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A high-order finite difference scheme is proposed for solving time fractional heat equations. The time fractional derivative is
described in the Riemann-Liouville sense. In the proposed scheme a new second-order discretization, which is based on Crank-
Nicholson method, is applied for the time fractional part and fourth-order accuracy compact approximation is applied for the
second-order space derivative. The spectral stability and the Fourier stability analysis of the difference scheme are shown. Finally
a detailed numerical analysis, including tables, figures, and error comparison, is given to demonstrate the theoretical results and
high accuracy of the proposed scheme.

1. Introduction

In the last decades, more and more attention has been placed
on the development and research of fractional differential
equations, because they can describe many phenomena,
physical and chemical processes more accurately than classi-
cal integer order differential equations [1–4]. And the finite
difference method is an efficient tool for solving fractional
partial differential equations.

There are many different discretizations in time variable
equipped with the compact difference scheme in spatial
variable. The approximations given in [4–9] are of the order
𝑂(𝜏
𝜇
+ ℎ
4
), where 1 ≤ 𝜇 < 2. Here, we propose a method

for the time fractional differential heat equations with the
accuracy of order 𝑂(𝜏2 + ℎ4).

In this work, we consider the following time fractional
heat equation:

𝜕
𝛼

𝑀
𝑢 (𝑡, 𝑥)

𝜕𝑡𝛼
=
𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑥2
+ 𝑓 (𝑡, 𝑥) , 0 < 𝑥 < 1, 0 < 𝑡 < 1,

𝑢 (0, 𝑥) = 𝑟 (𝑥) , 0 ≤ 𝑥 ≤ 1,

𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 1) = 0, 0 ≤ 𝑡 ≤ 1,

(1)

where the term 𝜕𝛼
𝑀
𝑢(𝑡, 𝑥)/𝜕𝑡

𝛼 denotes 𝛼-order modifying
Riemann-Liouville fractional derivative [10] given with the
following formula:
𝜕
𝛼

𝑀
𝑢 (𝑡, 𝑥)

𝜕𝑡𝛼

=

{{{

{{{

{

1

Γ (1 − 𝛼)

𝜕

𝜕𝑡
∫

𝑡

0

𝑢 (𝑠, 𝑥) − 𝑢 (0, 𝑥)

(𝑡 − 𝑠)
𝛼

𝑑𝑠, if 0 < 𝛼 < 1,

𝜕

𝜕𝑡
𝑢 (𝑡, 𝑥) , if𝛼 = 1,

(2)

where Γ(⋅ ) is the gamma function.

Remark 1. If 𝑟(𝑥) = 0, then the Riemann-Liouville and
the modified Riemann-Liouville fractional derivatives are
identical, since the Riemann-Liouville derivative is given by
the following formula [11]:

𝜕
𝛼
𝑢 (𝑡, 𝑥)

𝜕𝑡𝛼
=

{{{

{{{

{

1

Γ (1 − 𝛼)

𝜕

𝜕𝑡
∫

𝑡

0

𝑢 (𝑠, 𝑥)

(𝑡 − 𝑠)
𝛼
𝑑𝑠, if 0 < 𝛼 < 1,

𝜕

𝜕𝑡
𝑢 (𝑡, 𝑥) , if 𝛼 = 1.

(3)
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If 𝑟(𝑥) is nonzero, then there are some problems about the
existence of the solutions for the heat equation (1). To rectify
the situation two main approaches can be used; the modified
Riemann-Liouville fractional derivative can be used [10] or
the initial condition should be modified [12]. We chose the
first approach in our work.

2. Discretization of the Problem

In this section we introduce the basic ideas for the numerical
solution of the time fractional heat equation (1) by compact
finite difference scheme.

For some positive integers 𝑀 and 𝑁, the grid sizes in
space and time for the finite difference algorithm are defined
by ℎ = 1/𝑀 and 𝜏 = 1/𝑁, respectively. The grid points
in the space interval [0, 1] are the numbers 𝑥𝑗 = 𝑗ℎ, 𝑗 =
0, 1, 2, . . . ,𝑀, and the grid points in the time interval [0, 1] are
labeled 𝑡𝑘 = 𝑘𝜏, 𝑘 = 0, 1, 2, . . . , 𝑁. The values of the functions
𝑈 and 𝑓 at the grid points are denoted by 𝑈𝑘

𝑗
= 𝑈(𝑡𝑘, 𝑥𝑗) and

𝑓
𝑘

𝑗
= 𝑓(𝑡𝑘, 𝑥𝑗), respectively.
As in the classical Crank-Nicholson difference scheme,

we use the approximation [13] to the fractional derivative
𝜕
𝛼
𝑈(𝑡, 𝑥)/𝜕𝑡

𝛼 at (𝑡𝑘+1/2, 𝑥𝑗), and then

𝜕
𝛼
𝑈(𝑡𝑘+1/2, 𝑥𝑗)

