the arc set, and 𝑓

𝑎

is the flow on link 𝑎; and 𝑐𝑤 is the average of all path costs of

OD pair 𝑤 = 1


𝑐
𝑤

/𝑃
𝑤
, where 𝑐𝑤 = [

𝑐
𝑤

1

.

.

.

𝑐
𝑤

𝑃𝑤

].

The second term of (3) implies the collective effects of
pairwise comparison in a way that gave two paths denoted
by path 𝑗 and path 𝑝; if the cost of path 𝑗 is greater (less) than
path𝑝 at day 𝑡 then path flowwill shift frompath 𝑗 (path𝑝) to
path 𝑝 (path 𝑗) at day 𝑡 + 1. Therefore, the term, 𝛼𝑐

𝑤
(𝑐
𝑤

𝑗
− 𝑐
𝑤

𝑝
),

in ℎ̇𝑤
𝑝,𝑐

is positive (negative). It also results in that the term,
𝛼
𝑐

𝑤
(𝑐
𝑤

𝑝
−𝑐
𝑤

𝑗
), in ℎ̇𝑤

𝑗,𝑐
is negative (positive) at the same time.The

third term in (3) is an approximation of the collective effects
of pairwise comparison if we assumed that the average of path
costs of OD pair 𝑤, 𝑐𝑤, is approximated by the arithmetic
mean of all path costs. Then, we have the following result:
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(4)

It implies immediately that the travel time induced path flow
dynamics (PFDTT) for a path 𝑝 due to the collective effects
of pairwise comparison can be approximated in the sense of
direct comparison between the average of path costs and the
travel cost of path𝑝. Shortly speaking, path flowwill decrease
(increase) next day if the travel cost of a path is greater (less)
than the arithmetic mean of all path costs today.

The link cost function 𝑐
𝑎
(𝑓
𝑎
) is assumed smooth and strict

monotone with respect to the link flow itself. Accordingly,
𝑐
𝑤

𝑝
and 𝑐𝑤, two functions composed of the set of link cost

function, are also smooth and strict monotone with respect
to the full set of link flows. And the parameter 𝛼𝑐

𝑤
is assumed

small enough to conserve the nonnegativity of path flow.
Then we express (3) for all paths of OD pair𝑤 in vector form
as
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where
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(6)

We can further express (5) for full set of paths in vector form
as

ℎ̇
𝑐
≅ 𝐴
𝑐
(Γ𝐶 − Δ



𝐶
𝑎
(Δℎ)) , (7)

where 𝐴
𝑐
= [

𝐴
𝑐

1
0 0

0 d 0
0 0 𝐴

𝑐

𝑊

]; 𝐶
𝑎
(Δℎ) is full set of link costs; 𝐶 is

the full set of the average of path cost for OD pair set𝑊; ℎ is
the full set of path flows; Γ and Δ are path-OD pair incidence
matrix and link-path incidence matrix, respectively; and 𝑥
denotes the transpose of 𝑥.

The stimulus of PFDTT is the collective effects of travel
time difference prevailing on OD pair 𝑤. This is so-called
the travel time induced path flow dynamics. For the second
expression in (3), similarly again the stimulus of PFDTT is
reinterpreted as the difference between the average experi-
enced travel time and the path travel time of interest.With the
provided full information of travel time, PFDTT constitutes
the whole process of path flow swapping and then determines
the evolution of network flow dynamics.

2.3. ITS Operator Dynamics. To forward network traffics to
a stable status is the major intent of the ITS operator. In
this subsection, ITS operator dynamics are presented to fulfill
this end. The results of user dynamics are performed on the
road network and observed by ITS devices. With similar
adaptive and learning process mentioned in previous section,
ITS operators utilize the detected information to compare
and update some predictable system variables. The first one
is demand induced path flow dynamics, PFDD, which is
denoted by

ℎ̇
𝑤

𝑝,𝑑
≡ 𝛼
𝑑

𝑝,𝑤
(𝑑
𝑤
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𝑤
, 𝑤 ∈ 𝑊, (8)

where ℎ̇𝑤
𝑝,𝑑

is the demand induced path flow dynamics of path
𝑝 ∈ 𝑃
𝑤
; 𝛼𝑑
𝑝,𝑤

is the positive parameter to reflect the sensitivity
of path flow dynamics with respect to the difference between
the predicted demand and the sum of observed path flows on
OD pair𝑤, moreover 𝛼𝑑

𝑝,𝑤
is assumed to be weighted over the

path costs of OD pair 𝑤; 𝑑𝑤 is the fixed demand of OD pair
𝑤, ∀𝑤 ∈ 𝑊; ℎ𝑤 is the sum of path flows ∀𝑤 ∈ 𝑊.

