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We analyze the oscillatory behavior of solutions to a class of second-order nonlinear neutral delay differential equations. Our
theorems improve a number of related results reported in the literature.

1. Introduction

In this paper, we study the oscillatory behavior of a class of
second-order nonlinear neutral delay differential equations

(𝑟(𝑡)𝑧
(𝑡)
𝛼−1𝑧(𝑡))



+ 𝑞 (𝑡) 𝑓 (𝑥 (𝜎 (𝑡))) = 0, (1)

where 𝑡 ∈ 𝐼 := [𝑡
0
,∞), 𝑡

0
> 0, 𝑧(𝑡) := 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜏(𝑡)), and

𝛼 > 0 is a constant. We assume that the following conditions
hold:

(A
1
) 𝑟, 𝑝, 𝑞 ∈ 𝐶(𝐼,R), 𝑟(𝑡) > 0, 𝑝(𝑡) ≥ 0, 𝑞(𝑡) ≥ 0, and
𝑞(𝑡) is not identically zero for large 𝑡;

(A
2
) 𝑓 ∈ 𝐶(R,R), 𝑢𝑓(𝑢) > 0, for all 𝑢 ̸= 0, and there exists
a positive constant 𝑘 such that

𝑓 (𝑢)
|𝑢|𝛼−1𝑢 ≥ 𝑘, ∀𝑢 ̸= 0; (2)

(A
3
) 𝜎 ∈ 𝐶(𝐼,R), 𝜎(𝑡) ≤ 𝑡, and lim

𝑡→∞
𝜎(𝑡) = ∞;

(A
4
) 𝜏 ∈ 𝐶1(𝐼,R), 𝜏(𝑡) ≤ 𝑡, and lim

𝑡→∞
𝜏(𝑡) = ∞;

(A
5
) 𝜏(𝑡) ≥ 𝜏

0
> 0 and 𝜏 ∘ 𝜎 = 𝜎 ∘ 𝜏.

By a solution of (1) we mean a function 𝑥 ∈
𝐶([𝑇
𝑥
,∞),R), 𝑇

𝑥
≥ 𝑡
0
, such that 𝑟|𝑧|𝛼−1𝑧 ∈ 𝐶1([𝑇

𝑥
,∞),R)

and 𝑥 satisfies (1) on [𝑇
𝑥
,∞). We consider only those

solutions of (1) which satisfy sup{|𝑥(𝑡)| : 𝑡 ≥ 𝑇} > 0, for
all 𝑇 ≥ 𝑇

𝑥
, and assume that (1) possesses such solutions. As

customary, we say that a solution of (1) is oscillatory if it has
arbitrarily large zeros on the interval [𝑇

𝑥
,∞); otherwise, it is

called nonoscillatory. Equation (1) is termed oscillatory if all
its solutions are oscillatory.

An increasing interest in oscillation of solutions to func-
tional differential equations during the last few decades has
been stimulated by applications arising in engineering and
natural sciences; see Hale [1]. This resulted in publication of
severalmonographs [2–5] andnumerous research articles [6–
20]; see also the references cited there. Prior to presenting
our oscillation criteria, we briefly comment on a number of
closely related results for (1) and its particular cases which
motivated the present study. In the sequel, the following
notation is frequently used:

𝑓
+
(𝑡) := max {0, 𝑓 (𝑡)} , 𝑄 (𝑡) := min {𝑞 (𝑡) , 𝑞 (𝜏 (𝑡))} .

(3)

Grace and Lalli [10] studied a second-order nonlinear
neutral delay differential equation

(𝑟(𝑡)(𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏))) + 𝑞 (𝑡) 𝑓 (𝑥 (𝑡 − 𝜎)) = 0 (4)

under the assumptions that

0 ≤ 𝑝 (𝑡) < 1, 𝑓 (𝑢)
𝑢 ≥ 𝑘 > 0, ∀𝑢 ̸= 0,

∫
∞

𝑡0

𝑟−1 (𝑡) 𝑑𝑡 = ∞.
(5)
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2 Abstract and Applied Analysis

They proved that (4) is oscillatory if there exists a function
𝜌 ∈ 𝐶1(𝐼, (0,∞)) such that

∫
∞

𝑡0

[
[
𝜌 (𝑡) 𝑞 (𝑡) (1 − 𝑝 (𝑡 − 𝜎)) −

(𝜌 (𝑡))2𝑟 (𝑡 − 𝜎)
4𝑘𝜌 (𝑡)

]
]

𝑑𝑡 = ∞.