𝜕𝑡𝛼

=
𝜕

𝜕𝑡
𝐻 (𝑡𝑘+1/2, 𝑥𝑗)

=

𝐻(𝑡𝑘+1, 𝑥𝑗) − 𝐻(𝑡𝑘, 𝑥𝑗)

𝜏
+ 𝑂 (𝜏

2
)

= 𝑤0𝑈
𝑘+1

𝑗
+

𝑘

∑

𝑟=1

(𝑤𝑟 − 𝑤𝑟−1) 𝑈
𝑘+1−𝑟

𝑗
− 𝑤𝑘𝑈

0

𝑗
+ 𝑂 (𝜏

2
) ,

(4)

where𝐻(𝑡, 𝑥) = (1/Γ(1−𝛼)) ∫𝑡
0
((𝑢(𝑠, 𝑥)−𝑢(0, 𝑥))/(𝑡 − 𝑠)

𝛼
)𝑑𝑠,

𝑤0 = 𝑏0 − 𝑎0, and 𝑤𝑘 = 𝑎𝑘−1 − 𝑎𝑘 + (𝑘 + 1)𝑏𝑘 − (𝑘 − 1)𝑏𝑘−1, for
1 ≤ 𝑘 ≤ 𝑁.

Definition 2. Define the average operator 𝜅 : 𝜗 → 𝜗 as
follows:

(𝜅𝑔)
𝑗
=

{{{{{{

{{{{{{

{

𝑔0, 𝑗 = 0,

1

12
(𝑔𝑗−1 + 10𝑔𝑗 + 𝑔𝑗+1) , 1 ≤ 𝑗 ≤ 𝑀 − 1,

𝑔𝑀, 𝑗 = 𝑀,

(5)

where 𝑔 = (𝑔0, 𝑔1, . . . , 𝑔𝑀) is a grid function and 𝜗 is the
space of the grid functions.

Lemma 3. Suppose 𝑝(𝑥) ∈ 𝐶6[0, 1], then

𝜅
𝜕
2
𝑝 (𝑥𝑖)

𝜕𝑥2
=
1

ℎ2
[𝑝 (𝑥𝑖−1) − 2𝑝 (𝑥𝑖) + 𝑝 (𝑥𝑖+1)]

+ 𝑂 (ℎ
4
) , 1 ≤ 𝑖 ≤ 𝑀 − 1.

(6)

Proof (see [14]). We use the Taylor expansion of each term
about 𝑥𝑖, and then we obtain the following truncation error
for any 𝑖, where 1 ≤ 𝑖 ≤ 𝑀 − 1:

𝜅
𝜕
2
𝑝 (𝑥𝑖)

𝜕𝑥2
−
1

ℎ2
[𝑝 (𝑥𝑖−1) − 2𝑝 (𝑥𝑖) + 𝑝 (𝑥𝑖+1)]

=
1

12
[𝑝
󸀠󸀠
(𝑥𝑖+1) + 10𝑝

󸀠󸀠
(𝑥𝑖) + 𝑝

󸀠󸀠
(𝑥𝑖−1)]

−
1

ℎ2
[𝑝 (𝑥𝑖+1) − 2𝑝 (𝑥𝑖) + 𝑝 (𝑥𝑖−1)]

=
ℎ
4

360
∫

1

0

[𝑝
(6)
(𝑥𝑖 + 𝑠ℎ) + 𝑝

(6)
(𝑥𝑖 − 𝑠ℎ)]

× (1 − 𝑠)
3
[5 − 3(1 − 𝑠)

2
] 𝑑𝑠

=
ℎ
4

240
𝑝
(6)
(𝜉𝑖) , 𝜉𝑖 ∈ (𝑥𝑖−1, 𝑥𝑖+1) .

(7)

3. Compact Finite Difference Scheme

If we apply the operator 𝜅 to both side of (1),

𝜅
𝜕
𝛼

𝑀
𝑢 (𝑡, 𝑥)

𝜕𝑡𝛼
= 𝜅
𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑥2
+ 𝜅𝑓 (𝑡, 𝑥) , 0 < 𝑥 < 1, 0 < 𝑡 < 1,

𝑢 (0, 𝑥) = 𝑟 (𝑥) , 0 ≤ 𝑥 ≤ 1,

𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 1) = 0, 0 ≤ 𝑡 ≤ 1,

(8)

and use the approximation (4), then we obtain the following
difference scheme which is accurate of order 𝑂(𝜏2 + ℎ4);

1

12
[𝑤0𝑈

𝑘+1

𝑗−1
+

𝑘

∑

𝑟=1

(𝑤𝑟 − 𝑤𝑟−1) 𝑈
𝑘+1−𝑟

𝑗−1
− 𝑤𝑘𝑈

0

𝑗−1
]

