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Chaotification problems of partial difference equations are studied. Two chaotification schemes are established by utilizing the
snap-back repeller theory of general discrete dynamical systems, and all the systems are proved to be chaotic in the sense of both
Li-Yorke and Devaney. An example is provided to illustrate the theoretical results with computer simulations.

1. Introduction

Consider the following first-order partial difference equation:

𝑥 (𝑛 + 1,𝑚) = 𝑓 (𝑥 (𝑛,𝑚) , 𝑥 (𝑛,𝑚 + 1)) , (1)

where 𝑛 ≥ 0 is time step, 𝑚 is the lattice point with 0 ≤ 𝑚 ≤

𝑘 < +∞, and 𝑓 : 𝐷 ⊂ R2 → R is a map.
Equation (1) is a discretization of the partial differential

equation

𝑤
𝑡
(𝑡, 𝑠) =

̃
𝑓 (𝑤 (𝑡, 𝑠) , 𝑤

𝑠
(𝑡, 𝑠)) , (2)

where 𝑡 ≥ 0 is time variable, 𝑠 is spatial variable, and ̃𝑓 : 𝐷 ⊂
R2 → R is a map. Equation (1) often appears in imaging and
spatial dynamical systems and so forth [1, 2]. Chen and Liu
studied the chaos for (1) inR3 by constructing spatial periodic
orbits in 2003 [3]. Chen et al. [4] reformulated (1) to a discrete
system:

𝑥
𝑛+1

= ℎ (𝑥
𝑛
) , 𝑛 ≥ 0. (3)

Applying this approach, the second author of the present
paper gave several criteria of chaos for (1) [5]. She with her
coauthors established some chaotification schemes for (1) and
proved all the systems are chaotic [6, 7]. Recently, Li studied
the chaotification for delay difference equations [8]. However,
only a few papers study the chaotification problems of (1)

except for [6–8]. In this paper, the chaotification of (1) is
studied.

This paper is organized as follows. First, (1) is reformu-
lated to a discrete system, and several concepts and lemmas
are listed. Then, we give two chaotification schemes for (1)
via controllers and prove that all the systems are chaotic in
the sense of both Li-Yorke and Devaney. Finally, we give one
example with computer simulation result to verify the theo-
retical predictions.

2. Preliminaries

Consider the following boundary condition for (1):

𝑥 (𝑛, 𝑘 + 1) = 𝜑 (𝑥 (𝑛, 0)) , 𝑛 ≥ 0, (4)

where 𝜑 : 𝐼 ⊂ R → R is a map. For the initial condition

𝑥 (0,𝑚) = 𝜙 (𝑚) , 0 ≤ 𝑚 ≤ 𝑘 + 1, (5)

where 𝜙 satisfies (4), (1) has a unique solution {𝑥(𝑛,𝑚) : 𝑛 ≥
0, 0 ≤ 𝑚 ≤ 𝑘}, and it can be easily proved by iterations.

Let

𝑥
𝑛
= (𝑥 (𝑛, 0) , 𝑥 (𝑛, 1) , . . . , 𝑥 (𝑛, 𝑘))

𝑇
∈ R𝑘+1, 𝑛 ≥ 0; (6)

then (1) with (4) can be rewritten in the following form:

𝑥
𝑛+1

= 𝐹 (𝑥
𝑛
) , 𝑛 ≥ 0, (7)
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where

𝐹 (𝑥
𝑛
) = (𝑓 (𝑥 (𝑛, 0) , 𝑥 (𝑛, 1)) , 𝑓 (𝑥 (𝑛, 1) , 𝑥 (𝑛, 2)) , . . . ,

𝑓 (𝑥 (𝑛, 𝑘) , 𝜑 (𝑥 (𝑛, 0))))
𝑇

.

(8)

𝐹 is said to be the induced map by 𝑓 and 𝜑, and (7) is called
the induced system by (1) with (4).

Definition 1 (see [9]). Let (𝑋, 𝑑) be a metric space and let 𝐹 :
𝑋 → 𝑋 be a map. A subset 𝑆 of 𝑋 is called a scrambled set
of 𝐹 if for any two different points 𝑥, 𝑦 ∈ 𝑆,

lim inf
𝑛→∞

𝑑 (𝐹
𝑛
(𝑥) , 𝐹

𝑛
(𝑦)) = 0,

lim sup
𝑛→∞

𝑑 (𝐹
𝑛
(𝑥) , 𝐹

𝑛
(𝑦)) > 0.