(6)

Hasanbulli and Rogovchenko [11] obtained several oscillation
criteria for a nonlinear neutral differential equation

(𝑟(𝑡)(𝑥(𝑡) + 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏))) + 𝑞 (𝑡) 𝑓 (𝑥 (𝑡) , 𝑥 (𝜎 (𝑡))) = 0
(7)

in the case where 0 ≤ 𝑝(𝑡) < 1. Ye and Xu [18, Theorem 2.1]
proved the following result for (1).

Theorem 1. Suppose that 0 ≤ 𝑝(𝑡) < 1, 𝜎 ∈ 𝐶1(𝐼,R), and
𝜎(𝑡) > 0. Assume also that conditions (A

1
)–(A
4
) are satisfied

and

∫
∞

𝑡0

𝑟−1/𝛼 (𝑡) 𝑑𝑡 = ∞. (8)

If there exists a function 𝜌 ∈ 𝐶1(𝐼, (0,∞)) such that

∫
∞

𝑡0

[
[
𝜌 (𝑡) 𝑞 (𝑡) (1 − 𝑝 (𝜎 (𝑡)))𝛼

− 1
𝑘(𝛼 + 1)𝛼+1

(𝜌
+
(𝑡))𝛼+1𝑟 (𝜎 (𝑡))

(𝜌 (𝑡) 𝜎 (𝑡))𝛼
]
]

𝑑𝑡 = ∞,

(9)

then (1) is oscillatory.

In a special case 𝑓(𝑢) := |𝑢|𝛼−1𝑢, (1) reduces to a
quasilinear neutral differential equation

(𝑟 (𝑡) 𝑧
 (𝑡)
𝛼−1𝑧 (𝑡))



+ 𝑞 (𝑡) |𝑥 (𝜎 (𝑡))|𝛼−1𝑥 (𝜎 (𝑡)) = 0.
(10)

Equation (10) was studied by Sun et al. [17] and Zhong et al.
[20] who established the following results.

Theorem 2 (see [17, Theorem 3.4]). Suppose that 𝛼 ≥ 1,
𝜎(𝑡) ≥ 𝜏(𝑡), and 0 ≤ 𝑝(𝑡) ≤ 𝑝

0
< ∞. Assume also that

conditions (A
1
), (A
3
)–(A
5
), and (8) are satisfied. If there exists

a function 𝜌 ∈ 𝐶1(𝐼, (0,∞)) such that

∫
∞

𝑡0

[
[

𝜌 (𝑡) 𝑄 (𝑡)
2𝛼−1 − 1 + (𝑝𝛼

0
/𝜏
0
)

(𝛼 + 1)𝛼+1
(𝜌
+
(𝑡))𝛼+1𝑟 (𝜏 (𝑡))
(𝜏
0
𝜌 (𝑡))𝛼

]
]

𝑑𝑡 = ∞,

(11)

then (10) is oscillatory.

Theorem 3 (see [20, Theorem 3.1]). Assume that 𝑟(𝑡) ≥ 0,
𝜏(𝑡) = 𝑡 − 𝜏 ≤ 𝑡, 0 ≤ 𝑝(𝑡) = 𝑝

0
< ∞, 𝑝

0
̸= 1, 𝜎 ∈ 𝐶1(𝐼,R),

and 𝜎(𝑡) > 0. Suppose also that conditions (A
1
), (A
3
), and

(8) are satisfied. If there exist an 𝜀 ∈ (0, 1) and a function 𝜌 ∈
𝐶1(𝐼, (0,∞)) such that

∫
∞

𝑡0

[
[

(1 − 𝜀)𝛼
(1 + 𝑝

0
(1 + 𝜀))𝛼 𝜌 (𝑡) 𝑞 (𝑡)

− 1
(𝛼 + 1)𝛼+1

(𝜌
+
(𝑡))𝛼+1𝑟 (𝜎 (𝑡))

(𝜌 (𝑡) 𝜎 (𝑡))𝛼
]
]

𝑑𝑡 = ∞,

(12)

then (10) is oscillatory.