+
10

12
[𝑤0𝑈

𝑘+1

𝑗
+

𝑘

∑

𝑟=1

(𝑤𝑟 − 𝑤𝑟−1) 𝑈
𝑘+1−𝑟

𝑗
− 𝑤𝑘𝑈

0

𝑗
]

+
1

12
[𝑤0𝑈

𝑘+1

𝑗+1
+

𝑘

∑

𝑟=1

(𝑤𝑟 − 𝑤𝑟−1) 𝑈
𝑘+1−𝑟

𝑗+1
− 𝑤𝑘𝑈

0

𝑗+1
]

= [

[

𝑈
𝑘+1

𝑗+1
− 2𝑈
𝑘+1

𝑗
+ 𝑈
𝑘+1

𝑗−1

2ℎ2
+

𝑈
𝑘

𝑗+1
− 2𝑈
𝑘

𝑗
+ 𝑈
𝑘

𝑗−1

2ℎ2
]

]

+
1

12
[𝑓(𝑡𝑘 +

𝜏

2
, 𝑥𝑗−1) + 10𝑓(𝑡𝑘 +

𝜏

2
, 𝑥𝑗)

+𝑓(𝑡𝑘 +
𝜏

2
, 𝑥𝑗+1)] ,

0 ≤ 𝑘 ≤ 𝑁 − 1, 1 ≤ 𝑗 ≤ 𝑀 − 1,

𝑈
0

𝑗
= 𝑟 (𝑥𝑗) , 1 ≤ 𝑗 ≤ 𝑀 − 1,

𝑈
𝑘

0
= 0, 𝑈

𝑘

𝑀
= 0, 0 ≤ 𝑘 ≤ 𝑁.

(9)
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The difference scheme above can be written inmatrix form as
follows:

𝐴𝑈𝑗+1 + 𝐵𝑈𝑗 + 𝐴𝑈𝑗−1 = 𝜑𝑗, (10)

where 𝜑𝑗 = [𝜑
0

𝑗
, 𝜑
1

𝑗
, 𝜑
2

𝑗
, . . . , 𝜑

𝑁

𝑗
]
𝑇, 𝜑0
𝑗
= 𝑟(𝑥𝑗), 𝜑

𝑘

𝑗
=

𝑓(𝑡𝑘+1/2, 𝑥𝑗), 1 ≤ 𝑘 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑀, and 𝑈𝑗 =
[𝑈
0

𝑗
, 𝑈
1

𝑗
, 𝑈
2

𝑗
, . . . , 𝑈

𝑁

𝑗
]
𝑇.

Here𝐴 (𝑁+1)×(𝑁+1) and𝐵(𝑁+1)×(𝑁+1) are thematrices of the
form:

𝐴 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0

−𝑤0

12
−
1

2ℎ2

𝑤0

12
−
1

2ℎ2

−𝑤1

12

𝑤1−𝑤0

12
−
1

2ℎ2

𝑤0

12
−
1

2ℎ2

−𝑤2

12

𝑤2−𝑤1

12

𝑤1−𝑤0

12
−
1

2ℎ2

𝑤0

12
−
1

2ℎ2

d d d

−𝑤𝑁−1

12

𝑤𝑁−1−𝑤𝑁−2

12
⋅ ⋅ ⋅

𝑤2−𝑤1

12

𝑤1−𝑤0

12
−
1

2ℎ2

𝑤0

12
−
1

2ℎ2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

−10𝑤0

12
+
1

ℎ2

10𝑤0

12
+
1

ℎ2

−10𝑤1

12

10 (𝑤1 − 𝑤0)

12
+
1

ℎ2

10𝑤0

12
+
1

ℎ2

−10𝑤2

12

10 (𝑤2 − 𝑤1)

12

10 (𝑤1 − 𝑤0)

12
+
1

ℎ2

10𝑤0

12
+
1

ℎ2

d d d

−10𝑤𝑁−1

12

10 (𝑤𝑁−1 − 𝑤𝑁−2)

12
⋅ ⋅ ⋅
10 (𝑤2 − 𝑤1)

12

10 (𝑤1 − 𝑤0)

12
+
1

ℎ2

10𝑤0

12
+
1

ℎ2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(11)

Wenote that the unspecified entries are zeros at thematri-
ces above.

Using the idea of the modified Gauss-Elimination
method, we can convert (10) into the following form:

𝑈𝑗 = 𝛼𝑗+1𝑈𝑗+1 + 𝛽𝑗+1, 𝑗 = 𝑀 − 1, . . . , 2, 1, 0. (12)

This way, the two-step form of difference schemes in (10)
is transformed to one-step method as in (12).

