
Monitoring the Dynamic Web
to respond to Continuous Queries: A Demonstration

Sandeep Pandey
Computer Science and

Engineering
Indian Institute of Technology
Powai, Mumbai-400076, India

pandey@cse.iitb.ac.in

Krithi Ramamritham
Computer Science and

Engineering
Indian Institute of Technology
Powai, Mumbai-400076, India

krithi@cse.iitb.ac.in

Soumen Chakrabarti
Computer Science and

Engineering
Indian Institute of Technology
Powai, Mumbai-400076, India

soumen@cse.iitb.ac.in

ABSTRACT
Our ContinuousAdaptiveMonitoring (CAM) system provides re-
sponses forcontinuous queriesby monitoring and extracting infor-
mation scattered across the web. Continuous queries are the queries
for which responses given to users must be continuously updated,
as the sources of interest get updated. Such queries occur, for in-
stance, during on-line decision making, e.g., traffic flow control,
weather monitoring etc. Whereas push-based techniques may be
able to refresh query results meeting user requirements, they do not
scale well. With the pull based approach, the problem of keeping
the responses current reduces to the problem of deciding how often
to visit a source to determine if and how it has been modified so that
a user response can be updated accordingly. As should be evident,
periodical monitoring is not scalable. Also, it can lead to huge
wastage of monitoring resources. Hence CAM employs a multi-
phase approach. In thetracking phase, changes to an initially iden-
tified set of relevant pages, are tracked. From the observed change
characteristics of these pages, a probabilistic model of their change
behaviour is formulated and weights are assigned to pages to denote
their importance for the current queries. Based on these statistics,
during the next phase, theResource Allocationphase, resources,
needed to continuously monitor these pages for changes, are al-
located. Given these resource allocations, theSchedulingphase
produces an optimal achievable schedule of monitoring. An exper-
imental evaluation of our approach compared to prior approaches
on synthetic data for crawling dynamic web pages shows the ef-
fectiveness of our approach to monitoring dynamic changes. For
example, by monitoring just 5% of the possible change instances,
CAM is able to return 90% of the changed information to the users.
In this demonstration, we show how CAM keeps users up-to-date
with respect to a set of ongoing sports related events.

1. MOTIVATION BEHIND CAM
The World Wide Web consists of an ever-increasing collection of

decentralized web pages that are modified at unspecified times by
their owners. Current search engines try to keep up with the dynam-
ics of web by crawling it periodically, in the process building an in-
dex that allows better search for pages relevant to a topic or a set of
keywords. Clearly, any good crawling technique needs to consider
the change behaviour of web pages. But, the algorithms used for
crawling and the typical frequency of crawling are insufficient to
handle a class of queries known as Continuous Queries (for exam-
ple, see[6]) in which the user expects to be continuously updated as
and when new information of relevance to his/her query becomes
Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM xxx.

available. For example, consider a user who wants to monitor a
hurricane in progress with the view of knowing how his/her town
will be affected by the hurricane. Obviously, a system which re-
sponds taking into account the continuous updates to the relevant
web pages will serve the users better than another which, say, treats
the query as adiscrete query, i.e., returns an answer only when the
query is submitted.

Not surprisingly, the problem of keeping track of the dynamics of
the web becomes inherently different for the continuous query case
compared to the discrete query case. We use the termmonitoring
to explicitly account for the differences from the classical crawl-
ing problem. Amonitoring taskfetches a web page, much like a
crawler does, but with the goal of fetching new information rele-
vant to one or more queries while acrawl is not done with any spe-
cific user request in mind. The work involved in handling continu-
ous queries is portrayed in Figure 1. For continuous queries, since
the system should maintain thecurrencyof responses to users, the
problem translates to one of (a) knowing which pages are relevant,
(b) tracking the changes to the pages, to determine the characteris-
tics of changes to these pages, and from these, (c) deciding when
to monitor the pages for changes, so that responses are current.
The last problem has several subproblems: allocating the resources
needed for monitoring the pages, scheduling the actual monitoring
tasks, and then monitoring. The algorithm for doing this has been
proposed in [9]. Specifically, they address the problem of distribut-
ing a given number of monitoring tasks among the pages whose
changes need to be tracked so as to respond to a set of continu-
ous queries. In Figure 1, the feedback arcs from the monitoring

Scheduling
Determining

Relevant Pages
Resource
Allocation

Monitoring Tracking

Figure 1: Different phases of our approach

phase to the earlier phases indicate that observations made during
the monitoring phase can be used to adjust subsequent decisions.

