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In wireless sensor network, data loss is inevitable due to its inherent characteristics. This phenomenon is even serious in some
situation which brings a big challenge to the applications of sensor data. However, the traditional data estimation methods can not
be directly used in wireless sensor network and existing estimation algorithms fail to provide a satisfactory accuracy or have high
complexity. To address this problem, Temporal and Spatial Correlation Algorithm (TSCA) is proposed to estimate missing data as
accurately as possible in this paper. Firstly, it saves all the data sensed at the same time as a time series, and the most relevant series
are selected as the analysis sample, which improves efficiency and accuracy of the algorithm significantly. Secondly, it estimates
missing values from temporal and spatial dimensions. Different weights are assigned to these two dimensions. Thirdly, there are
two strategies to deal with severe data loss, which improves the applicability of the algorithm. Simulation results on different sensor
datasets verify that the proposed approach outperforms existing solutions in terms of estimation accuracy.

1. Introduction

In recent years, with the development of sensing technology,
wireless communication, and computing technology, wireless
sensor network (WSN) [1] has been a focus of research
and attracts strong attention from military, industry, and
academia. In many applications of WSN, data loss [2, 3]
is common due to limited resources of sensor nodes [4],
interference of noise, and influence of environment. Even
in some special situation, this phenomenon is very serious
[5] which brings a big challenge for a variety of sensor
data processing. If these missing values cannot be filled in
accurately, the existing analysis tools cannot be applied. If
the missing data are directly deleted, a large amount of
raw data will be lost which will reduce the accuracy and
reliability of analysis results and cause a great waste of energy.
Data estimation algorithms can effectively solve this problem,
and they provide strong support for query [6], aggregation,
transmission, and warning [7]. So missing data estimation is
particularly important for various applications of WSN.

However, the traditional data estimation methods [8]
cannot be directly used in WSN. Sensor data estimation
methods should consider the characteristics of the applica-
tion system and sensor data. While many studies on sensor
data estimation have been conducted and some achieve-
ments have been made, there are still some issues unre-
solved such as underutilization of sensor data’s properties,
high computational complexity, and low estimation accu-
racy.

We present a Temporal and Spatial Correlation Algorithm
(TSCA) to estimate missing data in this paper. There are four
main innovations of this algorithm. Firstly, it saves all the data
sensed at the same time as a time series, and themost relevant
series are selected as the analysis sample, which improves
efficiency and accuracy of the algorithm significantly. Sec-
ondly, it selects the most data-relevant sensor nodes and gets
spatial estimation based on comprehensive instantaneous
rate of change. In the time dimension, it differentiates the
order of past frames to estimate the missing rate which
highlights the timeliness of sensor data. Thirdly, different
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weights are assigned to temporal and spatial dimensions to
get the final result. Finally, there are two strategies to deal with
severe data loss, which improves the applicability of the algo-
rithm.

The rest of this paper is organized as follows. Section 2
presents the classic estimation algorithms of missing sensor
data. Section 3 presents the framework of the algorithm
proposed in this paper. Section 4 describes specific design
of our algorithm and extends to severe loss scenes. Section 5
evaluates the proposed approach through simulation experi-
ment. Section 6 concludes this paper.

2. Related Work

The estimation algorithms of missing data have been exten-
sively researched in statistics, for example,Mean Substitution,
Imputation by Regression, ExpectationMaximization, Maxi-
mumLikelihood,Multiple Imputations, Bayesian Estimation,
and Hot/Cold Deck Imputation [9]. However, none of these
algorithms can be used inWSN, because they require the data
miss at random and their efficiency is low.

To solve sensor data missing problem, Tiny DB [10]
which is a mainstream sensor database system uses the mean
of data sensed by other nodes directly as the estimated
value. However, when the relationship among the sensor
nodes is weak, the estimation result is not precise. MASTER-
M algorithm [11] computes the similarity between sensor
nodes and sorts them. It selects nodes which have high
missing rate as seeds and clusters the whole network into
several groups. MARSTER-tree is used to estimate missing
data in each cluster. However, the relationship between the
sensor nodes is not transitive; for example, 𝑆1 and 𝑆2, 𝑆2
and 𝑆3 are similar but 𝑆1 and 𝑆3 may not be similar. So
in an 𝑛 nodes network, 𝐶2