Now, we need to determine the matrices 𝛼𝑗+1 and 𝛽𝑗+1
satisfying the last equality. Since 𝑈0 = 𝛼1𝑈1 + 𝛽1 = 0, we
can select 𝛼1 = 𝑂(𝑁+1)×(𝑁+1) and 𝛽1 = 𝑂(𝑁+1)×1. Combining
the equalities𝑈𝑗 = 𝛼𝑗+1𝑈𝑗+1 +𝛽𝑗+1, and𝑈𝑗−1 = 𝛼𝑗𝑈𝑗 +𝛽𝑗 and
the matrix equation (10), we have

(𝐴 + 𝐵𝛼𝑗+1 + 𝐴𝛼𝑗𝛼𝑗+1)𝑈𝑗+1

+ (𝐵𝛽𝑗+1 + 𝐴𝛼𝑗𝛽𝑗+1 + 𝐴𝛽𝑗) = 𝜑𝑗.

(13)

Then, we write

𝐴 + 𝐵𝛼𝑗+1 + 𝐴𝛼𝑗𝛼𝑗+1 = 0,

𝐵𝛽𝑗+1 + 𝐴𝛼𝑗𝛽𝑗+1 + 𝐴𝛽𝑗 = 𝜑𝑗,

(14)

where 1 ≤ 𝑗 ≤ 𝑀 − 1.
So, we obtain the following pair of formulas [15]:

𝛼𝑗+1 = −(𝐵 + 𝐴𝛼𝑗)
−1

𝐴,

𝛽𝑗+1 = (𝐵 + 𝐴𝛼𝑗)
−1

(𝜑𝑗 − 𝐴𝛽𝑗) ,

(15)

where 1 ≤ 𝑗 ≤ 𝑀 − 1.

4. The Spectral Stability of the Method

The spectral stability analysis is done by using the analysis of
the eigenvalues of the iteration matrix 𝛼𝑗 (1 ≤ 𝑗 ≤ 𝑀) of the
scheme (12).
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Let 𝜌(𝐴) denote the spectral radius of a matrix 𝐴, that is,
the maximum of the absolute value of the eigenvalues of the
matrix 𝐴.

We will prove that 𝜌(𝛼𝑗) < 1, (1 ≤ 𝑗 ≤ 𝑀), by induction
since 𝛼1 is a zero matrix 𝜌(𝛼1) = 0 < 1.
Moreover, 𝛼2 = −𝐵

−1
𝐴, and 𝛼2 is a lower triangular

matrix of the following form:

𝛼2 =

[
[
[
[
[
[
[

[

0

∗
−𝑤0/12 + 1/2ℎ

2

10𝑤0/12 + 1/ℎ
2

d

∗ ∗
−𝑤0/12 + 1/2ℎ

2

10𝑤0/12 + 1/ℎ
2

]
]
]
]
]
]
]

](𝑁+1)×(𝑁+1)

. (16)

Therefore 𝜌(𝛼2) = 𝜌(−𝐵
−1
𝐴) = |(1/2ℎ

2
− 𝑤0/12)/(1/ℎ

2
+

10𝑤0/12)| < |(1/2ℎ
2
− 𝑤0/12)/(1/2ℎ

2
+ 9𝑤0/12 + 1/2ℎ

2
+

𝑤0/12)| < |(1/2ℎ
2
− 𝑤0/12)/(1/2ℎ

2
+ 𝑤0/12)|.

Since

𝑤0 = 𝑏0 − 𝑎0

=
𝜏
−𝛼

(1 − 𝛼) Γ (1 − 𝛼)
−

𝜏
−𝛼

(2 − 𝛼) Γ (1 − 𝛼)

=
𝜏
−𝛼

Γ (3 − 𝛼)
> 0

(17)

and 1/ℎ2 > 0, we can write 𝜌(𝛼2) < 1.
Now, assume 𝜌(𝛼𝑗) < 1. After some calculations we find

that

𝛼𝑗+1 = [−(𝐵 + 𝐴𝛼𝑗)
−1
𝐴]
(𝑁+1)×(𝑁+1)

=

[
[
[
[
[
[
[
[
[

[

0

∗

− (𝑤0/12 − 1/2ℎ
2
)

𝐵2,2 + 𝐴2,2𝛼𝑗
2,2

∗ ∗ d

∗ ∗

− (𝑤0/12 − 1/2ℎ
2
)

𝐵𝑁+1,𝑁+1 + 𝐴𝑁+1,𝑁+1𝛼𝑗
𝑁+1,𝑁+1

]
]
]
]
]
]
]
]
]

]

,

(18)

and we already know that 𝐴 𝑖,𝑖 = 𝑤0/12 − 1/2ℎ
2, 𝐵𝑖,𝑖 =

10𝑤0/12 + 1/ℎ
2 and 𝛼𝑗

𝑖,𝑖

= 𝜆𝑗, nonzero eigenvalue of 𝛼𝑗 for
2 ≤ 𝑖 ≤ 𝑁 + 1.