It could be argued that discrete queries posed every so often can
be considered to be equivalent to continuous queries but the fol-
lowing reasons should help dispel this misconception: First, de-

termining the next time when the discrete query should be posed
by the user is highly non-trivial. If the time-interval is kept small
then it may induce unnecessary load on the system, particularly
when the updates are not frequent. If we set the time-interval to
be large, it may lead to loss of information if updates are more fre-
quent than expected. Second, continuous queries have a non-zero
lifetime and so a query system can study a query’s characteristics
carefully and can answer it more efficiently than in the case where
discrete queries, which have zero lifetime, are continuously posed.
Furthermore, unlike in the case of discrete queries, the time taken
to provide the system’s first response to a continuous query may
not be as important as the maintenance of currency during all the
responses. This discussion makes it clear that not only the nature of
the crawling problem but optimization goals also become different
when we move from discrete to continuous query case.

2. OVERVIEW OF THE CAM APPROACH
Consider a user who is worried about a hurricane in progress and

wants to keep abreast of the hurricane-related updates. To achieve
this, he poses a continuousm-keyword queryq = {w1,w2, . . .wm}.
In this section, we present an overview of the major ingredients of
the CAM approach.
Identifying Pages Relevant to a Set of Queries:Based on the
keywords specified by a user, we first identify pages relevant to
this query. The query is fed to an inverted index which in turn
returns a set of pages relevant to the queries. We find, say, thatthe
National Hurricane Center, National Weather Organization, and
other tropical cyclone sites as well as news sites are relevant. The
relevance of a page to a query can be measured by standard IR
techniques based on theVector-Spacemodel (see Appendix B for
details).
Tracking the Changes to Relevant Pages to Characterize
Changes: Once relevant pages have been identified, by visiting
each page at frequent intervals during a tracking period, changes
to these pages are tracked, update statistics collected, and the rele-
vance of the changes, vis a vis the queries, is assessed. This is used
to build a statistical model of the changes to the pages relevant to a
set of queries. These statistics include page update instances, page
change frequency, and relevance of the changes to the pages for
current queries.

Let Q denote the set of all queries submitted in the system and
ωi denote the importance ofith query. These are input to the sys-
tem. LetP denote the set of web pages relevant to the continuous
queries,Qpi be the set of queries for whichith page is found to
be relevant, andr i, j be the estimated relevance ofith page for jth

query. It is positive for all queries q∈Qpi and zero for all
q∈Q - Qpi . These relevance measures are initially calculated dur-
ing the tracking period (and get updated, as explained later, after
every monitoring epoch).

It is clear that not all pages will be equally important for each
query in the system. So we rank the pages by assigning aweight
to each page using its relevance for queries. Theweightof a page,
computed as∑ j∈Q(ω j r i, j), denotes the value of current version of
the page. If the page gets updated before its current version ismon-
itored, we assume that we incur a loss ofWi .
Considerations underlying the Monitoring of Changes:

CAM does its monitoring in epochs, each epoch is of durationT
time units. The purpose of the resource allocation phase is to decide
how to allocate monitoring resources for an epoch and the goal
of scheduling is to decide when a monitoring task should execute,
given the resource allocation decisions. Monitoring is done by a
monitoring task where the task includes fetching a specified page
from its source and determining if it has changed and if so applying

the changes to return new results for those queries for which that
page is relevant.

Let C denote the total number ofmonitoring tasksthat can be
employed in a single monitoring epoch.C is derived as an aggrega-
tion of the resources needed for monitoring, including CPU cycles,
communication bandwidth, and memory1.