𝑛
calculations and comparisons

need to be conducted in each process of clustering. If
the similar relationships between the sensor nodes change
rapidly, reclustering is needed constantly which will cause
high computational complexity. Adaptive Multiple Regres-
sion (AMR) algorithm is proposed in [12]. Sample data and
the most relevant sensor nodes are determined heuristically.
Missing values are evaluated using linear regression models
according to the data of the relevant nodes. The key steps in
this algorithm are realized heuristically which will increase
the computational complexity. In addition, the location-
related nodes are not always data-related; for example, in
a place with several heat sources [13], the nodes which are
near heat sources but far apart from each other may be
more relevant. So location-based association mining is not
accurate. Assessment using linear regression models also
increases errors. Grey System Estimate Algorithm (GSEA)
[14] estimates missing values based on gray model. Mini-
mized Similarity Distortion (MSD) [15] uses linear regression
to evaluate the loss. The accuracy of both GSEA and MSD is
poor.

The above algorithms only consider the temporal or spa-
tial correlation and few algorithms take both of them into
account. Environmental Space Time Improved Compressive
Sensing (ESTI-CS) algorithm [16] is based on compressed
sensing. This algorithm uses L1 norm optimization method
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Figure 1: Framework of the algorithm in this paper.

for solving the reconstructed signal and it requires itera-
tion which causes high complexity. Reference [17] proposes
Trend Regression Expanding Cluster Interpolation (TRECI)
algorithm which considers the change of sensor data over
the time. Sensor nodes are divided into several groups
dynamically and time interpolation assessments are con-
ducted within each group. It only analyzes similarity rather
than predicting the loss in the spatial dimension. Data
Estimation using Statistical Model (DESM) [18] algorithm
estimates the missing data based on the propagation char-
acteristics of physical quantities in the time dimension;
for example, according to the fact that light intensity is
inversely proportional to the square of the distance, the light
intensity can be estimated in certain region. In the spatial
dimension, it estimates missing data based on the correlation
between the estimated node and its surrounding nodes. The
disadvantage of this algorithm is that it is only appropriate
for attributes which have explicit physical models. Besides,
the estimation in the spatial dimension is rough. Reference
[19] proposes Mining Autonomously Spatial-Temporal Envi-
ronmental Rules (MASTER) algorithm. It mines association
of sensor data in temporal and spatial dimensions. A big
drawback of this algorithm is that when the relationship
among sensor data is weak, the prediction is very inaccu-
rate.

3. Framework of Proposed Algorithm

Sensor data collected by a node 𝑆𝑖 can be seen as a time series
𝑆𝑖 = [(𝑉

𝑖1
, 𝑇
1
), (𝑉
𝑖2
, 𝑇
2
), . . . , (𝑉

𝑖𝑛
, 𝑇
𝑛
)]. 𝑉
𝑖𝑘
is the sensing data

at 𝑇
𝑘
. For any time 𝑇

𝑘
(𝑘 = 1, 2, . . . , 𝑛), if the data 𝑉

𝑖𝑘
is lost,

seeking the estimated value𝑉
𝑖𝑘
andminimizing |𝑉

𝑖𝑘
−𝑉
𝑖𝑘
| are

the missing data estimation problem.
From the comparison of difference between two consec-

utive intervals and difference between neighbors [16], we can
see that most of measured data in real world always change
stably; that is, there is little mutation on environmental
value between adjacent time slots. In addition, environments
are often smooth in a small area; that is, over a period of
time, environmental values are similar among some nodes.
Thus, we can use spatiotemporal correlations to estimate the
missing data.

Considering that the existing missing data estimation
algorithms have not made full use of features of sensor data
and they have high computational complexity as well as low
accuracy, this paper proposes a missing data estimation algo-
rithm based on temporal and spatial correlations as shown in
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Figure 1. The evaluation result of this algorithm is Estimate
which can be computed by the following formula:

Estimate =
𝑠 𝑛

∑

𝑖=1

𝑤𝑖 ∗ 𝑉 Spatial + (1 −
𝑠 𝑛

∑

𝑖=1

𝑤𝑖)

∗ 𝑉 Temple,

(1)

where 𝑉 Spatial and 𝑉 Temple are the analysis results of
spatial and temporal correlations. 𝑤𝑖 is the weight of each
relevant sensor node. 𝑠 𝑛 is the number of sensor nodes used
to estimate the missing data.

