
Research Article
Development and Application of New Quality Model for
Software Projects

K. Karnavel and R. Dillibabu

Department of Industrial Engineering, Anna University, Chennai 25, India

Correspondence should be addressed to K. Karnavel; treseofkarnavel@gmail.com

Received 27 May 2014; Revised 16 September 2014; Accepted 10 October 2014; Published 16 November 2014

Academic Editor: Jung-Hua Lo

Copyright © 2014 K. Karnavel and R. Dillibabu.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

The IT industry tries to employ a number of models to identify the defects in the construction of software projects. In this paper,
we present COQUALMO and its limitations and aim to increase the quality without increasing the cost and time.The computation
time, cost, and effort to predict the residual defects are very high; this was overcome by developing an appropriate new quality
model named the software testing defect corrective model (STDCM). The STDCM was used to estimate the number of remaining
residual defects in the software product; a few assumptions and the detailed steps of the STDCM are highlighted.The application of
the STDCM is explored in software projects. The implementation of the model is validated using statistical inference, which shows
there is a significant improvement in the quality of the software projects.

1. Introduction

Due to the rapid development of the software industry
today, software companies are now facing a highly compet-
itive market. To succeed, companies have to make efficient
project plans to reduce the cost of software construction [1].
However, in medium to large scale projects, the problem
of project planning is very complex and challenging [2, 3].
Despite numerous efforts in the past decade at defining
and measuring software quality, the management of software
quality remains in its infancy and the quality concept is still
unutilized. The objectives of software testing are to qualify
a software program’s quality by measuring its attributes and
capabilities against expectations and applicable standards.
Software testing also provides valuable information to the
software development effort. Throughout the history of soft-
ware development, there have been many definitions and
advances in software testing. Figure 1 graphically illustrates
these evolutions [4].

The life cycle development or waterfall approach breaks
the development cycle down into discrete phases, each with a
rigid sequential beginning and end. Each phase is fully com-
pleted before the next is started. Once a phase is completed,
in theory during development, one never goes back to change
it [4]. A software product is successful, if the requirements are

fulfilled and no budget or deadline overflows occur [5]. So,
the Software size contains important information for project
planning.Themethod estimates the software size by counting
the “function points” of the system. This method, developed
by [6], is widely used in the USA and Europe.

Software quality assurance activities play an important
role in producing high quality software. The majority of
quality assurance research is focused on defect prediction
models that identify defect-prone modules [7–11]. Although
such models can be useful in some contexts, they also
have their drawbacks. The literature makes two things clear
about defect prediction. First, no single prediction technique
dominates [12] and, second, making sense of the many
prediction results is hampered by the use of different data sets,
data preprocessing, validation schemes, and performance
statistics [12–15]. These differences are compounded by the
lack of any agreed reporting procedure or even the need to
share code and algorithms [16].

The COQUALMO model can play an important role
in facilitating the balance of cost/schedule and quality [17].
Recognizing this important association, COQUALMO was
created as an extension of the Constructive Cost Model
(COCOMO), for predicting the number of residual defects
in a software product.The COQUALMOmodel contains two
submodels (the model shown in Figure 2):

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 491246, 11 pages
http://dx.doi.org/10.1155/2014/491246

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/207770523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 The Scientific World Journal

Automated
business

optimization

200019901980197019602000

Advanced
test

automation

Test
automation

tools

Time

Internet
(agile)

Early
test

design

Defect
prevention

and test
process

Prove it
does not

work

Prove
it works

Exhaustive
testing

Fix bugs

Figure 1: History of software testing.

COCOMO II

COQUALMO

Defect introduction
model

Defect removal
model

Software size

Software product, process, 
platform, and personnel attributes

Defect removal capability 
levels

Software development effort 
and schedule

Number of residual defects

Defect density per 
unit of size

∙ Automated analysis
∙ Peer reviews
∙ Execution testing

and tools

∙ Requirements
∙ Design
∙ Code

Figure 2: COQUALMO overview.

(1) the defect introduction model,
(2) the defect removal model.

The defect introduction model uses a subset of
COCOMO cost drivers and three internal baseline defect
rates (requirements, design, code, and test baselines) to
produce a prediction of defects, which will be introduced
in each defect category during software development. The
defect removal model uses the three defect removal profile
levels, along with the prediction produced by the defect
introduction model, to produce an estimate of the number
of defects that will be removed from each category [17].
However, there are also a number of studies that do not
confirm these results, especially regarding residual defects.

The importance of finding residual defects and reducing
them (defect-free) in software products need not be accen-
tuated. To reduce the number of defects during the design
and development stage, well known product development
tools such as the failure mode and effects analysis (FMEA),
failure mode effects and criticality analysis (FMECA), quality
function deployment (QFD), and sneak analysis (SA) are
employed [18]. They provide the reader with a historical

sketch of software testing, followed by a description of how
to transform requirements to test cases, when there are well-
defined or not so well-defined requirements.

This paper aims to overcome these issues and combine
these models (waterfall and COQUALMO) to develop a
suitable newmodel, namely, software testing defect corrective
model (STDCM). The STDCM will serve as a better model
for finding the number of defects and producing high quality
software in the IT industry, without increasing the cost and
schedule.

2. Limitations of COQUALMO

(i) The effort to fix the defect introduced and removed is
not quantified directly by the model.

