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Fisher’s linear discriminant (FLD) models for wheat variety classification were developed and validated. The inputs to the FLD
models were the capacitance (C), impedance (Z), and phase angle (8), measured at two frequencies. Classification of wheat varieties
was obtained as output of the FLD models. Z and 6 of a parallel-plate capacitance system, holding the wheat samples, were measured
using an impedance meter, and the C value was computed. The best model developed classified the wheat varieties, with accuracy
of 95.4%, over the six wheat varieties tested. This method is simple, rapid, and nondestructive and would be useful for the breeders

and the peanut industry.

1. Introduction

Wheat (Triticum aestivum L.) is a prominent crop grown
worldwide and also is one of the most important food items
consumed in different forms such as bread, cookies, and
pasta. It is also an important ingredient in hundreds of other
food and drink preparations such as pizza, cakes, soups, and
beer. Many wheat varieties exist, specific to the local cultures
in different regions of the world. Wheat breeders developed
hundreds of varieties to improve not only the yields, but also
such agronomic and quality attributes such as resistance to
pests and diseases and stability in height and growth. Over
the past several years, producers in different geographical
areas started preferring particular wheat varieties to produce
end products such as bread or beer, according to the local
tastes. Thus, variety identification plays an important role
in selecting the right type of wheat for a particular product
and assures its quality. Many product manufacturers such
as bakeries and restaurants demand high levels of purity
with respect to the variety. Techniques used presently for
variety identification include gel electrophoresis and high
performance liquid chromatography (HPLC). The CSIRO
Plant Industry of Australia [1] developed a testing system

using a set of DNA markers to identify wheat and barley
varieties. However, these methods are time consuming and
need some level of expertise to use. Thus, a physical method
which is rapid and nondestructive would be useful for both
the breeder and the industry, in maintaining the required
quality of the wheat and its products.

2. Materials and Methods

It was found earlier that there exists a high correlation
between dielectric properties of aqueous materials and their
moisture content (MC). The variation in dielectric constant
with MC for shelled yellow field corn was found to be
more pronounced between 1 and 5MHz [2]. Because the
degree of change in the dielectric constant with the change
in moisture content decreases with increasing frequency
[3], the difference in the dielectric constants of a parallel-
plate capacitor, holding wheat samples between the plates,
measured at the two frequencies (1 MHz and 5 MHz) should
be a good estimator of moisture content. Since capacitance is
a function of dielectric constant, the capacitance difference
at these two frequencies should also be a good indicator of
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the moisture content [4]. However, attempts to estimate MC
of wheat samples by a parallel-plate system as mentioned
above, using the two frequencies, did not yield sufficiently
accurate results [5]. This was partially because the volume
of space that a sample of odd-shaped material, such as
grain, occupies between two parallel plates would vary each
time the material is placed between the plates. Air gaps
between the grain kernels and between the kernels and the
capacitor walls would occur differently, introducing errors.
To compensate for these errors, two other related electrical
parameters, phase angle (0) and impedance (Z), were also
measured at these two frequencies using the CI meter (CI
meter is Chari’s impedance meter designed and constructed
by the corresponding author). The capacitance of the parallel-
plate system was computed from the values of 0 and Z. The
dependence of MC on C, 0, and Z was earlier studied and
found to be useful in MC determination for wheat [6]. Thus,
the three parameters C, 0, and Z measured and/or computed
at two frequencies could be used to determine the MC of
six varieties of wheat with acceptable accuracy (within 1% of
their air-oven values) [7]. Fisher’s linear discriminant analysis
(FLD) is a method of finding a coeflicient, with which a linear
combination of relevant variables can discriminate different
groups [8]. FLD analysis was earlier used for beef tenderness
classification [9]. In the present work, FLD models for wheat
variety classification and identification were developed with
the three variables C, 6, and Z that were earlier found to be
useful for MC determinations. The models were tested and
validated on six varieties of wheat.