𝜌 (𝛼𝑗+1) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1/2ℎ
2
− 𝑤0/12

1/ℎ2 + 10𝑤0/12 + (𝑤0/12 − 1/2ℎ
2) 𝜆𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (19)

If 1/2ℎ2 − 𝑤0/12 ≥ 0, then we have two subcases.

(a) If 0 < 𝜆𝑗 < 1,

𝜌 (𝛼𝑗) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1/2ℎ
2
− 𝑤0/12

1/ℎ2 + 10𝑤0/12 + (𝑤0/12 − 1/2ℎ
2) 𝜆𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
1/2ℎ
2
− 𝑤0/12

1/ℎ2 + 10𝑤0/12 − (1/2ℎ
2 − 𝑤0/12) 𝜆𝑗

≤
1/2ℎ
2
− 𝑤0/12

1/ℎ2 + 10𝑤0/12 − (1/2ℎ
2 − 𝑤0/12)

=
1/2ℎ
2
− 𝑤0/12

1/2ℎ2 + 11𝑤0/12
≤ 1.

(20)

(b) If −1 < 𝜆𝑗 < 0,

𝜌 (𝛼𝑗+1) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1/2ℎ
2
− 𝑤0/12

1/ℎ2 + 10𝑤0/12 + (𝑤0/12 − 1/2ℎ
2) 𝜆𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
1/2ℎ
2
− 𝑤0/12

1/ℎ2 + 10𝑤0/12 − (1/2ℎ
2 − 𝑤0/12) 𝜆𝑗

≤
1/2ℎ
2
− 𝑤0/12

1/ℎ2 + 10𝑤0/12

=
1/2ℎ
2
− 𝑤0/12

1/2ℎ2 + 𝑤0/12 + 1/2ℎ
2 + 9𝑤0/12

≤
1/2ℎ
2
− 𝑤0/12

1/2ℎ2 + 𝑤0/12
< 1.

(21)

If 1/2ℎ2 − 𝑤0/12 < 0, then we have two subcases.
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(a) If 0 < 𝜆𝑗 < 1,

𝜌 (𝛼𝑗+1) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1/2ℎ
2
− 𝑤0/12

1/ℎ2 + 10𝑤0/12 + (𝑤0/12 − 1/2ℎ
2) 𝜆𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
−1/2ℎ

2
+ 𝑤0/12

1/ℎ2 + 10𝑤0/12 + (𝑤0/12 − 1/2ℎ
2) 𝜆𝑗

≤
𝑤0/12 − 1/2ℎ

2

𝑤0/12 + 1/2ℎ
2 + 1/2ℎ2 + 9𝑤0/12

=
𝑤0/12 − 1/2ℎ

2

𝑤0/12 + 1/2ℎ
2
≤ 1.

(22)

(b) If −1 < 𝜆𝑗 < 0,

𝜌 (𝛼𝑗+1) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1/2ℎ
2
− 𝑤0/12

1/ℎ2 + 10𝑤0/12 + (𝑤0/12 − 1/2ℎ
2) 𝜆𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
−1/2ℎ

2
+ 𝑤0/12

1/ℎ2 + 10𝑤0/12 + (𝑤0/12 − 1/2ℎ
2) 𝜆𝑗

≤
𝑤0/12 − 1/2ℎ

2

1/ℎ2 + 10𝑤0/12 − (𝑤0/12 − 1/2ℎ
2)

=
𝑤0/12 − 1/2ℎ

2

9𝑤0/12 + 3/2ℎ
2

=
𝑤0/12 − 1/2ℎ

2

𝑤0/12 + 1/2ℎ
2 + (8𝑤0/12 + 1/ℎ

2)

≤
𝑤0/12 − 1/2ℎ

2

𝑤0/12 + 1/2ℎ
2
< 1.

(23)

So, we have proved that whenever 𝜌(𝛼𝑗) < 1 then it
follows that 𝜌(𝛼𝑗+1) < 1. So 𝜌(𝛼𝑗) < 1 for any 𝑗, where
1 ≤ 𝑗 ≤ 𝑀.

Remark 4 (see [16]). It is well known that for any 𝐴 ∈ R𝑁×𝑁,
𝐴
𝑚
→ 0 as 𝑚 → ∞ if and only if 𝜌(𝐴) ≤ 1. We note

that if 𝐴 is normal, then ‖𝐴‖ = 𝜌(𝐴) but when the matrix
𝐴 is not normal the spectral radius gives no indication of the
magnitude of the roundoff error for finite 𝑀. In this case a
condition of the form 𝜌(𝐴) ≤ 1 guarantees eventual decay of
the errors, but does not control the intermediate growth of
the errors. Then, it is easy to understand that 𝜌(𝐴) ≤ 1 is a
necessary condition for stability but not always sufficient.