(9)

Themap𝐹 is said to be chaotic in the sense of Li-Yorke if there
exists an uncountable scrambled set 𝑆 of 𝐹.

Definition 2 (see [10]). A map 𝐹 : 𝑉 ⊂ 𝑋 → 𝑉 is said to be
chaotic on 𝑉 in the sense of Devaney if

(i) 𝐹 is topologically transitive in 𝑉;
(ii) the periodic points of 𝐹 in 𝑉 are dense in 𝑉;
(iii) 𝐹 has sensitive dependence on initial conditions in𝑉.

Chaos of Devaney is stronger than that of Li-Yorke in
some conditions [11].

Definition 3 (see [6]). A point 𝑥 ∈ R𝑘+1 is called a fixed point
of (1) with (4) if 𝐹(𝑥) = 𝑥; that is, it is a fixed point of its
induced system (7).

It follows from Definition 3 that 𝑥 = {𝑥(𝑚)}𝑘
𝑚=0

is a fixed
point of (1) with (4) if and only if it satisfies

𝑥 (𝑚) = 𝑓 (𝑥 (𝑚) , 𝑥 (𝑚 + 1)) , 0 ≤ 𝑚 ≤ 𝑘 − 1,

𝑥 (𝑘) = 𝑓 (𝑥 (𝑘) , 𝜑 (𝑥 (0))) .

(10)

Definition 4 (see [6]). Equation (1) with (4) is said to be
chaotic in the sense of Li-Yorke (or Devaney) on 𝑉 ⊂ R𝑘+1
if its induced system (7) is chaotic in the sense of Li-Yorke (or
Devaney) on 𝑉.

Recently, some chaotification schemes of the discrete
system (3) were established in [7]; we list them as follows. For
convenience, let 𝐶𝑘(𝑈, 𝑅𝑛) be the set of all the maps 𝑓 : 𝑈 ⊂
𝑅
𝑛
→ 𝑅
𝑛 that are 𝑘 times continuously differentiable in 𝑈.

Lemma 5 (see [7]). Consider the controlled system

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛
) + 𝑔 (𝜇𝑥

𝑛
) , 𝑛 ≥ 0, (11)

in 𝑌
𝑘
(𝑘 ≤ ∞). Assume that

(i) 𝑥∗ = 0 is a fixed point of 𝑓 and there exist positive con-
stants 𝑟 and 𝐿 such that 𝑓 ∈ 𝐶

0
([−𝑟, 𝑟]

𝑘
, 𝑌
𝑘
), 𝑓 ∈

𝐶
1
((−𝑟, 𝑟)

𝑘
, 𝑌
𝑘
), and ‖𝐷𝑓(𝑥)‖ ≤ 𝐿 for any 𝑥 ∈ (−𝑟, 𝑟)𝑘;

(ii) 𝑔 satisfies the following conditions:

(iia) 𝑔 ∈ 𝐶0([−𝑟, 𝑟]𝑘 ∪ [𝑎, 𝑏]𝑘, 𝑌
𝑘
) and 𝑔 ∈ 𝐶1((−𝑟,

𝑟)
𝑘
∪ (𝑎, 𝑏)

𝑘
, 𝑌
𝑘
) with 𝑟 < 𝑎 < 𝑏;

(iib) 𝑥∗ = 0 is a fixed point of𝑔 and there exists a point
𝜉 ∈ (𝑎, 𝑏)

𝑘 such that 𝑔(𝜉) = 0;
(iic) 𝐷𝑔(𝑥) is an invertible linear operator for each

𝑥 ∈ (−𝑟, 𝑟)
𝑘
∪ (𝑎, 𝑏)

𝑘 and there exists a positive
constant 𝑁 such that for any 𝑥, 𝑦 ∈ [−𝑟, 𝑟]

𝑘
∪

[𝑎, 𝑏]
𝑘,





𝑔 (𝑥) − 𝑔 (𝑦)





≥ 𝑁





𝑥 − 𝑦





. (12)

Then, for any constant 𝜇 satisfying

𝜇 > 𝜇
0
:= max{𝑏

𝑟

,

𝐿𝑟 + 𝑏

𝑁𝑟

,

𝐿𝑏

𝑁 (




𝜉



0
− 𝑎)