(ii) COQUALMOdoes not associate the time aspect with
the defect removal and fixing process.

(iii) Defects are not given weights and classifications, in
terms of the software artifact they originated from.



The Scientific World Journal 3

Test
case

Software testing defect corrective model (STDCM)

S/W residual
Requirements

design

coding

SQFD

SRS

DD

Reqts. fix

Reqts. fix

Reqts. fix

design fix

design fix

coding fix

Requirements

Design

Coding

Testing

S/W product

Deployment

Maintenance

Customer
requirements

Design review

SWFMEA

Code review
+

+

+

+

+

SWFMEA Software failure mode effect analysis
SQFD Software quality function deployment
SRS System requirements specifications
DD Design document

Represents the flow of the process
Represents the validation tools and reviews
Represents the inputs and outputs
Represents the residual defects

Figure 3: Framework of the software testing defect correctivemodel
(STDCM).

3. Motivation for Construction of Software
Testing Defect Corrective Model

(1) Can the existing model (waterfall and COQUALMO)
achieve the maximum quality?

(2) Is the prediction of errors necessary in the testing
phase?

(3) What are the possible ways to achieve the maximum
quality of the model without increasing the cost and
time?

These questions were answered by collecting the relevant
literature in the area of software quality and a detailed
Integrated model was constructed, as shown in Figure 3.

4. Related Works

This study was aimed at improving the quality and testing
the process in the software projects, by reducing and finding
the residual defects in software application projects. More
numbers of papers relevant to the area are listed in below.

Phan et al. (1995) used IBM’s OS/400 R.1 project to
address key quality management and control issues in large
development projects. The major task is improving the
software quality during and after development. During the
development of OS/400 R.1 at IBM corporation, thousands of
programmers were involved in writing and refining millions
of lines of code. Such an effort would fail without good
software quality management. Hence, software developers
cannot make good software quality products [19].

Cai (1998) applied a new static model for estimating the
number of remaining defects and used a set of real data
to test the new model. The new model resembles the Mills
model in a particular case and is attractive in its applicability
to a broader scope of circumstances. A practical example
shows that the new model can offer good estimates for a
number of software defects. It is also applicable to statistical
problems other than software reliability modeling.They have
not given a systematic review and hence cannot be applied for
estimating the number of remaining defects [20].

Biffl et al. (2003) compared and investigated the perfor-
mance of objective and subjective defect content estimation
techniques. For the validation of these techniques they
conducted a controlled experiment with 31 inspection teams,
each of which consisted of 4–6 persons. They reported the
data from an experiment with number of software engineer-
ing defects in a requirement document.They used the relative
error, a confidence level, and the correctness for deciding
reinspection as themain evaluation criterion, but they did not
provide the major defects in the requirement document [21].

Chun (2006) applied a new method (capture-recapture
model) that estimates the number of undetected errors in
complex software design documents. This idea used the
correlation matrix of multiple inspectors to formulate the
estimation problem as a goal program.The capture-recapture
model initially used by biologists to estimate the size of
wildlife population has been widely used to estimate the
number of software design errors. It shows that undetected
errors are present and this leads to Software fault or failure
[22].

Ravishanker et al. (2008) applied the nonhomogeneous
Poisson process model and the multivariate model, that
applies Markov switching to characterize the software defect
discovery process. However, the process remains complex
and hence there is an increase in failure rate [23].

Jacobs et al. (2007) studied the defect injection (DI) and
defect detection (DD) influencing factors and their grouping,
resulting in their use in development projects. To decrease the
number of injected defects in a development project, the DI
factors could be used as areas of attention, while the quality
of documentation is poor, leading to a lack of product quality
[24].

Quah et al. (2009) studied defect tracking as a proxy
method to predict software readiness. They developed the
defect predictive model, divided into three parts: (1) predic-
tion model for presenting the logic tire, (2) prediction model
for the business tier, and (3) prediction model for the data
access tier. Evaluating the software readiness is very complex
[25].



4 The Scientific World Journal

Chulani (1999) applied the COCQUALMO model to
predict the defect density of the software under development,
where defects conceptually flow into a holding tank through
various defect introduction pipes and are removed through
various defect removal pipes. In this model, it is difficult to
increase the quality without increasing the cost and time.
They inject the defects and remove them, but it involves
more computation time, cost, and man power to predict the
residual defects.

Westland (2004) analysed that the short software devel-
opment life cycle appears to be in favor of higher rates of
detection, but for some reasonable development cycle, most
of the errors will be found incorrected. Short life cycles are
likely to force constrained software development cycles and
are likely to exacerbate the risk from postrelease defects.
Defining uncorrected defects becomes exponentially costlier
in each phase [26].

Turakhia et al. (2006) used statistical testing to isolate the
embedded outlier population, test conditions, and test appli-
cation support for the statistical testing framework and the
data modeling for identifying the outliers. The identification
of outliers that correlate to latent defects critically depends
on the choice of the test response and the statistical model’s
effectiveness in estimating the healthy-die response, but it
provides low efficiency and less reliability, and the cost is very
high [27].

Xiaode et al. (2009) studied the quality prediction model
and found that the number of faults is negatively correlated
with the workload fluctuation, which indicates that the
quality is decreasing due to the heavy workload. Due to the
problems that occurred in the testing pahse for overheads,
there is a decrease in the quality of the product [28].