Thepurpose of this note is to refineTheorems 1–3 in some
cases. In what follows, all functional inequalities are assumed
to hold for all 𝑡 large enough. Without loss of generality, we
can deal only with positive solutions of (1).

2. Main Results

For a more compact presentation of conditions in our results,
we use the notation

𝑅 (𝑙, 𝑡) := (∫
𝜎(𝑡)

𝑙

𝑟−1/𝛼 (𝑠) 𝑑𝑠)(∫
𝑡

𝑙

𝑟−1/𝛼(𝑠)𝑑𝑠)
−1

. (13)

Theorem 4. Let 0 < 𝛼 ≤ 1 and 0 ≤ 𝑝(𝑡) ≤ 𝑝
0
< ∞. Assume

also that conditions (A
1
)–(A
5
) and (8) are satisfied. If there

exists a function 𝜌 ∈ 𝐶1(𝐼, (0,∞)) such that

∫
∞

𝑡∗∗

[
[
𝜌 (𝑡) 𝑄 (𝑡) 𝑅𝛼 (𝑡

∗
, 𝑡)

−
(𝜌
+
(𝑡))𝛼+1

𝑘(𝛼 + 1)𝛼+1𝜌𝛼 (𝑡) (𝑟 (𝑡) + 𝑝𝛼
0
𝑟 (𝜏 (𝑡))
𝜏𝛼+1
0

)]
]

𝑑𝑡 = ∞,

(14)

for all sufficiently large 𝑡
∗
and for some 𝑡

∗∗
≥ 𝑡
∗

≥ 𝑡
0
, then (1)

is oscillatory.

Proof. Let 𝑥(𝑡) be a nonoscillatory solution of (1); we assume
that it is eventually positive. Then there exists a 𝑡

1
≥ 𝑡
0
such

that 𝑥(𝑡) > 0, 𝑥(𝜏(𝑡)) > 0, and 𝑥(𝜎(𝑡)) > 0, for all 𝑡 ≥ 𝑡
1
. It

follows from (1) that

(𝑟 (𝑡) 𝑧
 (𝑡)
𝛼−1𝑧 (𝑡))



≤ −𝑘𝑞 (𝑡) 𝑥𝛼 (𝜎 (𝑡)) ≤ 0,

∀𝑡 ≥ 𝑡
1
.

(15)

Using condition (8), we conclude that there exists a 𝑡
2

≥ 𝑡
1

such that 𝑧(𝑡) > 0, for all 𝑡 ≥ 𝑡
2
. Hence, for all 𝑡 ≥ 𝑡

2
,

inequality (15) reduces to

(𝑟 (𝑡) (𝑧 (𝑡))𝛼) ≤ −𝑘𝑞 (𝑡) 𝑥𝛼 (𝜎 (𝑡)) ≤ 0, (16)

and there exists a 𝑡
3
≥ 𝑡
2
such that, for all 𝑡 ≥ 𝑡

3
,

𝑝𝛼
0

(𝑟 (𝜏 (𝑡)) (𝑧 (𝜏 (𝑡)))𝛼)

𝜏 (𝑡) ≤ −𝑘𝑝𝛼
0
𝑞 (𝜏 (𝑡)) 𝑥𝛼 (𝜎 (𝜏 (𝑡))) .

(17)
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Using the assumption 𝜏(𝑡) ≥ 𝜏
0
> 0, we have, for all 𝑡 ≥ 𝑡

3
,

𝑝𝛼
0

𝜏
0

(𝑟 (𝜏 (𝑡)) (𝑧 (𝜏 (𝑡)))𝛼) ≤ −𝑘𝑝𝛼
0
𝑞 (𝜏 (𝑡)) 𝑥𝛼 (𝜎 (𝜏 (𝑡))) .