This algorithm consists of three parts:

(i) Firstly, the algorithm needs to determine the sample
data used in the process of analysis. Because sensor
data is time-sensitive, using a different number of sen-
sor data for analysis will get different results. Relation-
ship between the sensor nodes in different periods is
not the same, so selecting appropriate data used for
analysis is important. Sensor nodes sense data perio-
dically. The algorithm in this paper saves data sensed
by all the nodes at the same time as a series. Con-
tinuous period produces continuous time series. For
example, sensed data at 𝑡

𝑖
, 𝑡
𝑖+1
, 𝑡
𝑖+2
, . . . can be saved

as the continuous time series (𝑉
𝑆1𝑡𝑖
, 𝑉
𝑆2𝑡𝑖
, 𝑉
𝑆3𝑡𝑖
, . . . ,

𝑉
𝑆𝑚𝑡𝑖

), (𝑉
𝑆1𝑡𝑖+1

, 𝑉
𝑆2𝑡𝑖+1

, 𝑉
𝑆3𝑡𝑖+1

, . . . , 𝑉
𝑆𝑚𝑡𝑖+1

), and (𝑉
𝑆1𝑡𝑖+2

,

𝑉
𝑆2𝑡𝑖+2

, 𝑉
𝑆3𝑡𝑖+2

, . . . , 𝑉
𝑆𝑚𝑡𝑖+2

), . . .. The most relevant time
series are selected based on the correlation function
as the sample. It cannot only ensure that there are
no redundant sample data which will reduce the
computational complexity but also ensure that the
sample data has the strongest correlationwithmissing
data which will improve the accuracy of the analysis.

(ii) Secondly, correlation analyses are conducted in the
spatial dimension.Thedistance between sensor nodes
is defined according to the requirement of estima-
tion. The most relevant sensor nodes are selected
based on the distance function through analyzing the
aforementioned sample data. Those relevant nodes
are used to get spatial estimation. The weight of each
relevant node𝑤𝑖 is determined according to the aver-
age correlation coefficient with the estimated node.

(iii) Thirdly, in the time dimension, estimation is based
on the sample data sensed by the estimated node. In
order to give full play to the timeliness of data, past
frames are distinguished chronologically during the
process of analysis, so the contribution of newer data
is greater. The weight of temporal estimation is 1 −
∑
𝑆 𝑛

𝑖=1
𝑤𝑖. Temporal and spatial results are integrated to

obtain the final estimation value.

4. Detailed Design of TSCA

4.1. Select Sample Data. The relationship between the sensor
nodes in WSN will change over time, so analyzing different
sample data will generate different relationship, and we get
different assessment values. In addition, the size of sample
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Figure 2: Select sample data.

data will have a great impact on the assessment results. Due to
the interference of environmental noise, too little sample data
cannot reflect the spatiotemporal correlation of sensor data
fully, while excessive sample data reflect the average value
over an extended period of time rather than the instantaneous
correlation which will reduce the accuracy of the assessment.
Therefore, the values and the size of sample data should be
determined as accurately as possible.

Considering the fact that the spatiotemporal correlation
of sensor data approximately remains constant in a short
period of time, when we assess the missing data at 𝑡

𝑛
, data

close to 𝑡
𝑛
should be selected accurately as the sample.

In WSN, sensor nodes are deployed in the given area.
All the sensor nodes can be listed as (𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑚).
These sensor nodes report sensing data at a certain time
interval. At time 𝑡

𝑖
, all the reported data constitute a time

series 𝑆(𝑡
𝑖
) = (𝑆1

𝑡𝑖
, 𝑆2
𝑡𝑖
, 𝑆3
𝑡𝑖
, . . . , 𝑆𝑚

𝑡𝑖
). Data sensed at many

contiguous moments form a random process 𝑆(𝑡), as shown
in Figure 2. Assuming that certain sensor data loses at 𝑡

𝑛
, we

analyze its average correlation with the former time series to
determine the optimal sample data:

𝑅 =
1

𝑛 − 𝑡 𝑘

𝑡 𝑘

∑

𝑗=𝑛−1

𝑅𝑠𝑠 (𝑆
𝑡𝑛
, 𝑆
𝑡𝑗
)

objective: min 𝑘

subject to: 𝑅 = max (𝑅) .

