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This paper is aimed at designing a robust vaccination strategy capable of eradicating an infectious disease from a population
regardless of the potential uncertainty in the parameters defining the disease. For this purpose, a control theoretic approach based
on a sliding-mode control law is used. Initially, the controller is designed assuming certain knowledge of an upper-bound of the
uncertainty signal. Afterwards, this condition is removed while an adaptive sliding control system is designed. The closed-loop
properties are provedmathematically in the nonadaptive and adaptive cases. Furthermore, the usual sign function appearing in the
sliding-mode control is substituted by the saturation function in order to prevent chattering. In addition, the properties achieved
by the closed-loop system under this variation are also stated and proved analytically. The closed-loop system is able to attain the
control objective regardless of the parametric uncertainties of the model and the lack of a priori knowledge on the system.

1. Introduction

Mathematical models have become an important tool in
analyzing the causes, dynamics, and spread of epidemics.
Thus, its study is crucial in order to obtain valuable knowl-
edge of the underlying aspects of the disease. Furthermore,
the analysis of mathematical models describing epidemics
spreading allows us to make decisions regarding the best
vaccination policies, quarantine application, and so on. In
this way, a large number of mathematical models have been
proposed in the literature (see [1–6] for more information
onmathematical models). In addition, many specific features
regarding these models have been studied in many works
such as the presence of bifurcations [5, 7, 8], the existence
of equilibrium points and oscillatory behavior [9], and the
presence of waves [6, 10] to cite just a few. However, model
stability has been by far the most important property to
be studied, [8, 11–15]. One of the most fundamental issues
when studying stability is the determination of the so-called
reproduction number of the model, 𝑅

0
. This number is

defined as the expected number of secondary cases generated

by one typical primary case in an entirely susceptible and
sufficiently large population [16]. The reproduction number
usually determines the stability of the equilibrium points
when they exist. Typically, a reproduction number 𝑅

0
<

1 makes the disease-free equilibrium point asymptotically
stable while 𝑅

0
> 1 makes the endemic equilibrium point

locally asymptotically stable. In this way, for 𝑅
0

< 1 the
epidemic is eradicated by itself while for 𝑅

0
> 1 there are

always a number of infectious and infective people among the
population. In this case, vaccination becomes an essential tool
to eradicate the illness.

Control theory has recently emerged as one of the
proposed approaches to deal with the design of vaccination
campaigns [7, 17]. Thus, different types of vaccination laws
based on control theory have appeared in the literature during
the last years such as the state-feedback control [17], feedback
linearization [7, 18], and observer-based control, [19]. In
addition, pulse vaccination has also gained much attention
during the last decade [9, 20, 21] mainly after its successful
application in the eradication of poliomyelitis and measles
across Central and South America [20]. Nevertheless, all
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these works assume the parameters defining the epidemics,
such as the birth and mortality rates or the incidence rate to
be perfectly known.This is a rather unrealistic situation since
the estimation of such parameters from experimental data
may lead to inaccurate values (i.e., values with an amount of
uncertainty). As a consequence, the vaccination law ismiscal-
culated and its application to the actual system may prevent
the illness to be eradicated, as desired. Hence, the objective
of this paper is to design a robust vaccination law capable of
overcoming the potentialmismatch between the nominal val-
ues used to design the control law and the actual parameters
of the system. Therefore, the main novelty of the paper with
respect to previousworks is to consider the epidemics spread-
ing control in the absence of complete knowledge on the
system.