The parameter 𝛼𝑑
𝑝,𝑤

is also assumed small enough to
conserve the nonnegativity of path flow. Then we express (8)
for all paths of OD pair 𝑤 in vector form as
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, (9)
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where

𝐴
𝑑

𝑤
=

[
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[
[

[

𝛼
𝑑

1,𝑤
0 0

0 d 0

0 0 𝛼
𝑑

𝑃
𝑤
,𝑤

]
]
]
]

]
𝑃
𝑤
×𝑃
𝑤

. (10)

We can further express (9) for full set of paths in vector form
as

ℎ̇
𝑑
= 𝐴
𝑑
Γ (𝐷 − Γ



ℎ) , (11)

where𝐴
𝑑
= [

[

𝐴
𝑑

1
0 0

0 d 0

0 0 𝐴
𝑑

𝑊

]

]

and𝐷 is the full set of the predicted

demands.
The stimulus described in (8) is the difference between

path flow sum and demand for an OD pair 𝑤 ∈ 𝑊. The
path flow sum is “observed and calculated” by ITS operator.
The demand of an OD pair 𝑤, assumed fixed in this study,
is interpreted as a predicted/expected status of network by
ITS operator. This dynamic provides the adjustment from
the observed path flow sum to the expected demand which
can only be achieved by ITS operator. By assumed constant
OD demands, this study attempts to concentrate on system
dynamics caused only by the effect of travel time provision.

The difference between path flow sum and demand
simultaneously generates an effect on predicted travel time
for an OD pair, PTTDOD. This effect forms the second ITS
operator dynamics written as

̇̃𝑐
𝑤
≡ 𝛽
𝑤
(𝑑
𝑤

− ℎ
𝑤

) , ∀𝑡, 𝑤 ∈ 𝑊, (12)

where ̇̃𝑐
𝑤
is the predicted cost dynamics of OD pair 𝑤 ∈ 𝑊;

𝛽
𝑤
is the positive parameter to reflect the sensitivity of pre-

dicted cost dynamics with respect to the difference between
the predicted demand and the sum of observed path flows on
OD pair 𝑤.

The parameter 𝛽
𝑤

is also assumed small enough to
conserve the nonnegativity of predicted cost.

Then we express (12) for all OD pairs in vector form as

̇̃
𝐶 = 𝐵 (𝐷 − Γ



ℎ) , (13)

where 𝐵 = [
𝛽
1
0 0

0 d 0
0 0 𝛽

𝑊

] and 𝐶 is the predicted costs of full OD
pairs set𝑊.

To sum up, we combine (7), (11), and (13) as

(

ℎ̇

̇̃
𝐶

) = [

𝐴
𝑐
| 𝐴
𝑑
0

0 𝐵

](
[
Γ𝐶 − Δ



𝑐
𝑎
(Δℎ)

Γ (𝐷 − Γℎ)
]

𝐷 − Γ


ℎ

) . (14)

3. Stability Analysis

3.1. Analysis of Steady State. This section describes the steady
state of proposed network dynamics which meets Wardrop’s
user equilibrium [29]. We first collect the formulation
together and proceed to the advantageous results. The
dynamics are shown in (3), (8), and (12).

It is obvious that the steady state of (12) gives the fact that
𝑑
𝑤

= ℎ
𝑤, ∀𝑤 ∈ 𝑊. It converges paths flow to demand of OD

pair. For the steady state of path flow dynamics which is the
sum (net effects) of (8) and (3), we express

ℎ̇
𝑤

𝑝
= ℎ̇
𝑤

𝑝,𝑐
+ ℎ̇
𝑤

𝑝,𝑑
= (∑

𝑗∈𝑃
𝑤

𝛼
𝑐

𝑤
(𝑐
𝑤

𝑗
− 𝑐
𝑤

𝑝
)) + 𝛼

𝑑

𝑝,𝑤
(𝑑
𝑤

− ℎ
𝑤

) ,

∀𝑝 ∈ 𝑃
𝑤
, 𝑤 ∈ 𝑊.