(2)

As validated by practical data, the correlation of time
series is basically stable in a short period of time and then
follows a decreasing trend. So we can get the most relevant
sample data 𝑡 𝑘 ∼ (𝑛 − 1) based on formula (2). 𝑡 𝑘 is deter-
mined heuristically which is initially set to 𝑛 − 1. Correlation
between 𝑡

𝑛
and 𝑡
𝑛−1

is calculated firstly; then, 𝑡 𝑘 moves for-
ward and the average correlation values are calculated until
the average correlation function is maximized. In Figure 2,
we can see that 𝑡 𝑘 = 𝑖, so the data between 𝑡

𝑖
∼ 𝑡
𝑛−1

are the
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Input:
𝑆
𝑚×𝑡

: matrix of sensor data
Output:
𝑆
𝑚×(𝑡−𝑖+1)

: a collection of sample data
Main Steps:
(1) 𝑍

𝑡
← normalize(𝑆

𝑡
)

(2) 𝑅 ← 0

(3) for 𝑖 = 𝑡 − 1 to 1 do
(4) 𝑍

𝑖
← normalize(𝑆

𝑗
)

(5) 𝑅𝑠𝑠(𝑆
𝑡
, 𝑆
𝑖
) ← 𝑍

𝑡
𝑍
𝑇

𝑖

(6) 𝑅 last ← 𝑅

(7) 𝑅 ← (𝑅 + 𝑅𝑠𝑠(𝑆
𝑡
, 𝑆
𝑖
))/(𝑡 − 𝑖)

(8) if 𝑅 < 𝑅 last
(9) return 𝑖;
(10) end for

Algorithm 1: Procedure SelectSampleData.

sample data.𝑅𝑠𝑠which is the value of correlation between two
time series can be computed as in the following formula:

𝑅𝑠𝑠 (𝑆
𝑡𝑖
, 𝑆
𝑡𝑖−1
) = 𝑍

𝑡𝑖
𝑍
𝑇

𝑡𝑖−1
, (3)

where 𝑍
𝑡𝑖
is the standardized result of vector 𝑆(𝑡

𝑖
):

𝑍
𝑡𝑖
= normalize (𝑆

𝑡𝑖
) = (

𝑆1
𝑡𝑖

√𝑆1
2

𝑡𝑖
+ 𝑆2
2

𝑡𝑖
+ ⋅ ⋅ ⋅ + 𝑆𝑛

2

𝑡𝑖

,

𝑆2
𝑡𝑖

√𝑆1
2

𝑡𝑖
+ 𝑆2
2

𝑡𝑖
+ ⋅ ⋅ ⋅ + 𝑆𝑛

2

𝑡𝑖

, . . . ,

𝑆𝑛
𝑡𝑖

√𝑆1
2

𝑡𝑖
+ 𝑆2
2

𝑡𝑖
+ ⋅ ⋅ ⋅ + 𝑆𝑛

2

𝑡𝑖

).

(4)

The pseudocode of selecting process is described as in
Algorithm 1.

4.2. Spatial Correlation

Definition 1. If the sample datasets (data sensed between 𝑡
𝑖
∼

𝑡
𝑛−1

) reported by sensor nodes 𝑖, 𝑗 are 𝑆𝑖 and 𝑆𝑗, data dissim-
ilarity of these two nodes is 𝑑 diff(𝑆𝑖

𝑡𝑛
, 𝑆𝑗
𝑡𝑛
) = |𝑆𝑖 − 𝑆𝑗|, the

collections of lost data are 𝑆𝑖 miss and 𝑆𝑗 miss, the frequency
of data loss at the same time is 𝑑 miss(𝑆𝑖

𝑡𝑛
, 𝑆𝑗
𝑡𝑛
) = |𝑆𝑖 miss ∩

𝑆𝑗 miss|, and the size of sample data is sample size = |𝑆𝑖| =

|𝑆𝑗|.