5. The Fourier Stability of the Method

We analyze the stability of the difference scheme by a Fourier
analysis. Let 𝑈𝑘

𝑗
be the approximate solution and define 𝜌𝑘

𝑗
=

𝑢
𝑘

𝑗
− 𝑈
𝑘

𝑗
, 𝑘 = 0, 1, . . . , 𝑁 − 1, 𝑗 = 1, . . . ,𝑀 − 1. Then, we write

𝜌
𝑘

𝑗
= 𝑑𝑘𝑒
𝑖𝑗ℎ𝛽 and obtain the following roundoff error equation

for (9):

1

12
[𝑤0𝜌
𝑘+1

𝑗−1
+

𝑘

∑

𝑟=1

(𝑤𝑟 − 𝑤𝑟−1) 𝜌
𝑘+1−𝑟

𝑗−1
− 𝑤𝑘𝜌

0

𝑗−1
]

+
10

12
[𝑤0𝜌
𝑘+1

𝑗
+

𝑘

∑

𝑟=1

(𝑤𝑟 − 𝑤𝑟−1) 𝜌
𝑘+1−𝑟

𝑗
− 𝑤𝑘𝜌

0

𝑗
]

+
1

12
[𝑤0𝜌
𝑘+1

𝑗+1

+

𝑘

∑

𝑟=1

(𝑤𝑟 − 𝑤𝑟−1) 𝜌
𝑘+1−𝑟

𝑗+1
− 𝑤𝑘𝜌

0

𝑗+1
]

= [

[

𝜌
𝑘+1

𝑗+1
− 2𝜌
𝑘+1

𝑗
+ 𝜌
𝑘+1

𝑗−1

2ℎ2
+

𝜌
𝑘

𝑗+1
− 2𝜌
𝑘

𝑗
+ 𝜌
𝑘

𝑗−1

2ℎ2
]

]

,

0 ≤ 𝑘 ≤ 𝑁 − 1, 1 ≤ 𝑗 ≤ 𝑀 − 1,

𝜌
𝑘

0
= 𝜌
𝑘

𝑀
= 0.

(24)

We now define the grid functions:

𝜌
𝑘
(𝑥) =

{

{

{

𝜌
𝑘

𝑗
, when 𝑥𝑗−ℎ/2 < 𝑥 < 𝑥𝑗+ℎ/2
0, when 0 ≤ 𝑥 ≤ ℎ

2
or 𝐿 − ℎ

2
< 𝑥 ≤ 𝐿,

(25)

and then 𝜌𝑘(𝑥) can be expanded in a Fourier series as follows:

𝜌
𝑘
(𝑥) =

∞

∑

𝑙=−∞

𝑑𝑘 (𝑙) 𝑒
𝑖2𝜋𝑙𝑥/𝐿

, 𝑘 = 1, 2, . . . , 𝑁, (26)

where 𝑑𝑘(𝑙) = 1/𝐿 ∫
𝐿

0
𝜌
𝑘
(𝑥)𝑒
−𝑖2𝜋𝑙𝑥/𝐿 and we introduce the

following norm:

󵄩󵄩󵄩󵄩󵄩
𝜌
𝑘󵄩󵄩󵄩󵄩󵄩2
= (

𝑀−1

∑

𝑗=1

ℎ
󵄨󵄨󵄨󵄨󵄨
𝜌
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

1/2

= [∫

𝐿

0

󵄨󵄨󵄨󵄨󵄨
𝜌
𝑘
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥]

1/2

, (27)

and applying the Parseval equality ∫𝐿
0
|𝜌
𝑘
(𝑥)|
2

𝑑𝑥 =

∑
∞

𝑙=−∞
|𝑑𝑘(𝑙)|

2, we obtain

󵄩󵄩󵄩󵄩󵄩
𝜌
𝑘󵄩󵄩󵄩󵄩󵄩

2

2
=

∞

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝑑𝑘 (𝑙)
󵄨󵄨󵄨󵄨

2
. (28)

Based on the above analysis we can suppose that the
solution of (24) has the following form 𝜌𝑘

𝑗
= 𝑑𝑘𝑒

𝑖𝑗ℎ𝛽, where



6 The Scientific World Journal

𝛽 = 2𝜋𝑙/𝐿 and 𝐿 = 1. Substituting the above expression into
(24), we obtain

1

12
[𝑤0𝑑𝑘+1𝑒

𝑖(𝑗−1)ℎ𝛽

+

𝑘

∑

𝑟=1

(𝑤𝑟 − 𝑤𝑟−1) 𝑑𝑘+1−𝑟𝑒
𝑖(𝑗−1)ℎ𝛽

− 𝑤𝑘𝑑0𝑒
𝑖(𝑗−1)ℎ𝛽

]