(15)

The steady state of (12) implies 𝑑𝑤 = ℎ𝑤, ∀𝑤 ∈ 𝑊, and helps
us to focus the case of (15) on∑

𝑗∈𝑃
𝑤

𝛼
𝑐

𝑤
(𝑐
𝑤

𝑗
− 𝑐
𝑤

𝑝
) which is the

sum of cost differences between path 𝑝 and each path 𝑗 ∈ 𝑃
𝑤
,

respectively. Each term of cost difference in (15) should be
zero if the path with minimal (maximal) cost is considered
and steady state is reached. Because the amount of each team
should be positive (negative) or equal to zero for the pathwith
minimal (maximal) cost, this situation together with their
sum being equal to zero (condition of steady state) jointly
gives that each term of cost difference in (15) should be zero,
namely, 𝑐𝑤

𝑗
= 𝑐
𝑤

𝑝
, ∀𝑗 ∈ 𝑃

𝑤
, 𝑗 ̸= 𝑝, 𝑤 ∈ 𝑊, if steady state is

reached. This result justifies that the steady states of (3), (8),
and (12) meet Wardrop’s user equilibrium. However, we need
to assume that the path flow is positive on steady state for all
the path set considered.

3.2. Stability of Equilibrium Solution. In this section, the pro-
posed dynamical system (14) is shown to be asymptotically
stable in the sense of Lyapunov. The definition of Lyapunov
function and theorem of stability are collected first as in the
following [30].

Definition 1. Let V be a steady state of a dynamical system and
𝐺 ∈ 𝐶

1

(𝐸). A function 𝐿 : 𝐸 → 𝑅 is called a strict Lyapunov
function for V if the following conditions are satisfied:

(1) 𝐿(V) = 0, and 𝐿(V) > 0, ∀V ̸= V, and V ∈ 𝐸;

(2) �̇�(V) < 0, ∀V ̸= V, and V ∈ 𝐸.

Theorem 2. Let V be a steady state of V̇ = 𝐺(V). If there
exists a strict Lyapunov function ∀V ̸= V, V ∈ 𝐸, then V is
asymptotically stable.

Accordingly, the stability theorem of proposed dynamical
system is expressed as Theorem 3. Because of the parameter
matrix in (14), [ 𝐴𝑐|𝐴𝑑 0

0 𝐵
], not being a square matrix, it will

be difficult to find a Lyapunov function if we prefer to find
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a Lyapunov function in quadratic form. We apply (16) to be
an equivalent agent of (14) on the following analysis:

(

ℎ̇

ℎ̇

̇̃
𝐶

) =
[
[

[

𝐴
𝑐
| 𝐴
𝑑
0

𝐴
𝑐
| 𝐴
𝑑
0

0 𝐵

]
]

]

(

[
Γ𝐶 − Δ



𝑐
𝑎
(Δℎ)

Γ (𝐷 − Γℎ)
]

𝐷 − Γ


ℎ

)

= 𝜑(𝑀(𝑠) + Ω(

ℎ

ℎ

𝐶

)),

(16)

where

𝜑 =
[
[

[

𝐴
𝑐
| 𝐴
𝑑
0

𝐴
𝑐
| 𝐴
𝑑
0

0 𝐵

]
]

]

, 𝑠 ≡ (

Δℎ

Δℎ

𝐶

) ,

𝑀 (𝑠) ≡ (

−Δ


𝑐
𝑎
(Δℎ)

Γ𝐷

𝐷

) ,

Ω ≡(

0 0 Γ

−
ΓΓ


2
−
ΓΓ


2
0

−
Γ


2
−
Γ


2
0

).

(17)

Theorem 3. Let (
ℎ

ℎ

𝐶

)



≡ (ℎ
1
, ℎ
2
, . . . , ℎ

𝑃
, ℎ
1
, ℎ
2
, . . . , ℎ

𝑃
, 𝐶
1
,

𝐶
2
, . . . , 𝐶

𝑊
) be a steady state of (16) and(

ℎ

ℎ

𝐶

) is asymptotically

stable.