Definition 2. The distance between sensor nodes 𝑆𝑖 and 𝑆𝑗 is
𝑑(𝑆𝑖
𝑡
, 𝑆𝑗
𝑡
) at 𝑡:

𝑑 (𝑆𝑖
𝑡
, 𝑆𝑗
𝑡
) =

√𝑑 diff (𝑆𝑖
𝑡
, 𝑆𝑗
𝑡
)
2

+ 𝑑 miss (𝑆𝑖
𝑡
, 𝑆𝑗
𝑡
)
2

sample size
,

𝑑 (𝑆𝑖
𝑡
, 𝑆𝑖
𝑡
) = 1.

(5)
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Figure 3: Spatial correlation.

If 𝑆𝑗 loses data with the estimated node 𝑆𝑖 at the same time
𝑡, then 𝑑(𝑆𝑖

𝑡
, 𝑆𝑗
𝑡
) = 1. For example, in Figure 3, sensor node

3 will be estimated at 𝑡
𝑛
. If there are missing data of a node 𝑖

(𝑖 = 1, 2, 4, . . . , 𝑛) at 𝑡
𝑛
, then 𝑑(𝑆𝑖

𝑡𝑛
, 𝑆3
𝑡𝑛
) = 1.

As shown in Figure 3, in order to estimate missing
data of sensor node 𝑆3, distance between 𝑆3 and all the
other nodes 𝑆1, 𝑆2, 𝑆4, . . . , 𝑆𝑚 will be computed to get an
array 𝑑(𝑆3

𝑡𝑛
) = [𝑑(𝑆1

𝑡𝑛
, 𝑆3
𝑡𝑛
), 𝑑(𝑆2

𝑡𝑛
, 𝑆3
𝑡𝑛
), . . . , 𝑑(𝑆𝑚

𝑡𝑛
, 𝑆3
𝑡𝑛
)].

Select the nodes whose distance from 𝑆3 is smaller than the
threshold value (the default is 0.2 in this paper) according to
𝑑(𝑆3
𝑡𝑛
).These selected sensor nodeswhich have strong spatial

correlation with node 𝑆3 compose the collection 𝑆 Correlate.
Each node in 𝑆 Correlate estimates the missing data

based on its instantaneous rate of change at 𝑡
𝑛
. Different

weights are distributed to them according to the spatial
correlation.The spatial correlation estimation is computed by
the following:

𝑉 Spatial = ∑
𝑆𝑖

𝑤𝑖 ∗ 𝑉𝑠𝑗 (𝑡
𝑛−1

) ∗

𝑑𝑉 (𝑆𝑖
𝑡𝑛
)

𝑑𝑡
𝑛

𝑆𝑖 ∈ 𝑆 Correlate,

(6)

where 𝑆𝑖 is the sensor node in 𝑆 Correlate. 𝑉𝑆𝑗(𝑡
𝑛−1

) is the
value of node 𝑆𝑗 at the first moment before 𝑡

𝑛
. 𝑑𝑉(𝑆𝑖

𝑡𝑛
)/𝑑𝑡
𝑛

is the instantaneous change rate of the relevant node 𝑆𝑖 at 𝑡
𝑛

which can be approximated as the change rate between 𝑡
𝑛
and

𝑡
𝑛−1

; that is, 𝑑𝑉(𝑆𝑖
𝑡𝑛
)/𝑑𝑡
𝑛
= (𝑉(𝑆𝑖

𝑡𝑛
) − 𝑉(𝑆𝑖

𝑡𝑛−1
))/(𝑡
𝑛
− 𝑡
𝑛−1

) .
𝑤𝑖 is the weight corresponding to 𝑆𝑖, which is determined

by the average correlation coefficient between the sensor
nodes. The way to calculate 𝑤𝑖 is shown in the following:

𝑤𝑖 =
𝜓 (𝑆𝑖, 𝑆𝑗)

𝑆Correlate


=
cov (𝑆𝑖, 𝑆𝑗)

𝜎𝑠𝑖 ∗ 𝜎𝑠𝑗 ∗
𝑆Correlate



=
𝐸 [(𝑆𝑖 − 𝐸 (𝑆𝑖)) ∗ (𝑆𝑗 − 𝐸 (𝑆𝑗))]

𝜎𝑠𝑖 ∗ 𝜎𝑠𝑗 ∗ |𝑆 Correlate|
.