,

𝐿𝑏

𝑁 (𝑏 −




𝜉




)

} ,

(13)

where ‖𝜉‖
0
= min{|𝜉

𝑖
| : 0 ≤ 𝑖 ≤ 𝑘}, and for any neighborhood

𝑈 of 𝑥∗ = 0, there exist a positive integer 𝑛 > 2 and a Cantor
set Λ ⊂ 𝑈 such that 𝐹𝑛

𝜇
: Λ → Λ is topologically conjugate to

the symbolic dynamical system 𝜎 : Σ
+

2
→ Σ
+

2
, where 𝐹

𝜇
(𝑥) =

𝑓(𝑥)+𝑔(𝜇𝑥). Consequently, there exists a compact and perfect
invariant set 𝐷 ⊂ 𝑋 containing a Cantor set such that the
controlled system is chaotic on 𝐷 in the sense of both Devaney
and Li-Yorke.

A map is said to be an invertible linear map if it is a
bounded linearmap and bijective and if it has a bounded linear
inverse map [6].

Lemma 6 (see [7]). Consider the controlled system

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛
) + 𝜇𝑔 (𝑥

𝑛
) , 𝑛 ≥ 0, 𝑥

𝑛
∈ 𝑌
𝑘
, (14)

where 𝑘 ≤ ∞. Assume that

(i) assumption (i) in Lemma 5 holds;
(ii) 𝑔 satisfies the following conditions:

(iia) 𝑔 ∈ 𝐶0([−𝑎, 𝑎]𝑘 ∪ [𝑏, 𝑟]𝑘, 𝑌
𝑘
) and 𝑔 ∈ 𝐶1((−𝑎,

𝑎)
𝑘
∪ (𝑏, 𝑟)

𝑘
, 𝑌
𝑘
) with 0 < 𝑎 < 𝑏 < 𝑟;

(iib) 𝑥∗ = 0 is a fixed point of𝑔 and there exists a point
𝜉 ∈ (𝑏, 𝑟)

𝑘 such that 𝑔(𝜉) = 0;
(iic) 𝐷𝑔(𝑥) is an invertible linear operator for each

𝑥 ∈ (−𝑎, 𝑎)
𝑘
∪ (𝑏, 𝑟)

𝑘 and there exists a positive
constant 𝑁 such that (12) holds for any 𝑥, 𝑦 ∈

[−𝑎, 𝑎]
𝑘
∪ [𝑏, 𝑟]

𝑘.

Then, for each constant 𝜇 satisfying

𝜇 > 𝜇
0
:= max{𝐿𝑎 + 𝑟

𝑁𝑎

,

𝐿𝑟

𝑁 (




𝜉



0
− 𝑏)

,

𝐿𝑟

𝑁 (𝑟 −




𝜉




)

} , (15)

all the results in Lemma 5 hold for 𝐹
𝜇
(𝑥) = 𝑓(𝑥) + 𝜇𝑔(𝑥)

therein.
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3. Chaotification Problems for (1)
Assume that 𝑓 ∈ 𝐶1([−𝑟, 𝑟]2,R) for 𝑟 > 0. Let 𝑓

𝑥
(𝑥, 𝑦) and

𝑓
𝑦
(𝑥, 𝑦) be the first-order partial derivatives of 𝑓 for the 1st

and the 2nd variables at (𝑥, 𝑦). Let

𝐿 := max {

𝑓
𝑥
(𝑥, 𝑦)





+






𝑓
𝑦
(𝑥, 𝑦)






: 𝑥, 𝑦 ∈ [−𝑟, 𝑟]} . (16)

Theorem 7. Consider the following system:

𝑥 (𝑛 + 1,𝑚) = 𝑓 (𝑥 (𝑛,𝑚) , 𝑥 (𝑛,𝑚 + 1))

+ 𝑔 (𝜇𝑥 (𝑛,𝑚)) , 𝑛 ≥ 0, 0 ≤ 𝑚 ≤ 𝑘,

(17)

with (4), where 𝑔 : R → R is a map and 𝜇 > 0 is a constant.
Assume that

(i) 𝑓 ∈ 𝐶1([−𝑟, 𝑟]2, 𝑅) and 𝑓(0, 0) = 0;

(ii) 𝑔 ∈ 𝐶1([−𝑟, 𝑟] ∪ [𝑎, 𝑏], 𝑅), and 𝑔(𝑥) ̸= 0 for any 𝑥 ∈
[−𝑟, 𝑟] ∪ [𝑎, 𝑏], where 𝑟 < 𝑎 < 𝑏;

(iii) 𝑔(0) = 0 and there is a point 𝜉 ∈ (𝑎, 𝑏) satisfying𝑔(𝜉) =
0;

(iv) 𝜑 ∈ 𝐶1([−𝑟, 𝑟, −𝑟, 𝑟]) and 𝜑(0) = 0.