Proof. Let 𝐿 be a 𝐶1 map and

𝐿(

ℎ

ℎ

𝐶

)

≡
1

2
((

ℎ

ℎ

𝐶

) −(

ℎ

ℎ

𝐶

))



𝜓𝜑((

ℎ

ℎ

𝐶

) −(

ℎ

ℎ

𝐶

)),

(18)

where

𝜑 ≡

[
[
[

[

1

2
(
𝐴
−1

𝑐

𝐴
−1

𝑑

) (
𝐴
−1

𝑐

−𝐴
−1

𝑑

) 0

0 0 𝐵
−1

]
]
]

]

, 𝜓 ≡
[
[

[

𝐼 0 0

0 𝐼 0

0 0 2𝐼

]
]

]

.

(19)

It is easy to show that 𝐿(
ℎ

ℎ

𝐶

) = 0 and 𝐿 (
ℎ

ℎ

̃
𝐶

) > 0, ∀(
ℎ

ℎ

̃
𝐶

) ̸=

(
ℎ

ℎ

𝐶

).

Now we proceed to the second condition of Definition 1
and take the derivative of (18):

�̇�(

ℎ

ℎ

𝐶

) = ((

ℎ

ℎ

𝐶

) −(

ℎ

ℎ

𝐶

))



𝜓𝜑(

̇
ℎ

ℎ̇

̇̃
𝐶

)

= −((

ℎ

ℎ

𝐶

) −(

ℎ

ℎ

𝐶

))



⋅ 𝜓𝜑𝜑(𝑀(𝑠) + Ω(

ℎ

ℎ

𝐶

))

= ((

ℎ

ℎ

𝐶

) −(

ℎ

ℎ

𝐶

))



𝜓(

𝐼 0 0

𝐼 0 0

0 0 𝐼

)

⋅(𝑀(𝑠) + Ω(

ℎ

ℎ

𝐶

))

= ((

ℎ

ℎ

𝐶

) −(

ℎ

ℎ

𝐶

))



(

𝐼 0 0

𝐼 0 0

0 0 2𝐼

)

⋅(𝑀(𝑠) + Ω(

ℎ

ℎ

𝐶

))

= −((

ℎ

ℎ

𝐶

) −(

ℎ

ℎ

𝐶

))



(�̃�(𝑠) + Ω̃(

ℎ

ℎ

𝐶

)),

(20)

where

�̃� (𝑠) ≡ (

Δ


𝑐
𝑎
(Δℎ)

Δ


𝑐
𝑎
(Δℎ)

−2𝐷

) , Ω̃ ≡ (

0 0 −Γ

0 0 −Γ

Γ


Γ


0

) . (21)
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Because 𝑐
𝑎
(⋅) is a strict monotone function, we have (𝑠−

𝑠)


(�̃�(𝑠)−�̃�(𝑠)) > 0; that is, (𝑠− 𝑠)�̃�(𝑠) > (𝑠− 𝑠)


�̃�(𝑠). This

implies ((
ℎ

ℎ

̃
𝐶

) − (
ℎ

ℎ

𝐶

))



�̃�(𝑠)> ((
ℎ

ℎ

̃
𝐶

) − (
ℎ

ℎ

𝐶

))



�̃�(𝑠). And

by the steady state, we also have (
ℎ

ℎ

𝐶

)



(�̃�(𝑠) + Ω̃ (
ℎ

ℎ

𝐶

)) =

0 and (
ℎ

ℎ

̃
𝐶

)



(�̃�(𝑠) + Ω̃ (
ℎ

ℎ

𝐶

)) ≥ 0. This jointly implies

((

ℎ

ℎ

𝐶

)−(

ℎ

ℎ

𝐶

))



�̃� (𝑠)

> ((

ℎ

ℎ

𝐶

)−(

ℎ

ℎ

𝐶

))



Ω̃(

ℎ

ℎ

𝐶

).