+
10

12
[𝑤0𝑑𝑘+1𝑒

𝑖𝑗ℎ𝛽

+

𝑘

∑

𝑟=1

(𝑤𝑟 − 𝑤𝑟−1) 𝑑𝑘+1−𝑟𝑒
𝑖𝑗ℎ𝛽
− 𝑤𝑘𝑑0𝑒

𝑖𝑗ℎ𝛽
]

+
1

12
[𝑤0𝑑𝑘+1𝑒

𝑖(𝑗+1)ℎ𝛽

+

𝑘

∑

𝑟=1

(𝑤𝑟 − 𝑤𝑟−1) 𝑑𝑘+1−𝑟𝑒
𝑖(𝑗+1)ℎ𝛽

−𝑤𝑘𝑑0𝑒
𝑖(𝑗+1)ℎ𝛽

]

= [
𝑑𝑘+1𝑒
𝑖(𝑗+1)ℎ𝛽

− 2𝑑𝑘+1𝑒
𝑖(𝑗)ℎ𝛽

+ 𝑑𝑘+1𝑒
𝑖(𝑗−1)ℎ𝛽

2ℎ2

+
𝑑𝑘𝑒
𝑖(𝑗+1)ℎ𝛽

− 2𝑑𝑘𝑒
𝑖(𝑗)ℎ𝛽

+ 𝑑𝑘𝑒
𝑖(𝑗−1)ℎ𝛽

2ℎ2
] ,

0 ≤ 𝑘 ≤ 𝑁 − 1, 1 ≤ 𝑗 ≤ 𝑀 − 1,

𝜌
𝑘

0
= 𝜌
𝑘

𝑀
= 0.

(29)

After simplifications, we write

𝑑𝑘+1 (
𝑤0 (2 cos (𝛽ℎ) + 10)

12
+
1

ℎ2
(1 − cos (𝛽ℎ)))

= 𝑑𝑘 (
1

ℎ2
(cos (𝛽ℎ) − 1))

+
(2 cos (𝛽ℎ) + 10)

12

× [

𝑘

∑

𝑟=1

(𝑤𝑟−1 − 𝑤𝑟) 𝑑𝑘+1−𝑟]

+ (
𝑤𝑘 (2 cos (𝛽ℎ) + 10)

12
)𝑑0.

(30)

Theorem 5. |𝑑𝑘| ≤ |𝑑0| for 𝑘 = 1, 2, . . . , 𝑁, where 𝑑𝑘 is the
solution of (30).

Proof. We will use mathematical induction for the proof.

We start with 𝑘 = 0, and then

𝑑1 (
𝑤0 (2 cos (𝛽ℎ) + 10)

12
+
1

ℎ2
(1 − cos (𝛽ℎ)))

= 𝑑0 (
1

ℎ2
(cos (𝛽ℎ) − 1))

+ (
𝑤0 (2 cos (𝛽ℎ) + 10)

12
)𝑑0.

(31)

Then

󵄨󵄨󵄨󵄨𝑑1
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑤0 (2 cos (𝛽ℎ) + 10) /12) − (1/ℎ
2
) (1 − cos (𝛽ℎ))

(𝑤0 (2 cos (𝛽ℎ) + 10) /12) + (1/ℎ2) (1 − cos (𝛽ℎ))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑑0
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑑0
󵄨󵄨󵄨󵄨 ,

(32)

and therefore |𝑑1| ≤ |𝑑0|.
Now, assume that |𝑑𝑛| ≤ |𝑑0|, 𝑛 = 1, 2, . . . , 𝑘. We need to

prove that 𝑛 = 𝑘 + 1. Indeed,

󵄨󵄨󵄨󵄨𝑑𝑘+1
󵄨󵄨󵄨󵄨 (
𝑤0 (2 cos (𝛽ℎ) + 10)

12
+
1

ℎ2
(1 − cos (𝛽ℎ)))

≤
󵄨󵄨󵄨󵄨𝑑𝑘
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

ℎ2
(cos (𝛽ℎ) − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(2 cos (𝛽ℎ) + 10)
12

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑟=1

󵄨󵄨󵄨󵄨𝑤𝑟−1 − 𝑤𝑟
󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑑𝑘+1−𝑟

󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤𝑘 (2 cos (𝛽ℎ) + 10)
12

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑑0
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝑑𝑘+1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤0 (2 cos (𝛽ℎ) + 10)
12

+
1

ℎ2
(1 − cos (𝛽ℎ))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑑0
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

ℎ2
(cos (𝛽ℎ) − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(2 cos (𝛽ℎ) + 10)
12