(7)
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Input:
𝑆
𝑚×(𝑡−𝑖+1)

: sample data
𝑆miss: estimated sensor node
𝑉: threshold of distance
Output:
𝑉 Spatial: estimation value in spatial dimension
Main Steps:
(1) 𝑉 Spatial ← 0

(2) for 𝑘 = 𝑡 to 𝑡 − 𝑖 + 1 do
(3) 𝑑 𝑆3[𝑡 − 𝑘 + 1] ← 𝑑(𝑆

𝑘
, 𝑆miss)

(4) if 𝑑 𝑆3[𝑡 − 𝑘 + 1] <= 𝑉

(5) 𝑆
𝑘
∈ 𝑆 Correlate

(6) end if
(7) end for
(8) for each 𝑆

𝑘
∈ 𝑆 Correlate

(9) 𝑤
𝑘
←

𝜓 (𝑆
𝑘
, 𝑆miss)

𝑆Correlate


(10) 𝑟
𝑘
←

𝑑𝑉 (𝑆𝑘
𝑡
)

𝑑𝑡
(11) 𝑉 Spatial ← 𝑉 Spatial + 𝑤

𝑘
∗ 𝑟
𝑘
∗ 𝑉𝑠miss(𝑡𝑛−1)

(12) end for

Algorithm 2: Procedure AnalysisInSpace.
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Figure 4: Temporal correlation.

The pseudocode of analysis in spatial correlation is
described as in Algorithm 2.

4.3. Temporal Correlation. As shown in Figure 4, we estimate
the missing data based on historical sample data of the esti-
mated node. Evaluated result is obtained by a comprehensive
measure on the variation of sample data. Change rate of data
is defined as 𝑟

𝑡𝑛
:

𝑟
𝑡𝑛
=

∇𝑉𝑡
𝑛

𝑡
𝑛
− 𝑡
𝑛−1

=
𝑉𝑡
𝑛
− 𝑉𝑡
𝑛−1

𝑡
𝑛
− 𝑡
𝑛−1

, (8)

where 𝑉
𝑡𝑛
is the sensing data of the estimated node at 𝑡

𝑛
.

Table 1: Weighted rate of change.

Time 𝑡
𝑛−1

𝑡
𝑛−2

𝑡
𝑛−3

𝑡
𝑛−4

⋅ ⋅ ⋅ 𝑡
𝑖

Data 𝑉𝑡
𝑛−1

𝑉𝑡
𝑛−2

𝑉𝑡
𝑛−3

𝑉𝑡
𝑛−4

⋅ ⋅ ⋅ Vti
𝑟
𝑡

∇𝑉𝑡
𝑛−1

𝑡
𝑛−1

− 𝑡
𝑛−2

∇𝑉𝑡
𝑛−2

𝑡
𝑛−2

− 𝑡
𝑛−3

∇𝑉𝑡
𝑛−3

𝑡
𝑛−3

− 𝑡
𝑛−4

⋅ ⋅ ⋅
∇𝑉𝑡
𝑖+1

𝑡
𝑖+1

− 𝑡
𝑖

𝑤
𝑡

𝑛 − 𝑖 − 1

∑
𝑛−𝑖−1

𝑘=1
𝑘

𝑛 − 𝑖 − 2

∑
𝑛−𝑖−1

𝑘=1
𝑘

𝑛 − 𝑖 − 3

∑
𝑛−𝑖−1

𝑘=1
𝑘

⋅ ⋅ ⋅
1

∑
𝑛−𝑖−1

𝑘=1
𝑘

Change rates of all sample data are computed, and
different weights 𝑤

𝑡𝑛
are given to them; then, we can get the

weighted rate of change 𝑟
𝑤
:

𝑟
𝑤
= ∑𝑟

𝑡
∗ 𝑤
𝑡
. (9)

Based on the weighted rate of change and value of the
estimated node at 𝑡

𝑛−1
, we can get the temporal estimation

𝑉 Temple:

𝑉 Temple = 𝑉
𝑡𝑛−1

+ 𝑟
𝑤
∗ (𝑡
𝑛
− 𝑡
𝑛−1

) . (10)

The way to calculate the weighted rate of change is listed
in Table 1, where 𝑟

𝑡
is the rate of change. 𝑤

𝑡
based on the

sequence is assigned to each 𝑟
𝑡
. The pseudocode of analysis

in temporal correlation is described in Algorithm 3.