λi is the estimated number of changes that occur in pagei in
T time units. Henceforth we will call it thechange frequencyfor
pagei. SupposeUi denotes the sequence of time instancesui,1,
ui,2......ui,pi at which the tracking phase determines that possible
updates occur to pagei. We assume 0≤ ui,1≤ ui,2.....ui,pi ≤ T and
ui,0 = 0 andui,pi = T. pi is the total number of update instances for
ith page duringT, i.e., cardinality of sequenceUi (pi=|Ui |). Note
that a page may not be updated at these time instances and so there
is a probabilityρi, j associated with each time instanceui, j that de-
notes the chances ofith page being updated at thejth instance. The
overall goal of the resource allocation and scheduling phases is to
monitor in such a way that the monitoring events occur just after
updates are expected to take place. The number of missed updates
is an indication of the amount of lost information and minimizing
this is the goal of the system.

With these considerations in mind, decisions are made about the
allocation of a given number of monitoring tasks among a set of
relevant pages while also deciding when these allocated monitoring
tasks should ideally occur within an epoch. The basic idea is that
these monitoring epochs of lengthT repeat everyT units of time
and we will make decisions pertaining to the monitoring tasks to
be carried out in one monitoring epoch using both new data and the

3. ARCHITECTURE
We first describe the architecture of CAM by briefly discussing

all the components of CAM and their functionality Next we take a
walk through the system elucidating the sequence of actions CAM
employs for answering continuous queries.

3.1 Nuts and Bolts of CAM
We have three main independent components in our architec-

ture: client, server, and fetching unit. Each of these components
can reside on a seperate machine or multiple components on mul-
tiple machines or all on the same machine. A sketch of the system
architecture is given in Figure 1.

The client unit currently has five subcomponents: (1) The regis-
tration manager which allows clients to register with the system
using a valid user id and password, and returns to the clients a
confirmation on their registration, (2) The query interface through
which a user can submit a new continuous query in the system
(3) The query parser, (4) The query installer assigns each query
a unique idenifier, storing it in the query database in a pre-decided
format and initiating a thread for monitoring, (5) The client services
which provide utilities for browsing or updating installed continual
queries and for tracing the performance of update monitoring of
source data.

The second unit is the system server which consists of three main
subcomponents: (1) continual query thread (CQT) with continual
query manager, aggregrator, and the query evaluator, (2) Resource
Manager, and (3) the Index Rebuilder. Their functionalities are as

1For example, the authors of [5] report that with two 533 MHz
Alpha processors, 2 GB of RAM, 118 GB of local disk, a 100
Mbit/sec FDDI connection to the Internet, andMercatorunder sr-
cjava, their crawler crawled at an average download rate of 112
documents/sec and 1,682 KB/sec. Similarly the capabilities of a
given infrastructure can be mapped to the number ofmonitoring
tasksthat it is capable of on average.

described below:

• Once a query gets installed, a CQ Thread is initiated for it
which interacts with other units and takes care of all the pro-
cessings required for the query. It consists of a continual
query manager, aggregrator and the query evaluator.

– Continual query manager is responsible to coordinate
with the aggregrator and query evaluator to monitor up-
dates of interest, and coordinate with crawlers to track
the new updates of the source data.

– Query evaluator is the unit which determines monitor-
ing sources, tracks them and then performs efficient
monitoring with the help of Resource Manager and In-
verted Index.

∗ When the user poses a query, the source identi-
fer examines the query and determines which sites
contain information that is relevant to the user’s re-
quest. Consequently, instead of contacting all the
available data sources, monitoring is only done for
the selected sites that can actually contribute to the
query. Determining of relevant sites is achieved
using inverted index in CAM system. But to re-
main in synchronization with the web, inverted in-
dex is required to be updated frequently follow-
ing changes of web pages which becomes a intim-
idating task, especially because system has to deal
with size and dynamics of web as well as its ran-
domness.

∗ Once relevant pages have been identified, by visit-
ing each page at frequent intervals during a track-
ing period, changes to these pages are tracked, up-
date statistics are collected, and the relevance of
the changes, vis a vis the queries, is assessed. This
is used to build a statistical model of the changes to
the pages relevant to a set of queries. These statis-
tics include page update instances, page change
frequency, and relevance of the changes to the
pages for current queries.