(18)

Combining inequalities (16) and (18), using the condition
𝜏 ∘ 𝜎 = 𝜎 ∘ 𝜏 and an auxiliary result due to Bacuĺıková and
Džurina [7, Lemma 2], we conclude that

(𝑟 (𝑡) (𝑧 (𝑡))𝛼) + 𝑝𝛼
0

𝜏
0

(𝑟 (𝜏 (𝑡)) (𝑧 (𝜏 (𝑡)))𝛼)

≤ −𝑘 [𝑞 (𝑡) 𝑥𝛼 (𝜎 (𝑡)) + 𝑝𝛼
0
𝑞 (𝜏 (𝑡)) 𝑥𝛼 (𝜏 (𝜎 (𝑡)))]

≤ −𝑘min {𝑞 (𝑡) , 𝑞 (𝜏 (𝑡))} [𝑥𝛼 (𝜎 (𝑡)) + 𝑝𝛼
0
𝑥𝛼 (𝜏 (𝜎 (𝑡)))]

≤ −𝑘𝑄 (𝑡) 𝑧𝛼 (𝜎 (𝑡)) ,
(19)

for all 𝑡 ≥ 𝑡
3
. Define a new function 𝜔(𝑡) by

𝜔 (𝑡) := 𝜌 (𝑡)
𝑟 (𝑡) (𝑧 (𝑡))𝛼

𝑧𝛼 (𝑡) . (20)

Then 𝜔(𝑡) > 0, for all 𝑡 ≥ 𝑡
3
. Differentiation of (20) yields

𝜔 (𝑡) = 𝜌 (𝑡)
𝑟 (𝑡) (𝑧 (𝑡))𝛼

𝑧𝛼 (𝑡) + 𝜌 (𝑡)
(𝑟 (𝑡) (𝑧 (𝑡))𝛼)

𝑧𝛼 (𝑡)

− 𝛼𝜌 (𝑡)
𝑟 (𝑡) (𝑧 (𝑡))𝛼+1

𝑧𝛼+1 (𝑡) ≤ 𝜌 (𝑡)
(𝑟(𝑡)(𝑧 (𝑡))𝛼)

𝑧𝛼 (𝑡)

+ 𝜌
+
(𝑡)

𝜌 (𝑡) 𝜔 (𝑡) − 𝛼
(𝜌 (𝑡) 𝑟 (𝑡))1/𝛼

𝜔(𝛼+1)/𝛼 (𝑡) .

(21)

Let

𝐴 := 𝜌
+
(𝑡)

𝜌 (𝑡) , 𝐵 := 𝛼
(𝜌 (𝑡) 𝑟 (𝑡))1/𝛼

, 𝑢 := 𝜔 (𝑡) . (22)

Using the inequality

𝐴𝑢 − 𝐵𝑢(𝛼+1)/𝛼 ≤ 𝛼𝛼
(𝛼 + 1)𝛼+1

𝐴𝛼+1
𝐵𝛼 , 𝐵 > 0, (23)

we deduce from (21) that

𝜔 (𝑡) ≤ 𝜌 (𝑡)
(𝑟(𝑡)(𝑧 (𝑡))𝛼)

𝑧𝛼 (𝑡) + 1
(𝛼 + 1)𝛼+1

(𝜌
+
(𝑡))𝛼+1𝑟 (𝑡)
𝜌𝛼 (𝑡) .

(24)

Define another function ](𝑡) by

] (𝑡) := 𝜌 (𝑡)
𝑟 (𝜏 (𝑡)) (𝑧 (𝜏 (𝑡)))𝛼

𝑧𝛼 (𝜏 (𝑡)) . (25)

Observe that ](𝑡) > 0, for all 𝑡 ≥ 𝑡
3
. Differentiation of (25)

yields

] (𝑡) = 𝜌 (𝑡)
𝑟 (𝜏 (𝑡)) (𝑧 (𝜏 (𝑡)))𝛼

𝑧𝛼 (𝜏 (𝑡))

+ 𝜌 (𝑡)
(𝑟(𝜏 (𝑡))(𝑧 (𝜏 (𝑡)))𝛼)

𝑧𝛼 (𝜏 (𝑡))

− 𝛼𝜌 (𝑡)
𝑟 (𝜏 (𝑡)) (𝑧 (𝜏 (𝑡)))𝛼𝑧 (𝜏 (𝑡)) 𝜏 (𝑡)

𝑧𝛼+1 (𝜏 (𝑡))

≤ 𝜌 (𝑡)
(𝑟 (𝜏 (𝑡)) (𝑧 (𝜏 (𝑡)))𝛼)

𝑧𝛼 (𝜏 (𝑡))

+ 𝜌
+
(𝑡)

𝜌 (𝑡) ] (𝑡) − 𝛼𝜏 (𝑡)
(𝜌 (𝑡) 𝑟 (𝜏 (𝑡)))1/𝛼

](𝛼+1)/𝛼 (𝑡) .