Catal (2011) studied the software engineering discipline
that contains several prediction approaches such as test
effort prediction, correction cost prediction, fault prediction,
reusability prediction, security prediction, effort prediction,
and quality prediction. They investigated 90 software fault
prediction papers published between 1990 and 2009. They
gave a road map for research scholars in the area of software
fault prediction [29].

However, the related works summarized are found to
be more relevant for defect-free software products. “Esti-
mating the remaining defects” and “predicting the residual
defects” were found to be more suitable for the construction
of STDCM. “Software estimation models” COQUALMO
can play an important role in facilitating the balance of
cost/schedule and quality. COQUALMO was created as an
extension of the constructive cost model (COCOMO). The
COQUALMOmodel contains two submodels.

The following conclusions can be drawn from the review
of the literature.

(i) None of the alternatives is better than the others in all
aspects.

(ii) The waterfall and COQUALMO models do not
emphasize more the correctiveness of software test-
ing.

(iii) The strengths and weaknesses of the other techniques
are complementary.

5. Model Development Methodology

The STDCM has been developed based on two important
traditional models, namely, waterfall and COQUALMO.The
integration of these models was developed in a stagewise
manner. The validation process of the model was built in a
stagewise fashion. The framework of STDCM is shown in
Figure 3. The following are the steps for the development of
STDCMmethodology.

Step 1 (requirement analysis). The customer requirements
of the project are collected in the requirements phase of
STDCM. The requirements are analyzed using soft QFD
(SQFD), in which the house of quality (HoQ) matrix was
used, to validate the requirements of the given project.

Step 2 (design). The input of this phase is SRS and the output
is DD. This phase is validated using the design document
process.

Step 3 (coding). The lines of code are estimated using
COCOMO/FPA. The code review process is used and it can
be validated using statistical tools.

Step 4 (testing). The inputs for this phase are the test cases
and SWFMEA.

6. Application and Implementation of STDCM

A case study was conducted in a leading software company in
India.The company was CMM level-5 certified in developing
software projects for banking applications. It uses the offline
review process for software quality improvement.

This project is basically used for credit card transaction
(CCT) in the banking sector. It helps in the following cases:

(i) within project team communication validation,

(ii) to address the credit card business problem,

(iii) within project team URL (uniform resource locator)
validation,

(iv) centralized location for all URL and phone numbers,

(v) transaction services (TS) team with online screens to
monitor and validate,

(vi) a monthly scan process that allows for a continual
review and update of the phone number and URLs.

The STDCMmodelwas applied in this credit card transaction
to improve the quality of project delivery. The following are
the implementation details.

(i) The house of quality (HoQ) matrix was used to
validate the correlations and relationships of cus-
tomer requirements and functional requirements
(see Figure 5).

(ii) The absolute and relative importance of TRs are
computed using the customer importance of CIs and
the relationship ratings of the project (see Figure 5).



The Scientific World Journal 5

Ta
bl
e
1:
C
od

er
ev
ie
w
fo
rm

.
Pr
oj
ec
tn

am
e:
Cr

ed
it
Ca

rd
Tr
an
sa
ct
io
n
C
od

eR
ev
ie
w
Fo

rm
D
at
eo

fw
al
kt
hr
ou

gh
:1
0/
11
/2
01
1

Sl
.n
o.

Is
su
e

ra
ise

d
by

Is
su
e

ow
ne
r

O
pe
n

da
te

St
at
us

(o
pe
n/
cl
os
ed
)

Se
ve
rit
y
S,

H
,M

,L
C
od

e
la
ng

ua
ge

Im
pa
ct
ed

m
od

ul
e

Is
su
ed

es
cr
ip
tio

n
W
as

m
od

ul
e

un
it
te
ste

d
(y
es
/n
o)

Re
so
lu
tio

n
Cl
os
ed

da
te

1
X
X
X

YY
Y

10
/11

/2
01
1

Cl
os
ed

L
PE

G
A

CC
T

de
le
te

sc
re
en

W
hi
le
us
in
g
em

be
dd

ed
pa
ge
si
n
th
e

ac
tiv

iti
es

lik
eC

CT
D
el
et
eR

ow
,

in
ste

ad
of

us
in
g
th
ef
ol
lo
w
in
g
w
he
n

co
nd

iti
on

C
on

ta
ct
sP
ag
e.p

xR
es
ul
ts

(lo
ca
l.i
).p

yR
ow

Se
le
ct
ed
==

“tr
ue
”

Ye
s

.p
yR

ow
Se
le
ct
ed
==

“tr
ue
”

10
/12

/2
01
2

2
X
X
X

YY
Y

10
/11

/2
01
1

Cl
os
ed

L
PE

G
A

CC
T

up
da
te

sc
re
en

W
he
n
ste

p
pa
ge

is
py
W
or
kP

ag
e

in
ste

ad
of

us
in
g
th
ef
ol
lo
w
in
g
w
he
n

co
nd

iti
on

py
W
or
kP

ag
e.U

RL
N
U
M
BE

R
==

py
W
or
kP

ag
e.U

RL
N
U
M
BE

R
N
EW

&
&
py
W
or
kP

ag
e.C

ho
ic
eC

CT
H
om

eS
cr
ee
n=

=“
U
pd

at
e”

Ye
s

W
ec

an
pr
ef
er

us
in
g

.U
RL

N
U
M
BE

R=
=.
U
RL

N
U
M
BE

R
N
EW

&
&
.C
ho

ic
e

CC
TH

om
eS
cr
ee
n=

=“
U
pd

at
e”

10
/12

/2
01
2

3
X
X
X

YY
Y

10
/11

/2
01
1

Cl
os
ed

L
PE

G
A

CC
T

re
vi
ew

al
l

sc
re
en
s

St
ep
sw

ith
m
an
y
la
be
ls

Ye
s

St
ep

de
sc
rip

tio
n
ca
n
be

gi
ve
n

to
av
oi
d
co
nf
us
io
n

10
/12

/2
01
2



6 The Scientific World Journal

Table 2: Requirements and application issue count reports for the
CCT project.