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑟=1

󵄨󵄨󵄨󵄨𝑤𝑟−1 − 𝑤𝑟
󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑑0
󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤𝑘 (2 cos (𝛽ℎ) + 10)
12

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑑0
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝑑𝑘+1
󵄨󵄨󵄨󵄨 ≤ (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

ℎ2
(cos (𝛽ℎ) − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(2 cos (𝛽ℎ) + 10)
12

(𝑤0 − 𝑤𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤𝑘 (2 cos (𝛽ℎ) + 10)
12

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

× (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤0

12
(2 cos (𝛽ℎ) + 10) + 1

ℎ2
(1 − cos (𝛽ℎ))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

−1

×
󵄨󵄨󵄨󵄨𝑑0
󵄨󵄨󵄨󵄨 ,
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Figure 1: (a) The approximate solutions of Example 7 by the proposed method when𝑁 = 32,𝑀 = 32 and 𝛼 = 0.5. (b) The errors for some
values of𝑀 and𝑁 when 𝑡 = 1 and 𝛼 = 0.5.

󵄨󵄨󵄨󵄨𝑑𝑘+1
󵄨󵄨󵄨󵄨 ≤ (−

1

ℎ2
(cos (𝛽ℎ) − 1) +

(2 cos (𝛽ℎ) + 10)
12

(𝑤0 − 𝑤𝑘)

+
𝑤𝑘 (2 cos (𝛽ℎ) + 10)

12
)

× (
𝑤0

12
(2 cos (𝛽ℎ) + 10) + 1

ℎ2
(1 − cos (𝛽ℎ)))

−1

×
󵄨󵄨󵄨󵄨𝑑0
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝑑𝑘+1
󵄨󵄨󵄨󵄨 ≤ (

𝑤0

12
(2 cos (𝛽ℎ) + 10) + 1

ℎ2
(1 − cos (𝛽ℎ)))

× (
𝑤0

12
(2 cos(𝛽ℎ) + 10) + 1

ℎ2
(1 − cos(𝛽ℎ)))

−1

×
󵄨󵄨󵄨󵄨𝑑0
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝑑0
󵄨󵄨󵄨󵄨 .

(33)

Theorem6. Thefinite difference scheme (9) is unconditionally
stable.

Proof. Using the last theoremandParseval equality, we obtain

󵄩󵄩󵄩󵄩󵄩
𝜌
𝑘󵄩󵄩󵄩󵄩󵄩2
≤
󵄩󵄩󵄩󵄩󵄩
𝜌
0󵄩󵄩󵄩󵄩󵄩2
, 𝑘 = 1, 2, . . . , 𝑁, (34)

whichmeans the proposed difference scheme is uncondition-
ally stable.

Table 1: Error table for Example 7.

𝑀 𝑁
𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.8
Error Error Error

8 8 0.0014442 0.0014297 0.0014076
16 32 0.0000910 0.0000908 0.0000898
32 128 0.0000058 0.0000058 0.0000058

6. Numerical Analysis

Example 7. One has

𝜕
𝛼
𝑢 (𝑡, 𝑥)

𝜕𝑡𝛼
=
𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑥2
+

4!

Γ (5 − 𝛼)
𝑡
7/2
𝑥
5
(1 − 𝑥)

+ 10 (𝑡
4
+ 1) 𝑥

4
− 20 (𝑡

4
+ 1) (1 − 𝑥) 𝑥

3
,

(0 < 𝑥 < 1, 0 < 𝑡 < 1) ,

𝑢 (0, 𝑥) = 0, 0 ≤ 𝑥 ≤ 1,

𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 1) = 0, 0 ≤ 𝑡 ≤ 1.

(35)

Exact solution of this problem is 𝑈(𝑡, 𝑥) = (𝑡4 + 1)𝑥5(1 −
𝑥). The solution by the proposed scheme is given in Figure 1.
The errors when solving this problem are listed in Table 1 for
various values of time and space nodes.

The errors in Table 1 are calculated by the following
formula:

max
0≤𝑛≤𝑀

0≤𝑘≤𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡𝑘, 𝑥𝑛) − 𝑈

𝑘

𝑛

󵄨󵄨󵄨󵄨󵄨
. (36)
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It can be concluded from Table 1 and Figure 1 above that
when the time-step size is reduced by a factor of 1/4 and the
spatial step size is reduced by a factor of 1/2, then the error
decreases by about 1/16. The numerical results support the
claim about the order of the convergence.

7. Conclusion

In this work, the compact difference scheme was successfully
applied to solve the time fractional heat equations. The
second order approximation for the Riemann-Liouville frac-
tional derivative is equipped with the higher order compact
difference schemes. The Fourier analysis and the spectral
stability method are used to show that the proposed scheme
is unconditionally stable. Numerical results are in good
agreement with the theoretical results.
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