∗ CAM does its monitoring in epochs, each epoch
is of durationT time units. The purpose of re-
source manager is to allocate monitoring resources
among web pages for an epoch. It also decides the
time instances when a monitoring task should exe-
cute, given the resource allocation decisions. Mon-
itoring is done by performing a monitoring task
which includes fetching of a specified page from
its source, determining if it has changed and if so,
then propagating those changes to the aggregrator
to prepare new results for the queries for which
that page is relevant.

– Aggregrator is the in-charge of compiling the infor-
mation collected from various monitoring sources. It
removes the junk from downloaded pages, looks for
changes and on founding them to be interesting, propa-
gates to the database storing the results of query.

• Resource Manager allocates the crawling resources among
sites required to be monitored. It gets page information
(pattern of changes, relevance etc.) from query evaluator
(Tracker) and then accordingly allocates crawling resources
to sites. It also prepares an approximate optimal schedule
for monitoring which query evaluator (monitor) uses for the
purpose of probing at the source sites.

 Web Sites

Query Evaluator --

MonitoringTracking

Continual Query
Manager

Resource
Manager

Result DB

 Query DB

Aggregrator

Inverted Index Index Rebuilder

Continual Query Thread

Client Service

CQ Client
Installer

CQ
 Parser

Registration
Manager

Q, Stop

Query
Interface

Server Unit

Client Unit

Source
Identifier

Crawler Filter

Fetching Unit

Figure 2: System Architecture

• The third unit is the fetching component. It consists of filters
and crawlers. The cralwer, on behalf of the query evaluator,
connects to information sources and fetches pages. The Filter
checks if the newly fetched copy is more recent than the one
already kept in the repository and packages (translates) the
response from the corresponding data source site into the ob-
ject format used by the query system. Instead of periodically
polling the sites, which will consume a lot of resources, we
use a novel scheme for monitoring which exploits the prior
knowledge of change patterns captured during the tracking
phase.

3.2 Query evaluation in CAM
Here we discuss how a client can use CAM for obtaining con-

tinuoisly updated answers to his/her queries. We walk through the
process CAM uses for providing answers.

1. Client connects to the registration Manager and registers
himself.

2. The registration manager provides the clients with valid user
id and password, and returns the client a confirmation on his
registration.

3. The client can submit a new query using query interface.
The client services also provides the clients facility of delet-
ing/updating any of his previously submitted queries and
viewing results of installed queries.

4. The query parser parses the form request and construct the
key components of a continuous query (Q, Stop).

5. The query installer installs the query by giving it a unique
identifier which serves as the primary key for all the infor-
mation stored about this query in the repository. Also a pro-
cess/thread is started for further processing of the CQ.

6. The Continuous query manager coordinates with the aggre-
grator and query evaluator to monitor updates of interest, and
coordinates with crawlers to track the new updates to the
source data.

7. The Source Identifier determines the sources relevant to the
query using the inverted index. Inverted Index maps word to
web pages/sites.

8. Maintaining Inverted Index: As mentioned above, it be-
comes essential to keep inverted index up-to-date with the
web pages. The naive way of doing this will be to periodi-
cally visit each and every page of repository and refresh it.
But this method is not only expensive but also very ineffec-
tive primarily for two reasons.

• Periodically visiting each page will mean massive re-
sources and so a large period of refreshing too.

• Doesn’t take into account the importance and dynamics
of individual pages.

We solve the problem efficiently by mapping it into a linear
optimization problem.

9. These sources of information are tracked in tracking phase
using crawlers. On detecting any update, these crawlers alert
the index rebuilder and aggregrator which in turn updates in-
verted index and results database respectively. Also different
parameters of page information are estimated and are sup-
plied to the resource manager. We use standard OR tech-
niques for predicting change pattern of page (ex. moving
average/exponential smoothing/trend/
seasonal/fourier/cyclic) and our experiments show the ben-
efit of using these forecasting models for monitoring rather
than naively probing it in periodical fashion.

10. Resource Manager in turn prepares a monitoring schedule
using the parameters supplied during tracking.

11. According to the above prepared schedule, crawlers probe
source sites during monitoring phase. Relevant information
is supplied to interested aggregrators.