Application/project Credit card transaction (CCT)

Requirements

(1) Improve valid URLs/phone
numbers in the database
(2) Review new URLs/phone
numbers
(3) Review all URLs/phone
numbers

(4) Export the history/entire data
(5) Export not-working aging
report and productivity report

(6) Update URLs/phone numbers

(7) Update status

(8) Delete teams impacted
Rules/LOC 776
Estimation splitup (hrs) 780 + 46
Total estimation (hrs) 826
Code issue count 12
Data issue count 22
Application issue count 2

(iii) The STDCM model conducted the code review
process for the code developer and external code
reviewer to reveal the code defects and resolve it (see
Tables 1 and 2).

(iv) The STDCM model includes occurrence rating,
severity rating, and detecting ability rating table for
finding the defects criteria (see Table 3).

(v) The STDCM models were implemented corrective
actions in the developing software projects with the
help of SWFMEA (see Table 4 and Figure 3).

(vi) The SWFMEA is validated using the single paired
𝑡-test. The statistical paired 𝑡-test shows that there
is significant improvement in the quality, in terms
of the revised RPN values (Figure 4), due to the
implementation of the SWFMEA (see Tables 5, 6, 7,
and 8).

(vii) A Paired correlation report highly correlated in the
projects is 0.77. So there is a significant difference
between RPN1 and RPN2. It increases the confidence
level up to 98% (see Tables 6–8).

6.1. Building the Software-HOQ (Table 1)

6.1.1. WHATs. Customer requirements are structured using
affinity and tree diagrams and incorporated as WHATs of
the software-HOQ. The WHATs are ranked in the order
of importance using the analytic hierarchy process and
comparison by pairs [30], which are shown in Figure 5.

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13

CCT

RPN1
RPN2

Su
bp

ro
ce

ss

Mode of failure

Figure 4: Bar chart for the RPN values (RPN 1: before implementing
corrective actions; RPN 2: after implementing corrective action).

The priority of customer importance displayed in the HOQ
next to each customer’s voice has been obtained from the
QFD team in a scale of 1 to 10. This gives the customer
importance or priority rating for theWHATs of the software-
HOQ. Number one implies low importance of priority and
ten implies high importance of priority.

6.1.2. HOWs. The HOWs usually represent the product fea-
tures, design requirements, product characteristics, product
criteria, substitutes of quality characteristics, and technical
requirements. The HOWs represent the means by which a
company responds to what the user wants and needs. These
technical requirements are listed along the top of the software
house of quality. Each technical requirement may affect one
or more of the customer voices. Using the voice of the
engineer table (Figure 5), the technical requirements were
identified as similar to the customer requirements and are
represented as HOWs in the software-HOQ.

The entire soft QFD process has been carried out by a
QFD team with members from all departments (develop-
ment, quality management, marketing, sales, service, etc.)
and extended in several teammeetings by the representatives
of the client company.

6.2. Absolute and Relative Importance

6.2.1. Absolute Importance. In Soft QFD applications, a cell
(𝑖, 𝑗) in the relationship matrix of HOQ, that is, 𝑖th row and
𝑗th column of HOQ, is assigned 9, 3, and 1 to represent a
strong, medium, or weak relationship, respectively, between
the 𝑖th customer requirement (CR) and the 𝑗th Technical
requirement (TR). The absolute and relative importance of
TRs are computed using the customer importance of CIs



The Scientific World Journal 7

Te
ch

ni
ca

l 
re

qu
ire

m
en

ts 
H

O
W

s

Customer 
requirements

WHATs

9

8

8

7

7

5

4

4

4

5

8 9 10 11 121 2 3 4 5
Cu

sto
m

er
 im

po
rt

an
ce

6 7

Sk
ill

 se
t

Sk
ill

ed
 re

so
ur

ce
s

Sy
ste

m
 av

ai
la

bi
lit

y

M
S 

O
ffi

ce

M
S 

Vi
sio

RA
M

O
pe

ra
tin

g 
sy

ste
m

D
at

ab
as

e

W
eb

 p
or

ta
l

Sp
ee

d

Pe
ga

 P
rp

c

To
ta

l h
rs

Import valid URLs/phone numbers

Review new URLs/phone numbers

Review all URLs/phone numbers

Export data

Export history

Export productivity report

Update URLs/phone numbers

Export not-working aging report

Update status

Delete teams impacted

Target values

Pe
ga

, J
AV

A
, O

RA
CL

E

2 2

20
03

Ve
rs

io
n 

6.
2

82
6

20
10

W
in

do
w

s X
P

O
ra

cle
 9

i

ht
tp

s:/
/p

da
p0

1u
.n

am
.n

sr
oo

t.n
et

:9
02

3/
du

at
d/

pr
se

rv
elt

7Organizational difficulty 2 2 5 7 7 1 1 1 1 4
Absolute importance 549 432 432 450

8
432 540162 378 810 810 810 432

7% 7%Relative weight 9% 7% 7% 7% 3% 9%

Relative importance

6% 13% 13% 13%

Relationships
Strong
Moderate
Weak 1

3
9

Correlations

Strong
Moderate
No correlation

1
G

B

1
6

M
BP

S

Figure 5: Software quality deployment diagram for finding correlations and relationships of customer requirements and functional
requirements.