4.4. Discussion. Unlike traditional missing data [20], sensor
data have five typical patterns of missing [16] which are
Element Random Loss, Block Random Loss, Element Frequent
Loss in Row, Successive Elements Loss in Row, and Combina-
tional Loss, as shown in Figure 5. The algorithm in this paper
usesCombinational Lossmode, that is, any combination of the
first four modes. In order to improve the applicability of our
algorithm, we take a certain strategy to make the algorithm
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Input:
𝑆miss×(𝑡−𝑖+1): sample data of estimated sensor node
Output:
V Temple: estimation value in temporal dimension
Main Steps:
(1) for 𝑗 = 𝑡 − 1 to i do

(2) 𝑟
𝑡𝑗
←

∇𝑉𝑡
𝑗

𝑡
𝑗
− 𝑡
𝑗−1

(3) 𝑤
𝑡𝑗
←

𝑗 + 1 − 𝑖

∑
𝑛−𝑖

𝑘=1
𝑘

(4) end for
(5) 𝑟

𝑤
← ∑𝑟

𝑡𝑗
∗ 𝑤
𝑡𝑗

(6) 𝑉 Temple ← 𝑉
𝑡𝑛−1

+ 𝑟
𝑤
∗ (𝑡
𝑛
− 𝑡
𝑛−1
)

Algorithm 3: Procedure AnalysisInTime.
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Figure 5: Data loss patterns in WSN (the black cells represent missing data).

suitable for some serious loss situations. This algorithm
estimates missing values from the spatiotemporal aspects,
so severe loss mainly shows up as rows or columns missing
continuously.

As for severe data loss in time series, if data missing rate
of a time series exceeds a certain threshold (the default is 40%
in this paper), this time series will be ignored and we move
forward to select sample data. As shown in Figure 6(a), the
loss of time series at 𝑡

𝑛−2
is serious, so this moment will be

ignored in the selection process of the sample data.
If data missing rate of the estimated sensor node does

not exceed the threshold (the default is 50% in this paper),
missing data will be ignored and the algorithm described
before will be used to estimate the missing data directly. If
the missing rate of sample data exceeds the threshold, the
algorithm will obtain the final result through iteration. As
shown in Figure 6(b), node 6 has a serious lack of sample
data. Compute the values of node 6 at 𝑡

𝑛−6
, 𝑡
𝑛−5

, 𝑡
𝑛−3

, and 𝑡
𝑛−2

in turn until the missing rate is less than the threshold. Every
iteration is conducted based on the results of last estimation.
So if the result of previous estimation is not accurate enough,
the estimation error in the next time will increase. However,
the algorithm in this paper avoids the iteration in spatial
correlation analysis by calculating the distance. Iteration
occurs only in temporal correlation analysis. From the
simulation results in the fifth section, it can be seen that the
iterative error of our algorithm is small.

5. Performance Evaluation

The algorithm proposed in this paper is evaluated over real-
world data, namely, Intel-lab dataset [21]. This dataset is a
trace of readings from 54 sensor nodes deployed in the Intel
Research Berkeley Lab. These sensor nodes collected light,
humidity, temperature, and other information once every 30 s
from February 28 to April 5, 2004.

Since the original dataset contains missing values, in
order to evaluate the performance of the algorithm, we select
the relatively complete part of the test data through deleting
sensor nodes which contain serious data loss. For example,
when the sampling interval is set to five minutes, there is a
serious lack of sensor data in nodes 5 and 15 (with 90% of data
lost). So data of these two sensor nodes will not be selected as
sample. In this paper, we use the accuracy of the estimation as
the evaluation criteria. Specifically, we use RootMean Square
Error (RMSE):

RMSE = √average (𝑉𝑠𝑗 (𝑡
𝑖
) − 𝑉𝑠𝑗 (𝑡

𝑖
))
2

, (11)

where𝑉𝑠𝑗(𝑡
𝑖
) is the known value which is assumed as missing

data. 𝑉𝑠𝑗(𝑡
𝑖
) is the estimated value of 𝑉𝑠𝑗(𝑡

𝑖
).