Then, for

𝜇 > 𝜇
0
:= max{𝑏

𝑟

,

𝑀𝑟 + 𝑏

𝑁𝑟

,

𝑀𝑏

𝑁 (𝜉 − 𝑎)

,

𝑀𝑏

𝑁 (𝑏 − 𝜉)

} (18)

and for any neighborhood 𝑈 of 𝑥 = 0, there exist a Cantor
set Λ ⊂ 𝑈

𝑘+1 and a perfect as well as compact invariant set
𝐸 ⊂ R𝑘+1 containingΛ such that system (17) with (4) is chaotic
on 𝐸 in the sense of both Li-Yorke and Devaney, where 𝑀 =

max{𝐿, |𝑓
𝑥
(𝑥, 𝑦)| + |𝑓

𝑦
(𝑥, 𝑦)𝜑


(𝑥(0))| : 𝑥, 𝑦, 𝑥(0) ∈ [−𝑟, 𝑟]}, 𝐿

is given in (16), and𝑁 = min{|𝑔(𝑥)| : 𝑥 ∈ [−𝑟, 𝑟] ∪ [𝑎, 𝑏]}.

Proof. Assume that 𝜇 > 𝜇
0
in the proof. System (17) with (4)

can be rewritten as

𝑥
𝑛+1

= 𝐹 (𝑥
𝑛
) + 𝐺 (𝜇𝑥

𝑛
) , 𝑛 ≥ 0, (19)

where 𝐹 is defined by (8), and

𝐺 (𝑥
𝑛
) = (𝑔 (𝑥 (𝑛, 0)) , 𝑔 (𝑥 (𝑛, 1)) , . . . , 𝑔 (𝑥 (𝑛, 𝑘)))

𝑇

. (20)

By assumptions (i), (iv), and Definition 3, {𝑥∗(𝑚) = 0 :
0 ≤ 𝑚 ≤ 𝑘} is a fixed point of (1) with (4), and then 𝐹(𝑥∗) =
𝑥
∗, for 𝑥∗ := 0 ∈ R𝑘+1, and 𝐹 ∈ 𝐶1([−𝑟, 𝑟]𝑘+1, 𝑅𝑘+1). Further,

for any 𝑥 = {𝑥(𝑗)}𝑘
𝑖=0
∈ [−𝑟, 𝑟]

𝑘+1,

𝐷𝐹 (𝑥) = (

𝑓
𝑥
(𝛼 (0)) 𝑓

𝑦
(𝛼 (0)) 0 ⋅ ⋅ ⋅ 0

0 𝑓
𝑥
(𝛼 (1)) 𝑓

𝑦
(𝛼 (1)) ⋅ ⋅ ⋅ 0

0 0 𝑓
𝑥
(𝛼 (2)) ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑓
𝑦
(𝛼 (𝑘)) 𝜑


(𝑥 (0)) 0 0 ⋅ ⋅ ⋅ 𝑓

𝑥
(𝛼 (𝑘))

)

(𝑘+1)×(𝑘+1)

, (21)

where 𝛼(𝑖) = (𝑥(𝑖), 𝑥(𝑖 + 1)) for 0 ≤ 𝑖 ≤ 𝑘 with 𝑥(𝑘 + 1) =
𝜑(𝑥(0)). So, for 𝜔 = {𝜔(𝑖)}𝑘

𝑖=0
∈ R𝑘+1,

𝐷𝐹 (𝑥) 𝑧 = (𝑓
𝑥
(𝛼 (0)) 𝜔 (0) + 𝑓

𝑦
(𝛼 (0)) 𝜔 (1) ,

𝑓
𝑥
(𝛼 (1)) 𝜔 (1) + 𝑓

𝑦
(𝛼 (1)) 𝜔 (2) , . . . ,

𝑓
𝑥
(𝛼 (𝑘)) 𝜔 (𝑘) + 𝑓

𝑦
(𝛼 (𝑘)) 𝜑


(𝑥 (0)) 𝜔 (0))

𝑇

.