8 The Scientific World Journal

Table 3: Occurrence rating process SWFMEA.

Occurrence rating
Probability of failure Rating Criteria
Very frequently 10 Shows greater than 80% of defects attributable to subprocess failure
Frequently 8 Shows greater than 40% of defects & less than 80% of defects attributable to subprocess failure
Sometimes 4 Shows greater than 10% of defects & less than 40% of defects attributable to subprocess failure
Rare 1 Shows less than 10% of defects to subprocess failure

Severity rating
Effect Rating Criteria
Very high 10 Rework is greater than 8 ph
High 7 Rework is greater than 4 ph & <8 ph
Moderate 5 Rework is greater than 2 ph & <4 ph
Low 3 Rework is greater than 1 ph & <2 ph
Very low 1 Rework is greater than 1 ph

Detectability rating
Detection Rating Criteria
Difficult 10 No defined methods for identifying the process error; only the o/p prdt analysis leads to detectability
Moderate 5 Can be identified in the exit phase of the process or subsequent process entry check
Easy 1 Process has built in checks for identifying subprocess failure

and the relationship ratings, that is, 9–3–1. For each TR, the
absolute importance rating is computed as

AI
𝑖
=

𝑚

∑
𝑖=1

CI
𝑖
∗ 𝑅
𝑖𝑗
, (1)

where AI
𝑗
is the absolute importance of TR

𝑗
, 𝑗 = 1, . . . , 𝑛.

CI
𝑖
is the customer importance, that is, importance rating of

CR
𝑖
, 𝑖 = 1, . . . , 𝑚. 𝑅

𝑖𝑗
is the relationship rating representing

the strength of the relationship between CR
𝑖
and TR

𝑗
. (𝑚)

Relative importance: the absolute importance rating can then
be transformed into the relative importance rating, RI

𝑗
, as

RI
𝑗
=
AI
𝑗

𝑛
, (2)

𝑛

∑
𝑘=1

AI
𝑘
. (3)

The larger the RI
𝑗
is, the more important the TR

𝑗
is.Thus,

without consideration of any other constraints such as cost
and time, TRs should be incorporated into the product of
interest in the order of their relative importance rating to
achieve more customer satisfaction.

The absolute importance AI
𝑗
for each technical require-

ment is calculated using (1). Referring to Table 1, the technical
requirement “Skillset” has a strong relationship with the
customer requirement “Import valid URLs/PhoneNumbers.”
Thus the column weight for the first column is computed as
(9 × 9) + (8 × 9) + (8 × 9) + (7 × 9) + (7 × 9) + (5 × 9) +
(4 × 9) + (4 × 9) + (4 × 9) + (5 × 9) = 549. The column
weights are used to identify the technical requirements for

quality improvement. The relative importance (RI
𝑗
) for each

technical requirement is calculated using (2).

6.3. Test of Hypotheses. Hypothesis testing helps to decide
the basis of sample data, whether a hypothesis about the
population is likely to be true or false. Statisticians have
developed several tests of hypotheses (also known as tests of
significance) for the purpose of testing of hypotheses which
can be classified as (a) parametric tests or standard tests of
hypotheses and (b) nonparametric tests or distribution-free
test of hypotheses. Parametric tests usually assume certain
properties of the parent population from which we draw
samples. So, we have chosen parametric tests for testing our
project samples [31].

6.3.1. Important Parametric Tests. The important parametric
tests are (1) 𝑧-test, (2) 𝑡-test, (3) 𝑋2-test, and (4) 𝐹-test. All
these tests are based on the assumption of normality; that is,
the source of data is considered to be normally distributed.
Our project sample data size is small; so, we have chosen
the 𝑡-test. The relevant test statistic, 𝑡, is calculated from
the sample data and then compared with its probable value
based on 𝑡-distribution (to be read from the table that
gives probable values of 𝑡 for different levels of significance
for different degrees of freedom) at a specified level of
significance concerning the degrees of freedom for accepting
or rejecting the null hypothesis [31].

6.3.2. Hypothesis Testing of Means. Hypothesis testing refers
to the formal procedures used by statisticians to accept or
reject statistical hypotheses.