2.1. The CI Meter. The design and operation of the CI meter
were described previously [10]. To describe briefly, three
frequencies (1, 5, and 9 MHz) are generated by three FOX
crystal oscillators (FOX Electronics, Fort Myers, FL, USA)
made for these frequencies and applied alternately to a
parallel-plate system holding the samples between the plates,
which acts as the impedance load (Z), by switching through
a multiplexer (Figurel). These crystals (Model HC-49U)
have a frequency stability of +50 PPM, over their operating
temperature range, and the circuits are similar for the three
frequencies. Initially, at 1 MHz, the current flowing through
the system with an impedance Z is fed into an op-amp.

The same current would flow through the feedback
resistor R,. The output voltage of the op-amp and the original
signal from the oscillator are rectified and measured as e,
and e,;, respectively. The current through Z is calculated as
e,,1/R, and the magnitude of the impedance of the parallel-
plate system with a sample between them is obtained as | Z,| =
Rr(erl/eml)’

The phase angle at 1MHz is determined by comparing
the signal emerging out of the op-amp with that of the
original signal, using a comparator and phase detector that
give an output voltage e,,;, proportional to the phase angle 6,
between the two. The computer then switches the multiplexer
to 5MHz, and impedance |Z,| and phase angle 0, are
measured. The real and imaginary components of Z at each
frequency are calculated as R = |Z]| cos 8 and X = |Z] sin 6.
The capacitance of the parallel-plate system with a sample
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FIGURE 1: RF impedance measuring block diagram.

FIGURE 2: RF impedance measuring system: (1) CI meter, (2)
cylinder with wheat sample between electrodes, and (3) computer.

between the plates is obtained as C = —1/2nfX at each
frequency. The measurement system is shown in Figure 2.
The CI meter is equipped with a regulated power supply
that can be plugged into a 110 VAC line and two 12 VDC
rechargeable batteries for field operations. A laptop computer
controls the process and collects the data from the CI meter.
The data is stored in the computer which was programmed
to identify the wheat varieties. A cylindrical acrylic tube,
fitted with a set of parallel-plate electrodes (Figure 2), served
as the sample holder and sensor, as described earlier [10].
Inside the cylinder an electrode assembly consisting of two
rectangular aluminum plates was fitted about 25 mm from
the ends of the cylinder. The gap between the parallel-
plates is filled with the sample, as shown in Figure 2. Except
for the two electrodes, no metal parts were used in the
assembly of the electrode system or in the sample collecting
system, to prevent any interaction with the RF signal used
in the measurements. With the drawer below the cylinder
pushed all the way in, the cylinder was filled with the wheat
sample, and the impedance measurements were taken. After
completion of the measurements, the drawer was pulled
out slowly, allowing the sample to fall into the drawer. The
drawer was emptied before another sample was placed in the
cylinder, for measurement. With a wheat sample occupying
the space between the electrodes, the analyzer measured the
impedance and phase angle of this electrode system at the
three frequencies. The data was collected and subjected to
FLD analysis.
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2.2. Wheat Samples. Six varieties of wheat, planted and
harvested around the Texas Panhandle and at the New
Mexico State University station near Clovis, were used in
this study [11]. The wheat varieties were Tam III, Duster,
Scoutt 66, Endurance, Jagger, and Hatcher, planted during
October 2010 and harvested during July 2011. All sample lots
were stored at 4°C and 40% relative humidity. When the
samples were received at the USDA-ARS National Peanut
Research Laboratory (NPRL), their MC was about 9% (all
moisture contents are expressed in percent wet basis in this
paper). Each wheat variety was divided into two sublots one
for training and the other for validation and was stored in
separate airtight containers.