(26)

Let

𝐴 := 𝜌
+
(𝑡)

𝜌 (𝑡) , 𝐵 := 𝛼𝜏 (𝑡)
(𝜌 (𝑡) 𝑟 (𝜏 (𝑡)))1/𝛼

, 𝑢 := ] (𝑡) .

(27)

Using the inequalities (23) and (26) along with the fact that
𝑧(𝑡) > 0, we have

] (𝑡) ≤ 𝜌 (𝑡)
(𝑟(𝜏 (𝑡))(𝑧 (𝜏 (𝑡)))𝛼)

𝑧𝛼 (𝑡)

+ 1
(𝛼 + 1)𝛼+1

(𝜌
+
(𝑡))𝛼+1𝑟 (𝜏 (𝑡))

(𝜌 (𝑡) 𝜏 (𝑡))𝛼 .

(28)

Combining (24) and (28) and using the inequality (19), we
obtain

𝜔 (𝑡) + 𝑝𝛼
0

𝜏
0

] (𝑡)

≤ 𝜌 (𝑡)
(𝑟(𝑡)(𝑧 (𝑡))𝛼) + (𝑝𝛼

0
/𝜏
0
) (𝑟 (𝜏 (𝑡)) (𝑧 (𝜏 (𝑡)))𝛼)

𝑧𝛼 (𝑡)

+
(𝜌
+
(𝑡))𝛼+1

(𝛼 + 1)𝛼+1𝜌𝛼 (𝑡) (𝑟 (𝑡) + 𝑝𝛼
0
𝑟 (𝜏 (𝑡))
𝜏𝛼+1
0

)

≤ −𝑘𝜌 (𝑡) 𝑄 (𝑡) 𝑧𝛼 (𝜎 (𝑡))
𝑧𝛼 (𝑡)

+
(𝜌
+
(𝑡))𝛼+1

(𝛼 + 1)𝛼+1𝜌𝛼 (𝑡) (𝑟 (𝑡) + 𝑝𝛼
0
𝑟 (𝜏 (𝑡))
𝜏𝛼+1
0

) .
(29)

Since (𝑟(𝑡)(𝑧(𝑡))𝛼) ≤ 0, we have

𝑧 (𝑡) ≥ 𝑟1/𝛼 (𝑡) 𝑧 (𝑡) ∫
𝑡

𝑡2

𝑟−1/𝛼 (𝑠) 𝑑𝑠, (30)
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and thus

( 𝑧(𝑡)
∫𝑡
𝑡2

𝑟−1/𝛼(𝑠)𝑑𝑠
)


≤ 0. (31)

Consequently,

𝑧𝛼 (𝜎 (𝑡))
𝑧𝛼 (𝑡) ≥ 𝑅𝛼 (𝑡

2
, 𝑡) . (32)

Substitution of (32) in (29) yields

𝜔 (𝑡) + 𝑝𝛼
0

𝜏
0

] (𝑡) ≤ − 𝑘𝜌 (𝑡) 𝑄 (𝑡) 𝑅𝛼 (𝑡
2
, 𝑡)

+
(𝜌
+
(𝑡))𝛼+1

(𝛼 + 1)𝛼+1𝜌𝛼 (𝑡) (𝑟 (𝑡) + 𝑝𝛼
0
𝑟 (𝜏 (𝑡))
𝜏𝛼+1
0

) .
(33)

Integrating (33) from 𝑡
3
to 𝑡, we have

∫
𝑡

𝑡3

[
[
𝜌 (𝑠) 𝑄 (𝑠) 𝑅𝛼 (𝑡

2
, 𝑠)

−
(𝜌
+
(𝑠))𝛼+1

𝑘(𝛼 + 1)𝛼+1𝜌𝛼 (𝑠) (𝑟 (𝑠) + 𝑝𝛼
0
𝑟 (𝜏 (𝑠))
𝜏𝛼+1
0

)]
]

𝑑𝑠

≤ 𝜔 (𝑡
3
)

𝑘 + 𝑝𝛼
0

𝑘𝜏
0

] (𝑡
3
) .