The Scientific World Journal 9

Ta
bl
e
4:
C
om

pl
et
ep

ro
ce
ss
es

of
so
ftw

ar
ef
ai
lu
re

m
od

ea
nd

eff
ec
ta
na
ly
sis

.
CC

T

Fu
nc
tio

n/
pr
oc
es
s
Su
bp

ro
ce
ss

M
od

eo
ff
ai
lu
re

Eff
ec
to

f
fa
ilu

re
Ca

us
eo

f
fa
ilu

re
Cu

rr
en
t

co
nt
ro
ls

Cu
rr
en
ts
ta
tu
s

Re
co
m
m
en
de
d

co
rr
ec
tiv

ea
ct
io
ns

Ac
tio

n
by

Ac
tio

n
ta
ke
n

Re
vi
se
d
sta

tu
s

O
CC

SE
V

D
ET

RP
N
1

O
CC

SE
V

D
ET

RP
N
2

C
od

in
g

Pl
an
ni
ng

In
ad
eq
ua
te

sk
ill
s/
kn

ow
le
dg
e

ab
ou

tt
he

pr
oc
es
s

U
na
bl
et
o

ac
ce
ss
th
e

ap
pl
ic
at
io
n

Re
qu

es
th

as
no

tb
ee
n

ra
ise

d
to

ge
t

ac
ce
ss

Th
is
sh
ou

ld
be

ad
de
d
in

im
pl
em

en
ta
-

tio
n

ch
ec
kl
ist

4
10

1
40

A
ss
ig
ni
ng

SP
O
C
to

ge
ta
cc
es
s

Pr
oj
ec
tm

an
ag
er

(P
M
)

Kn
ow

le
dg
e

tr
an
sit
io
n
ab
ou

t
pr
oc
es
s

1
10

1
10

C
od

in
g

Pl
an
ni
ng

In
ad
eq
ua
te
tim

e

D
eli
ve
ry

no
t

in
tim

e

In
co
rr
ec
t

es
tim

at
ed

ho
ur
s

Es
tim

at
io
n

sh
ou

ld
be

do
ne

by
sk
ill
ed

re
so
ur
ce
s

4
10

5
20
0

Pr
oj
ec
to

w
ne
r/
le
ad

ha
st
o
re
vi
ew

th
e

es
tim

at
io
n
ba
se
d
on

re
qu

ire
m
en
ts
gi
ve
n

Pr
oj
ec
tm

an
ag
er

(P
M
)

To
fo
llo

w
es
tim

at
io
n
m
od

el
w
ith

pr
op

er
tr
ai
ni
ng

&
kn

ow
le
dg
e

1
10

1
10

Re
qu

ire
m
en
t

ch
an
ge

8
10

10
80
0

1
10

5
50

In
ap
pr
op

ria
te

sk
ill
ed

re
so
ur
ce
s

fo
rD

EV
4

10
5

20
0

1
10

1
10

Te
sti
ng

&
re
vi
ew

ob
je
ct
iv
ei
sn

ot
cle

ar
1

5
1

5
1

3
1

3

In
ap
pr
op

ria
te

sk
ill
ed

re
so
ur
ce
s

fo
rt
es
tin

g
&

re
vi
ew

4
3

5
60

1
1

1
1

C
od

in
g

D
ev
elo

pm
en
t

N
ot

re
us
in
g
th
e

ex
ist
in
g
ru
le
s

Fi
le
siz

ei
s

hu
ge

to
m
ov
e

In
cr
ea
se

in
th
ec

ou
nt

of
ru
le
s

C
od

er
ev
ie
w

sh
ou

ld
be

do
ne

to
ch
ec
k

th
el
og
ic
/r
ul
es

ha
nd

le
d

4
5

1
20

Pr
op

er
tr
ai
ni
ng

an
d

de
ve
lo
pm

en
t

Pr
oj
ec
tm

an
ag
er

(P
M
)

Re
vi
ew

by
sk
ill
ed

re
so
ur
ce
s

1
5

1
5

C
od

in
g

Te
sti
ng

In
va
lid

da
ta

D
ef
ec
ts
ra
ise

d
Im

pr
op

er
da
ta
ha
nd

le
d

w
hi
le
te
sti
ng

Pr
op

er
un

it
te
st
sc
rip

ts
sh
ou

ld
be

pr
ov
id
ed

8
10

1
80

Pr
op

er
tr
ai
ni
ng

ab
ou

tt
he

ap
pl
ic
at
io
n

Pr
oj
ec
tm

an
ag
er

(P
M
)

Va
lid

un
it
te
st

sc
rip

tt
em

pl
at
ei
s

fo
llo

w
ed

w
ith

va
lid

va
lu
es

&
va
lid

at
io
ns

4
10

1
40

Te
sti
ng

ob
je
ct
iv
e

is
no

tc
le
ar

4
10

5
20
0

1
10

1
10

In
ap
pr
op

ria
te

sk
ill
ed

re
so
ur
ce
s

fo
rt
es
tin

g
4

10
10

40
0

1
10

5
50

C
od

in
g

Re
vi
ew

In
ap
pr
op

ria
te

sk
ill
ed

re
so
ur
ce
s

fo
rr
ev
ie
w

D
ef
ec
ts
ra
ise

d
Re

vi
ew

ed
un

ne
ce
ss
ar
y

co
de
s

Sh
ou

ld
gi
ve

th
ed

et
ai
ls

ab
ou

tt
he

co
de

to
be

re
vi
ew

ed

4
3

1
12

Sh
ar
in
g
th
ec

od
e

de
ta
ils

w
ith

re
qu

ire
d

ru
le
se
t&

ru
le
se
t

ve
rs
io
n

Pr
oj
ec
tm

an
ag
er

(P
M
)

To
fo
llo

w
IQ

A
,

EQ
A
,a
nd

FI
pr
oc
es
sb

ef
or
e

im
pl
em

en
ta
tio

n

1
3

1
3

In
ad
eq
ua
te
tim

e
1

3
1

3
1

3
1

3
Im

pr
op

er
de
ta
ils

ab
ou

tc
od

e
re
vi
ew

8
10

1
80

1
10

1
10



10 The Scientific World Journal

Table 5: SWFMEA validation report (RPN1 TO RPN2).