2.3. Procedures. Impedance measurements were made on 75
samples from each sublot of Duster, Endurance, Hatcher,
and Jacqueline varieties, while measurements were made
on 135 samples of Tam III and 60 samples of Scoutt 66 as
per the availability of the samples. Each wheat sample was
transferred from the container into the cylinder fitted with
the electrode system until the space between the two parallel
plates was completely filled. The cylinder accommodated
about 150 g of wheat sample. The room temperature during
the measurements was maintained at 21°C+1°C. With a
sample in the cylinder, the impedance (Z) and phase angle
(0) were measured with the CI meter at 1, 5, and 9 MHz. The
computer was programmed to repeat each measurement 30
times, compute the average value, and save it to an Excel
spreadsheet. The sample was then collected in the drawer
below the cylinder by gently pulling the drawer out and
tapping on the cylinder for the sample to drop down. The
drawer was emptied and reset in its box. This procedure was
repeated for all wheat samples (in the two sublots) from the
rest of the containers.

2.4. Data Analysis. Fisher’slinear discriminant (FLD) models
were developed using the statistical tool box of MATLAB
(The Mathworks Inc., Natick, MA). The inputs to the FLD
models are the capacitance (C), phase angle (6), and the
impedance (Z) measured for each of the wheat varieties
with the impedance meter. The data set contained sample
measurements of 495 each for training and validation, over
the six varieties. To develop the FLD models, the 495 samples
from the training sublot were used. The FLD models were
tested with the 495 measurements made on the validation
sublot. The overall classification accuracy obtained for the
models in both training and validation processes was used
as the evaluation metrics. Initially, models were developed
using the C, 0, and Z values measured at 1 MHz and 5 MHz
separately (the 9 MHz values were not used for wheat clas-
sification). Later, the measured values at the two frequencies
were combined to obtain the best possible model.

3. Results and Discussion

Shown in Figure 3 are the classification results using the
0, Z, and C values at 1MHz individually and with certain
combinations as shown for both training and validation
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FIGURE 3: Models developed using different parameters at 1 MHz
only.

£ 100
= 90 i
g 80 e e
5 70 . o . .
g 60 , AR , ,
50 S : :
g 40 : : :
s 30 : : :
& 20 : : :
g 10 : : :
6 0 ~ o~ I I o~ o~ o~
© N ©) N O O O
=] =] =] ]
=4 =1 =1 =1
< < < <
$ & N N
<
B Training

O Validation

FIGURE 4: Models developed using different parameters at 5 MHz
only.

groups. Though the classification accuracy improved with
the three parameters combined, still it was not better than
40%. Shown in Figure 4 are the classification results obtained
from the measurements at 5 MHz, using the same parame-
ters individually and their different combinations as before.
Though, the results showed considerable improvement at
5MHz, the Z, and C, and 60,, Z, and C, combinations
giving an accuracy level of about 85%, it was felt that the
combination of the measurements at the two frequencies
would give even better classification accuracy than the
parameters at only one frequency. Earlier, the combination
of the measurements 6,, Z, and C, and 6,, Z, and C, at the
two frequencies worked best for predicting MC of different
varieties of wheat with a single calibration [7]. Thus, an
attempt was made to perform the FLD analysis combining
the 0, Z and C measurements at the two frequencies. Shown
in Figure 5 are the classification results from the FLD analysis,
combining both 1 MHz and the 5MHz measurements of
the three parameters. As expected the combination yielded
better results. Both the training and validation sets showed
a classification accuracy of 95% or better over the six wheat
varieties. The classification accuracy of this model is shown
in Table 1 for the training set and in Table 2 for the validation
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TaBLE 1: Classification performance of model using 0,, Z,, C,, 0,, Z,, and C,: training group.

Actual variety Predicted variety Total Classiﬁca.tio.n accuracy
Duster Endurance Hatcher Jacqueline TamIII Scoutt 66 (CA%) within the group

Duster 73 0 2 0 0 0 75 97.3
Endurance 1 74 0 0 0 0 75 98.7
Hatcher 2 2 71 0 0 0 75 94.7
Jacqueline 75 0 0 75 100.0

Tam III 15 0 0 0 120 0 135 88.9

Scoutt 66 0 0 0 55 60 91.7

Total 91 81 73 75 120 55 495

CA (%) out of the 495 samples  80.2 91.4 97.3 100.0 100.0 100.0 94.5

TaBLE 2: Classification performance of model using 0,, Z,, C,, 0,, Z,, and C,: validation group.