(34)

Passing in (34) to the limit as 𝑡 → ∞, we obtain contradic-
tion with condition (14). Therefore, (1) is oscillatory.

Proceeding as in the proof of Theorem 4 and using
another result by Bacuĺıková and Džurina [7, Lemma 1], we
obtain the following oscillation criterion for (1), for 𝛼 ≥ 1.

Theorem 5. Assume that 𝛼 ≥ 1 and 0 ≤ 𝑝(𝑡) ≤ 𝑝
0

< ∞.
Let conditions (A

1
)–(A
5
) and (8) be satisfied. If there exists a

function 𝜌 ∈ 𝐶1(𝐼, (0,∞)) such that

∫
∞

𝑡∗∗

[
[
21−𝛼𝜌 (𝑡) 𝑄 (𝑡) 𝑅𝛼 (𝑡

∗
, 𝑡)

−
(𝜌
+
(𝑡))𝛼+1

𝑘(𝛼 + 1)𝛼+1𝜌𝛼 (𝑡) (𝑟 (𝑡) + 𝑝𝛼
0
𝑟 (𝜏 (𝑡))
𝜏𝛼+1
0

)]
]

𝑑𝑡 = ∞,

(35)

for all sufficiently large 𝑡
∗
and for some 𝑡

∗∗
≥ 𝑡
∗

≥ 𝑡
0
, then (1)

is oscillatory.

3. Examples and Discussion

Example 1. For 𝑡 ≥ 1, consider a second-order neutral
differential equation

(𝑥(𝑡) + 1
3𝑥 (𝑡 − 2))



+ 𝛾
𝑡2 𝑥 (𝑡) = 0, (36)

where 𝛾 > 0 is a constant. We have 𝛼 = 1, 𝑟(𝑡) = 1, 𝑝(𝑡) =
𝑝
0
= 1/3, 𝜏(𝑡) = 𝑡 − 2, 𝑞(𝑡) = 𝛾/𝑡2, 𝜎(𝑡) = 𝑡, 𝑓(𝑢) = 𝑢, and

𝑘 = 1. Choose 𝜌(𝑡) = 𝑡 and denote the left hand side of (14)
by 𝜓(𝑡

∗∗
). Then

𝜓 (𝑡
∗∗

) = (𝛾 − 1
3)∫
∞

𝑡∗∗

𝑑𝑡
𝑡 = ∞, provided that 𝛾 > 1

3 .
(37)

Hence, (36) is oscillatory by Theorem 4 for any 𝛾 > 1/3. On
the other hand, an application ofTheorem 1 yields oscillation
of (36) for 𝛾 > 3/8, whereas Theorem 3 implies that (36)
is oscillatory if 𝛾 > (4 + 𝜀)/(3(4 − 4𝜀)), for some 𝜀 ∈
(0, 1). Therefore, we observe that our Theorem 4 improves
Theorems 1 and 3.

Example 2. For 𝑡 ≥ 1, consider a second-order neutral
differential equation

(𝑥(𝑡) + 1
3𝑥 ( 𝑡

3))


+ 𝛾
𝑡2 𝑥 (𝑡) = 0, (38)

where 𝛾 > 0 is a constant. We have 𝛼 = 1, 𝑟(𝑡) = 1, 𝑝(𝑡) =
𝑝
0

= 1/3, 𝜏(𝑡) = 𝑡/3, 𝑞(𝑡) = 𝛾/𝑡2, 𝜎(𝑡) = 𝑡, 𝑓(𝑢) = 𝑢, and
𝑘 = 1. Let 𝜌(𝑡) = 𝑡 and let 𝜓 be defined as in Example 1. Then

𝜓 (𝑡
∗∗

) = (𝛾 − 1)∫
∞

𝑡∗∗

𝑑𝑡
𝑡 = ∞, (39)

provided that 𝛾 > 1. Therefore, by Theorem 4, (38) is
oscillatory for any 𝛾 > 1, whereas an application ofTheorem 2
yields oscillation of (38) for all 𝛾 > 3/2. Hence, Theorem 4
improves Theorem 2.
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