CCT
H0: not significant in RPN1 & RPN2
H1: significant in RPN1 & RPN2 𝑁 = 13, SQRT(𝑁) = 3.60551
Mode of failure RPN1 (𝑥 − 𝜇) (𝑥 − 𝜇)2 RPN2 (𝑥 − 𝜇) (𝑥 − 𝜇)2

Inadequate skills/knowledge about the process 40 −121.538 14771.6 10 −5.76923 33.28402
Inadequate time 200 38.46154 1479.29 10 −5.76923 33.28402
Requirement change 800 638.4615 407633.1 50 34.23077 1171.746
Inappropriate skilled resources for DEV 200 38.46154 1479.29 10 −5.76923 33.28402
Testing & review objective is not clear 5 −156.538 24504.29 3 −12.7692 163.0533
Inappropriate skilled resources for testing & review 60 −101.538 10310.06 1 −14.7692 218.1302
Not reusing the existing rules 20 −141.538 20033.14 5 −10.7692 115.9763
Invalid data 80 −81.5385 6648.521 40 24.23077 587.1302
Testing objective is not clear 200 38.46154 1479.29 10 −5.76923 33.28402
Inappropriate skilled resources for testing 400 238.4615 56863.91 50 34.23077 1171.746
Inappropriate skilled resources for review 12 −149.538 22361.75 3 −12.7692 163.0533
Inadequate time 3 −158.538 25134.44 3 −12.7692 163.0533
Improper details about code review 80 −81.5385 6648.521 10 −5.76923 33.28402
Total 2100 599347.2 205 3920.31
Mean (𝜇) 161.5385 49945.6 15.76923 326.6925
Standard deviation (𝜎) 223.4851 18.07464
Variance (𝜎2) 49945.6 326.6925
Standard error mean (𝜎/SQRT(𝑁)) 61.98433 5.01306
H0: there is no significant difference between RPN1 and RPN2.
H1: there is a significant difference between RPN1 and RPN2.

Table 6: Paired correlations report.

To find correlations (2 tailed)
Correlation (𝑟) 0.773723
𝑃 value 0.027661 <0.05 (so reject H0)
0.77: it is highly correlated. So there is a significant relationship between
RPN1 and RPN2.

Table 7: Paired samples test.

Paired samples test (2 tailed)

Paired difference mean 145.7692

Paired difference standard
deviation (𝜎)

205.4105

Paired difference standard error
mean (𝜎/SQRT(𝑁))

56.97127

𝜎2/(𝑁 − 1) 4162.134

Total 𝜎2/(𝑁 − 1) 4189.358

SQRT(𝜎2/(𝑁 − 1)) 64.72525

𝑡 = Paired Difference
Mean/SQRT(𝜎2/(𝑁 − 1))

2.252123

Degrees of freedom (df) 12

𝑡 table value 1.78 <2.25 (so reject H0)

Table 8: Confidence limits reports.

To find confidence limits (2 tailed)
𝑡(0.025, 12) 2.18
Lower level confidence limit 21.57186
Upper level confidence limit 269.9666
Confidence level: 98% ± 5% accuracy.

In such a situation 𝑡-test is used and the test statistic 𝑡 is
worked out as follows under

𝑡 =
(𝑋 − 𝜇

𝐻0
)

(𝜎
𝑠
/√𝑛)

with 𝑑𝑓 = (𝑛 − 1) ,

𝜎
𝑠
= √
∑(𝑋
𝑖
− 𝑋)
2

(𝑛 − 1)
,

(4)

where 𝑋 = mean of the sample, 𝜇
𝐻0

= hypothesized mean
for population, 𝜎

𝑠
= standard deviation of sample, and 𝑛 =

number of items in a sample.

7. Conclusion

This paper discusses the development of a new model,
namely, the STDCM, which uses the estimation of the
COQUALMO and waterfall models. Its construction and



The Scientific World Journal 11

applicability have been discussed. The limitations of other
models are highlighted, in particular, the COQUALMO
and waterfall. The framework shows the application of the
SQFD and SWFMEA in STDCM and the size estimation
computation of COCOMO/FPA. The STDCM will serve
as a better model for finding the number of defects and
producing high quality software in the software industry.
Themodel was demonstrated using banking applications and
specializes in developing credit cards. Moreover, the model
was successfully validated, using the statistical inference.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] N. Nan and D. E. Harter, “Impact of budget and schedule
pressure on software development cycle time and effort,” IEEE
Transactions on Software Engineering, vol. 35, no. 5, pp. 624–637,
2009.

[2] J. Duggan, J. Byrne, and G. J. Lyons, “A task allocation optimizer
for software construction,” IEEE Software, vol. 21, no. 3, pp. 76–
82, 2004.

[3] W.-N. Chen and J. Zhang, “Ant colony optimization for software
project scheduling and staffing with an event-based scheduler,”
IEEE Transactions on Software Engineering, vol. 39, no. 1, pp. 1–
17, 2013.