12. Aggregrators prune the junk data and select out the infor-
mation relevant to query which is also more recent than the
information already stored in result database. This requires
aggregrator to find out how is newly recevied data related to
the previously stored one and even if it is related, then which
part of it is actually new and is not only a sole repetition of
the previous one.

4. THE DEMONSTRATED SCENARIO

5. CONCLUSIONS AND RELATED WORK
In this paper, we described the achitecture of CAM, a continu-

ous query answering system. There are several systems developed
for monitoring sources on the web. CONQUER[8], WebCQ[7] and
C3 are the most related project to our work. The most evident dif-
ferences between CAM and any of these related works is the ap-
proach of monitoring. The way source site are monitored in CAM
is more efficient and optimal. CAM keeps responses to continuous
queries current by focusing on the problem of dynamically mon-
itoring the sources of information relevant to the queries. From
the change characteristics of these pages—observed in a tracking
phase, a probabilistic model of their change behaviour is formu-
lated and weights are assigned to pages to denote their importance
for the current queries. During the Resource Allocation phase,
based on these statistics, resources, needed to continuously mon-
itor these pages for changes, are allocated. Given these resource
allocations, the Scheduling phase produces an optimal achievable
schedule for monitoring.

Also there have been several studies of web crawling in an at-
tempt of capturing web dynamics. The earliest study to our knowl-
edge is by Brewington and Cybenko. In [1], they not only stud-
ied the dynamics of web but also raise some very interesting is-
sues for developing better crawling techniques. They showed that
page change behaviour varies significantly from page to page and
so crawling them equal number of times is a fallacious technique.
[3] and [2] address a number of issues relating to the design of
effective crawlers. In [4][10], authors approached the problem for-
mally and devised an optimal crawling technique. (Some aspects
of our formal are adopted from [10] and modified to suit our prob-
lem definition.) A common assumption made in most of these
studies is that page changes are aPoissonor memorylessprocess.
In fact it has shown to hold true for a large set of pages but it is
also found in [1] that most of web pages are modified during US
working hours,i.e.,5 a.m. to 5 p.m. In CAM, we go beyond these
assumptions and present an optimal monitoring technique for an-
swering continuous queries independent of any assumption about
page change behaviour. Instead, we collect and build page change
statistics during a tracking period and only on the basis of this col-
lected information, we do resource allocation. Then we keep on
updating this information after everyT time units based on the re-
sult of the monitoring done. This makes our solution robust and
adaptable in any web scenario.

6. REFERENCES
[1] B. E. Brewington and G. Cybenko. How dynamic is the

Web?Computer Networks (Amsterdam, Netherlands: 1999),
33(1–6):257–276, 2000.

[2] J. Cho and H. Garcia-Molina. The evolution of the web and
implications for an incremental crawler. InProceedings of
the Twenty-sixth International Conference on Very Large
Databases, 2000.

[3] J. Cho and H. Garćıa-Molina. Synchronizing a database to
improve freshness.In Proceedings of 2000 ACM
International Conference on Management of
Data(SIGMOD), 30(1–7):161–172, 2000.

[4] E. Coffman, J. Z. Liu, and R. R. Weber. Optimal robot
scheduling for web search engines.Journal of Scheduling,
1998.

[5] A. Heydon and M. Najork. Mercator: A scalable, extensible
web crawler.World Wide Web, 2(4):219–229, 1999.

[6] L. Liu, C. Pu, and W. Tang. Continual queries for internet
scale event-driven information delivery.Knowledge and
Data Engineering, 11(4):610–628, 1999.

[7] L. Liu, C. Pu, and W. Tang. Webcq: Detecting and delivering
information changes on the web.In Proc. Int. Conf. on
Information and Knowledge Management (CIKM), 2000.

[8] L. Liu, C. Pu, W. Tang, and W. Han. Conquer: A continual
query system for update monitoring in the www.
International Journal of Computer Systems, Science and
Engineering, 1999.

[9] S. Pandey, K. Ramamritham, and S. Chakrabarti. Monitoring
the dynamic web to respond to continuous queries.World
Wide Web, 2003.

[10] J. Wolf, M. Squillante, P.S.Yu, J.Sethuraman, and L. Ozsen.
Optimal crawling strategies for web search engines.In
WWW, 2002.