(22)

Therefore,

‖𝐷𝐹 (𝑥)‖

= max {‖𝐷𝐹 (𝑥) 𝜔‖ : 𝜔 ∈ R𝑘+1, ‖𝜔‖ = 1}

≤ max {

𝑓
𝑥
(𝛼 (𝑗))





+






𝑓
𝑦
(𝛼 (𝑗))






, 0 ≤ 𝑗 ≤ 𝑘 − 1,





𝑓
𝑥
(𝛼 (𝑘))





+






𝑓
𝑦
(𝛼 (𝑘)) 𝜑


(𝑥 (0))






}

≤ max {𝐿, 

𝑓
𝑥
(𝛼 (𝑘))





+






𝑓
𝑦
(𝛼 (𝑘)) 𝜑


(𝑥 (0))






} = 𝑀.

(23)

Now, we prove that 𝐺(𝑥) satisfies condition (ii) in
Lemma 5. By (iii), 𝐺(0) = 𝐺(𝜉) = 0, where 𝜉 :=

(𝜉, 𝜉, . . . , 𝜉⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘+1

)
𝑇

∈ (𝑎, 𝑏)
𝑘+1. Furthermore, it follows from

condition (ii) that 𝐺 ∈ 𝐶1([−𝑟, 𝑟]𝑘+1 ∪ [𝑎, 𝑏]𝑘+1, 𝑅𝑘+1) and

𝐷𝐺 (𝑥) = (

𝑔

(𝑥 (0)) 0 ⋅ ⋅ ⋅ 0

0 𝑔

(𝑥 (1)) ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ 𝑔

(𝑥 (𝑘))

) . (24)

Obviously, 𝐷𝐺(𝑥) is an invertible map, and it follows from
condition (ii) that its inverse is

(𝐷𝐺 (𝑥))
−1

=(

(𝑔

(𝑥 (0)))

−1

0 ⋅ ⋅ ⋅ 0

0 (𝑔

(𝑥 (1)))

−1

⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ (𝑔

(𝑥 (𝑘)))

−1

).

(25)
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Figure 1: Computer simulation results, where 𝑘 = 2, 𝑛 = 0, 1, . . . , 20000, and the initial value is 𝑥(0, 0) = 0.3, 𝑥(0, 1) = 0.1, and 𝑥(0, 2) = 0.8.
(a) Simple dynamical behaviors for the original system (35); (b) simulation results of the system (29) for 𝜇 = 4, which shows that there is a
dense orbit around the origin and then there are complex dynamical behaviors in (29).

Hence, for any 𝑥 ∈ [−𝑟, 𝑟]𝑘+1 ∪ [𝑎, 𝑏]
𝑘+1, one can obtain that






(𝐷𝐺 (𝑥))

−1



≤

1

𝑁

. (26)

Therefore,𝐷𝐺(𝑥) is an invertible linear map. Hence,




𝐺 (𝑥) − 𝐺 (𝑦)





= max {


𝑔 (𝑥 (𝑖)) − 𝑔 (𝑦 (𝑖))





: 0 ≤ 𝑖 ≤ 𝑘}

≥𝑁




𝑥 − 𝑦





, ∀𝑥, 𝑦 ∈ [−𝑟, 𝑟]

𝑘+1
∪[𝑎, 𝑏]

𝑘+1
.

(27)

In summary, both 𝐹 and 𝐺 meet all the conditions in
Lemma 5. So this theorem holds.

Theorem 8. Assume that

(1) 𝑓(0, 0) = 0 and 𝑓 ∈ 𝐶1([−𝑟, 𝑟]2, 𝑅);
(2) 𝑔 ∈ 𝐶1([−𝑎, 𝑎] ∪ [𝑏, 𝑟], 𝑅), for 0 < 𝑎 < 𝑏 < 𝑟, and

𝑔

(𝑥) ̸= 0, for any 𝑥 ∈ [−𝑎, 𝑎] ∪ [𝑏, 𝑟];

(3) 𝑔(0) = 0 and there is a point 𝜉 ∈ (𝑏, 𝑟) satisfying 𝑔(𝜉) =
0;

(4) 𝜑 ∈ 𝐶1([−𝑟, 𝑟, −𝑟, 𝑟]) and 𝜑(0) = 0.