(22)

Adding ((
ℎ

ℎ

̃
𝐶

) − (
ℎ

ℎ

𝐶

))



Ω̃ (
ℎ

ℎ

̃
𝐶

) to both sides of (22) gives

((

ℎ

ℎ

𝐶

) −(

ℎ

ℎ

𝐶

))



(�̃�(𝑠) + Ω̃(

ℎ

ℎ

𝐶

))

>((

ℎ

ℎ

𝐶

) −(

ℎ

ℎ

𝐶

))



(Ω̃(

ℎ

ℎ

𝐶

)− Ω̃(

ℎ

ℎ

𝐶

)).

(23)

That is,

((

ℎ

ℎ

𝐶

) −(

ℎ

ℎ

𝐶

))



(�̃�(𝑠) + Ω̃(

ℎ

ℎ

𝐶

))

>((

ℎ

ℎ

𝐶

) −(

ℎ

ℎ

𝐶

))



Ω̃((

ℎ

ℎ

𝐶

)−(

ℎ

ℎ

𝐶

)).

(24)

Following some further treatments on the right-hand side of
the above equation,

(

ℎ − ℎ

ℎ − ℎ

𝐶 − 𝐶

)



(

0 0 −Γ

0 0 −Γ

Γ


Γ


0

)(

ℎ − ℎ

ℎ − ℎ

𝐶 − 𝐶

)

= (

ℎ − ℎ

ℎ − ℎ

𝐶 − 𝐶

)



(

−Γ (𝐶 − 𝐶)

−Γ (𝐶 − 𝐶)

2Γ


(ℎ − ℎ)

)

= −2 (ℎ − ℎ)


Γ (𝐶 − 𝐶) + 2 (𝐶 − 𝐶)



Γ


(ℎ − ℎ)

= −2 (𝐶 − 𝐶)


Γ


(ℎ − ℎ) + 2 (𝐶 − 𝐶)



Γ


(ℎ − ℎ) = 0.

(25)

Now, recall �̇� (
ℎ

ℎ

̃
𝐶

) = −((
ℎ

ℎ

̃
𝐶

) − (
ℎ

ℎ

𝐶

))



(�̃�(𝑠) + Ω̃ (
ℎ

ℎ

̃
𝐶

));

thus apparently we have �̇� (
ℎ

ℎ

̃
𝐶

) < 0.

4. Conclusions and Future Research

In this paper, a model has been developed to investigate
the effects of traffic information provision on network flow
evolutions under scenario of ITS operations. Traffic infor-
mation provided to users is path travel time to help users
perform comparative reasoning in adaptive-learning process.
The whole system coupling both user and operator dynamics
is organized as three parts: travel time induced path flow
dynamics (PFDTT), predicted travel time dynamics for anOD
pair (PTTDOD), and demand induced path flow dynamics
(PFDD). They were formulated as a nonlinear system of
ordinary differential equations. And a Lyapunov function is
created to help the proof of stability theorem. In particular,
the effect of intershifting of path flow was successfully
considered in PFDTT. In addition to the developed theory,
it concurrently provided a way to help decision-making in
traffic control. By collecting path flow shifting information,
traffic control strategies can then be simulated in transition
state but equilibrium state which usually appeared in histor-
ical studies. That will be an important factor to make the
results of evaluating the effectiveness and efficiency of ITS-
related deployments more reasonable. The proposed model
can approximate the path flow dynamics involving pairwise
comparison in an alternative way of direct comparison
between the average of path costs and the travel cost of a
corresponding path. Finally, we provide an agent of origin
formulation to find a Lyapunov function in quadratic form
that is much easier to derive the advantageous results in
the proof of stability of equilibrium. The application of
the proposed results will be set up on a situation where
ITS services are well equipped. For example, the daily path
choice, departure time, and arrival time of commuting trips
should be well recorded by ITS technologies. Daily path
travel time information could be distributed to users in
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return to help them perform pairwise comparisons of travel
cost and then make a decision of route selection for daily
commuting based on the latest travel information and his/her
last travel experience. ITS center could also collect input
data and calibrate the parameters necessary in the model.
Further issues on how to forward the system to the desired
status faster in terms of strategies of information distribution
or traffic control policies based on the proposed system
dynamics will be very important to alleviate urban traffic
congestion.
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