Predicted variety

Classification accuracy

Actual variety Total T

Duster Endurance Hatcher Jacqueline TamIII Scoutt 66 (CA%) within the group
Duster 73 0 2 0 0 0 75 97.3
Endurance 0 75 0 0 0 0 75 100.0
Hatcher 1 0 74 0 0 0 75 98.7
Jacqueline 0 75 0 0 75 100.0
Tam III 15 120 0 135 88.9
Scoutt 66 0 5 0 0 55 60 91.7
Total 89 80 76 75 120 55 495
CA (%) out of the 495 samples  82.0 93.8 97.4 100.0 100.0 100.0 95.4
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FIGURE 5: Models developed using different parameters at both 1and
5 MHz.

set. The 495 samples used for validation were different from
the ones used for training (calibration). The percentage of
classification accuracy (CA%) shown in the last column in
Tables 1 and 2 for the Duster variety, for example, is the
number of samples that could be identified as Duster out
of the total of 75 Duster samples, using the FLD analysis,
in the training and the validation groups, respectively. For
the Duster variety 73 samples out of 75 were identified as
Duster, giving a classification accuracy of 97.3%. Similarly,
the classification accuracy in the case of Jacqueline was 100%
and was 89% for Tam III. For the other three varieties, the
classification accuracy was over 90% as shown in the last

column. The classification accuracy for the training group,
over all the varieties, was 94.5%. The percentage of accuracy
shown in the bottom row is the classification accuracy of
each variety, predicted from all the varieties consisting of 495
samples. Thus, in the case of Duster a total of 91 samples were
identified as Duster from the total of 495. The breakup was
like 73 samples from Duster, 1 sample from Endurance, 2 from
Hatcher, 15 from Tam III, and none from Jacqueline and Scott
66. This amounts to accuracy of 73 out of 91 identifications
for Duster, which is 80.2%. Incidentally, Duster was the
only variety with this low identification accuracy. All other
varieties showed accuracy better than 91%. Similarly, from the
validation sublot classification results, shown in Table 2, the
classification percentage of accuracy shown in the last column
for individual varieties, from the total number of samples
of that variety predicted, stayed the same or slightly better,
compared with the training group. The classification accuracy
over all the varieties was over 95%.

Both Endurance and Jacqueline varieties showed a clas-
sification accuracy of 100% while the classification accuracy
for Tam IIT remained the same at 89%. The other three groups
showed accuracy of classification of over 90%. However, the
classification accuracy numbers shown in the bottom row
showed improvement over the training group classification
accuracy. Duster variety showed 82% accuracy while all other
varieties showed a classification accuracy of over 93% out of
the 495 samples tested. The classification accuracy over all the
varieties determined either within the group or out of the 495
samples (the last column or the bottom row in Tables 1 and
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2) remains the same. Thus, the overall accuracy obtained in
the classification of both the training and validation samples
indicates the suitability of the FLD model, consisting of
the capacitance, phase angle, and impedance measurements
made at 1 and 5 MHz, as a useful tool in identifying the wheat
varieties by this rapid and nondestructive method.

4. Conclusion

It is possible to identify several wheat varieties, from each
other, using Fisher’s linear discriminant (FLD) analysis.
This method is rapid and nondestructive. Impedance mea-
surements at two frequencies were made using a low-cost
impedance analyzer designed and developed at the USDA
laboratories by the corresponding author. There is a possibil-
ity of applying this method for identifying peanut varieties
with high and low amounts of total oil or oleic acid contents.
This type of identification would be useful to the breeder as
well as the peanut industry.
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