Then, for

𝜇 > 𝜇
0
:= max{𝑀𝑎 + 𝑟

𝑁𝑎

,

𝑀𝑟

𝑁 (𝜉 − 𝑏)

,

𝑀𝑟

𝑁 (𝑟 − 𝜉)

} (28)

and for any neighborhood 𝑈 of 𝑥 = 0, there exist a Cantor set
Λ ⊂ 𝑈

𝑘+1 and a perfect and compact invariant set 𝐸 ⊂ R𝑘+1
containing Λ such that

𝑥 (𝑛 + 1,𝑚) = 𝑓 (𝑥 (𝑛,𝑚) , 𝑥 (𝑛,𝑚 + 1)) + 𝜇𝑔 (𝑥 (𝑛,𝑚)) ,

𝑛 ≥ 0, 0 ≤ 𝑚 ≤ 𝑘,

(29)

with (4) being chaotic on 𝐸 in the sense of both Li-Yorke and
Devaney, where𝑀 = max{𝐿, |𝑓

𝑥
(𝑥, 𝑦)| + |𝑓

𝑦
(𝑥, 𝑦)𝜑


(𝑥(0))| :

𝑥, 𝑦, 𝑥(0) ∈ [−𝑟, 𝑟]}; 𝐿 is defined by (16), and 𝑁 =

min{|𝑔(𝑥)| : 𝑥 ∈ [−𝑎, 𝑎] ∪ [𝑏, 𝑟]}.

Proof. The system induced by system (29) is

𝑥
𝑛+1

= 𝐹 (𝑥
𝑛
) + 𝜇𝐺 (𝑥

𝑛
) , 𝑛 ≥ 0, (30)

where 𝐹 and 𝐺 are defined by (8) and (20), respectively.
Similar to the proof ofTheorem 7, it can be proved that 𝐹 and
𝐺 meet all the conditions of Lemma 6. Hence, Theorem 8
holds by Lemma 6.

4. An Example

Consider the controlled system (29) with (4), which is a spe-
cial case of the discrete heat equation (see (1.3) in [12]):

𝑢 (𝑛 + 1,𝑚) = 𝛼𝑢 (𝑛,𝑚 − 1) + 𝛽𝑢 (𝑛,𝑚)

+ 𝛾𝑢 (𝑛,𝑚 + 1) , 𝛼, 𝛽, 𝛾 ∈ R,
(31)

where 𝑢(𝑛,𝑚) denotes the temperature at time 𝑛 and position
𝑚 of the rod. In system (29),

𝑓 (𝑥, 𝑦) =

1

12

𝑥 +

1

12

𝑦,

𝜑 (𝑥) = 𝑥
2
,

𝑔 (𝑥) =

{
{
{
{
{
{

{
{
{
{
{
{

{

2𝑥, 𝑥 ∈ [−

1

3

,

1

3

] ,

𝑥 −

4

5

, 𝑥 ∈ [

1

2

, 1] ,

1

3

cos𝑥, otherwise.

(32)

By Corollary 5.1 [6], the original system

𝑥 (𝑛 + 1,𝑚) =

1

12

𝑥 (𝑛,𝑚) +

1

12

𝑥 (𝑛,𝑚 + 1) ,

𝑛 ≥ 0, 0 ≤ 𝑚 ≤ 𝑘,

(33)

is stable near the origin (see Figure 1(a)). In addition, 𝑓, 𝑔,
and 𝜑 satisfy all the conditions of Theorem 8 with 𝑟 = 1,



Journal of Discrete Mathematics 5

𝑎 = 1/3, 𝑏 = 1/2, 𝜉 = 4/5, 𝐿 = 1/6, 𝑁 = 1, 𝑀 = 1/4.
Therefore, it follows from Theorem 8 that system (29) with
(4) is chaotic in the sense of both Li-Yorke and Devaney for
𝜇 > 𝜇
0
= 13/4.

We take 𝑘 = 2, 𝜇 = 4 for computer simulation. The
simulation result is shown in Figure 1(b), which indicates that
system (29) with (4) has a dense orbit around the origin
and then has very complicated dynamical behaviors near the
origin.
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