To verify the effectiveness of the algorithm proposed in
this paper, we compare it against other algorithms—AMR
[12], TRECI [17], DESM [18], and MASTER [19].
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Figure 6: Severe data loss patterns in this paper (the black cells represent missing data).

5.1. Convergence. Loss rate of raw data is about 5%. We
verify the validity of the first step in this algorithm on the
original temperature dataset where the sampling interval is
set to 5min. By calculating the average correlation, it can be
known that the size of the sample data is 13. We choose a
different number of data, and accuracy comparison of results
is shown in Figure 7. It shows that a small or too large
amount of data will cause an increase in the error rate. So
we choose the smallest advisable size to ensure the accuracy
while reducing the complexity of the algorithm. In Figure 8,
we compare different algorithms against the size of required
sample converging to the optimal solution. It can be seen that
TSCA converges fast and has the best performance.

5.2. Estimation on Temperature. Error rate is compared
among different algorithms on the original dataset where
different sampling intervals are set, as shown in Figure 9.The
spatiotemporal correlation of temperature is strong, soMAS-
TER can obtain accurate relationships based on mining cor-
relation rules. But a few of sensor nodes which are not asso-
ciated with others will increase the estimation error, so its
error is slightly larger than TSCA. As the sampling interval
increases, temporal correlation of the sensor data weakens.
TRECI and DESM use temporal correlation, so estimation
error increases. However, the increase of DESM is slight
because it also considers spatial correlation.The spatial corre-
lation of the indoor sensor node in a short period of time
remains substantially constant, so the sampling interval
has little effect on AMR which only considers the spatial
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Figure 7: RMSE versus the size of sample data.

correlation. Particularly, TSCA takes the temporal and spatial
correlation into account and assigns different weights accord-
ing to the time series of data which makes newer data playing
a more important role in the evaluation, so the size of the
sampling interval has less effect on the results.
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Figure 9: RMSE versus sampling interval on temperature.

According to [16], 23% of data are lost among 84,600
time slots (one month) of Intel Indoor dataset. Therefore,
we conduct the error comparison among different algorithms
where data missing rate is set as 5%–35% and the sampling
interval is set as 5min. Figure 10 shows that error of all the
algorithms increases with the missing rate. This is because
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Figure 10: RMSE versus data loss on temperature.

spatiotemporal correlation of sensor data will becomeweaker
as missing rate increases. However, TSCA takes correspond-
ing strategies based on the patterns of data loss as described
in Section 4 which reduces errors greatly.

5.3. Estimation on Humidity. Error of humidity estimation is
compared among different algorithms on the original dataset
where the sampling intervals are set as 1–30min, as shown in
Figure 11. Compared with temperature, spatiotemporal cor-
relations of humidity are weaker, and the spatial correlation
is much weaker than the temporal one. AMR is only based on
the spatial correlation, so its error is maximal. Like temper-
ature, temporal correlation of the sensor data weakens with
the sampling interval increasing. TRECI is mainly based on
temporal correlation so its error increases remarkably. When
the sampling interval reaches 30min, error of TRECI exceeds
AMR algorithm’s. Results of the other three algorithms are
similar, but the error of TSCA is still the smallest.

Figure 12 shows error rate in the situation of different data
loss probability. When loss rate is more than 20%, spatial and
temporal correlations of humidity are severely affected and
error rate of DESM, TRECI, and AMR surges. Loss rate has
a greater impact on the temporal correlation, so error rate of
TRECI increasesmore significantly. TSCA ismainly based on
the latest data and the missing data in the sample have been
processed, so its performance remains relatively stable.

6. Conclusion

Considering the deficiencies of the existing algorithms for
missing data assessment, TSCA is proposed in this paper
based on spatiotemporal correlation of sensor data. This
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algorithm selects themost relevant data as the analysis sample
which ensures that there are no redundant sample data and
the sample has the strongest correlation with the missing
data. Thus, the efficiency and accuracy of this algorithm
are significantly improved. What is more, a comprehensive
analysis of the time and space is conducted to get estimation

for missing data. Experimental results show that, no matter
what the cases, TSCA always performs the best compared
with other algorithms.

In the future, we can exploit the correlations between
different attributes to further improve the accuracy of esti-
mation; for example, light has an impact on temperature in
many scenarios.
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