[4] W. D. Barnett and M. K. Raja, “Application of QFD to the
Software development process,” International Journal of Quality
and Reliability Management, vol. 12, no. 6, pp. 24–42, 1995.

[5] L. D. Paulson, “Adapting methodologies for doing software
right,” IT Professional, vol. 3, no. 4, pp. 13–15, 2001.

[6] A. J. Albrecht and J. E. Gaffney Jr., “Software function, source
lines of code, and development effort prediction: a software
science validation,” IEEE Transactions on Software Engineering,
vol. SE-9, no. 6, pp. 639–648, 1983.

[7] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation
of object-oriented metrics on open source software for fault
prediction,” IEEE Transactions on Software Engineering, vol. 31,
no. 10, pp. 897–910, 2005.

[8] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in Proceedings of the 31st International Conference on
Software Engineering (ICSE ’09), pp. 78–88, Vancouver, Canada,
May 2009.

[9] P. L. Li, J. Herbsleb, M. Shaw, and B. Robinson, “Experiences
and results from initiating field defect prediction and product
test prioritization efforts at ABB Inc,” in Proceedings of the 28th
International Conference on Software Engineering (ICSE ’06), pp.
413–422, May 2006.

[10] J. C. Munson and T. M. Khoshgoftaar, “The detection of fault-
prone programs,” IEEE Transactions on Software Engineering,
vol. 18, no. 5, pp. 423–433, 1992.

[11] Y. Kamei, E. Shihab, B. Adams et al., “A large-scale empirical
study of just-in-time quality assurance,” IEEE Transactions on
Software Engineering, vol. 39, no. 6, pp. 757–773, 2013.

[12] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Bench-
marking classification models for software defect prediction: a
proposed framework and novel findings,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 485–496, 2008.

[13] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and
validity in comparative studies software prediction models,”
IEEE Transactions on Software Engineering, vol. 31, no. 5, pp.
380–391, 2005.

[14] T. Raeder, T. R. Hoens, and N. V. Chawla, “Consequences of
variability in classifier performance estimates,” in Proceedings
of the IEEE 10th International Conference on Data Mining, pp.
421–430, December 2010.

[15] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general
software defect-proneness prediction framework,” IEEE Trans-
actions on Software Engineering, vol. 37, no. 3, pp. 356–370, 2011.

[16] D. C. Ince, L. Hatton, and J. Graham-Cumming, “The case for
open computer programs,” Nature, vol. 482, no. 7386, pp. 485–
488, 2012.

[17] S. Chulani, “Constructive Quality Modeling for Defect Density
Prediction: COQUALMO,” IBM Research, Center for Software
Engineering ,1,408-927-1767.

[18] R. Dillibabu and K. Krishnaiah, “Application of failure mode
and effects analysis to software code reviews—a case study,”
Software Quality Professional, vol. 8, no. 2, pp. 30–41, 2006.

[19] D. D. Phan, J. F. George, and D. R. Vogel, “Managing software
quality in a very large development project,” Information and
Management, vol. 29, no. 5, pp. 277–283, 1995.

[20] K.-Y. Cai, “On estimating the number of defects remaining in
software,” Journal of Systems and Software, vol. 40, no. 2, pp. 93–
114, 1998.

[21] S. Biffl, “Evaluating defect estimation models with major
defects,” Journal of Systems and Software, vol. 65, no. 1, pp. 13–29,
2003.

[22] Y. H. Chun, “Estimating the number of undetected software
errors via the correlated capture-recapture model,” European
Journal of Operational Research, vol. 175, no. 2, pp. 1180–1192,
2006.

[23] N. Ravishanker, Z. Liu, and B. K. Ray, “NHPP models with
Markov switching for software reliability,”Computational Statis-
tics & Data Analysis, vol. 52, no. 8, pp. 3988–3999, 2008.

[24] J. Jacobs, J. van Moll, R. Kusters, J. Trienekens, and A. Brom-
bacher, “Identification of factors that influence defect injection
and detection in development of software intensive products,”
Information and Software Technology, vol. 49, no. 7, pp. 774–789,
2007.

[25] T.-S. Quah, “Estimating software readiness using predictive
models,” Journal of Information Science, vol. 179, no. 4, pp. 430–
445, 2009.

[26] J. C. Westland, “The cost behavior of software defects,”Decision
Support Systems, vol. 37, no. 2, pp. 229–238, 2004.

[27] R. P. Turakhia, W. R. Daasch, J. Lurkins, and B. Benware,
“Changing test and data modeling requirements for screening
latent defects as statistical outliers,” IEEE Design and Test of
Computers, vol. 23, no. 2, pp. 100–109, 2006.

[28] Z. Xiaode, L. Yun, and L.Hong, “Study on the quality prediction
model of software development,” in Proceedings of the Interna-
tional Conference on E-Business and Information System Security
(EBISS ’09), pp. 1–4, May 2009.

[29] C. Catal, “Software fault prediction: a literature review and
current trends,” Expert Systems with Applications, vol. 38, no. 4,
pp. 4626–4636, 2011.

[30] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability,
McGraw-Hill, New York, NY, USA, professional edition, 1990.

[31] C. R. Kothari, Research Methodology Methods and Techniques,
New Age International, New Delhi, India, 2nd edition, 2004.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