There are several strategies to design robust controllers
such as 𝐻

∞
, fuzzy, or neural network based techniques

[22–24]. Among them, sliding-mode control is one of the
most well-known and extended techniques due to its sim-
ple design process and superior obtained results. Thus, it
has successfully been applied to robotic manipulators [25],
vehicle dynamics [26, 27], chemical engineering [28–30],
and electrical systems [31, 32] to cite just a few. However, it
has only been superficially applied before to the design of
a vaccination law in the context of epidemic models [33],
which is the main purpose of this work. In this way, this
paper presents the design of a sliding-mode robust con-
troller for a SEIR epidemic model. The designed vaccination
law is able to make the total population become immune
through time regardless of the potential inaccuracy in the
knowledge of the parameters of the model. Typically, sliding-
mode controllers need to assume an a priori knowledge of
the bounds of the uncertainties. This assumption may also
appear somewhat unrealistic in epidemic models. Hence, the
introduced sliding-mode controller is then enhanced with an
adaptive mechanism to adapt online the value of the sliding
gain. At the end, the whole system works in an autonomous
manner without requiring difficult a priori estimations of
the parameters or of their bounds while guaranteeing the
epidemics eradication. Moreover, mathematical proofs of
all the results stated in the paper are developed. These
include the stability proof of the nonadaptive and adaptive
sliding-mode controllers and a discussion on the effect of
substituting the sign function by a saturation one in the
control law. These proofs are far from being trivial and
have not been considered with detail in previous works
[33].

The paper is organized as follows. Section 2 introduces
the epidemic model to be considered. Section 3 presents the
sliding-mode control law and its properties. In this way, two
different approaches will be proposed. The first one assumes
the knowledge of an upper-bound of the potential mismatch
between the nominal and the actual parameters of the
model while the second approach removes this assumption
by using an adaptive mechanism. Finally, Section 4 con-
tains some simulation examples illustrating the theoretical
results introduced in Section 3 while conclusions end the
paper.

2. Model Description

Consider the SEIR epidemic model described by the follow-
ing equations [17]:

̇𝑆 (𝑡) = − 𝜇𝑆 (𝑡) + 𝜔𝑅 (𝑡)

− 𝜑 (𝑆, 𝐸, 𝐼, 𝑅) + ]𝑁(𝑡) − 𝑁 (𝑡) 𝑉 (𝑡) ,

(1)

𝐸̇ (𝑡) = 𝜑 (𝑆, 𝐸, 𝐼, 𝑅) − (𝜇 + 𝜎) 𝐸 (𝑡) , (2)

̇𝐼 (𝑡) = − (𝜇 + 𝛾) 𝐼 (𝑡) + 𝜎𝐸 (𝑡) , (3)

𝑅̇ (𝑡)= −(𝜇+𝜔)𝑅 (𝑡)+𝛾𝐼 (𝑡)+𝑁 (𝑡) 𝑉 (𝑡) , (4)

where 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡) , and 𝑅(𝑡) denote the subpopulations
of susceptible, infected, infectious, and immune
population, respectively, and define the state vector 𝑥

𝑇
=

[𝑆 𝐸 𝐼 𝑅]. 𝑁(𝑡) denotes the total population at each
time 𝑡 (i.e., 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)), 𝜇 is the rate
of deaths from causes unrelated to the infection, ] denotes
the birth rate, and 𝜔 is the rate of losing immunity. The
typically nonlinear function 𝜑(𝑆, 𝐸, 𝐼, 𝑅) is referred to as the
disease incidence rate. When 𝜑(𝑆, 𝐸, 𝐼, 𝑅) = 𝛽𝑆(𝑡)𝐼(𝑡), it is
said to be the bilinear incidence rate; when 𝜑(𝑆, 𝐸, 𝐼, 𝑅) =

𝛽(𝑆(𝑡)𝐼(𝑡)/𝑁(𝑡)), it is said to be the standard incidence
rate and when 𝜑(𝑆, 𝐸, 𝐼, 𝑅) = 𝛽𝑆(𝑡)𝐼(𝑡)/(1 + 𝛼𝑆(𝑡))

or 𝜑(𝑆, 𝐸, 𝐼, 𝑅) = 𝛽𝑆(𝑡)𝐼(𝑡)/(1 + 𝛼𝐼(𝑡)), it is said to be the
saturated incidence rate, where𝛽 is the transmission constant
(with, for instance, the total number of new infections per
unit of time at time 𝑡 being 𝛽(𝑆(𝑡)𝐼(𝑡)/𝑁(𝑡)) for the standard
incidence rate) and 𝛼 is the saturation coefficient. 𝜎−1 and
𝛾
−1 are, respectively, the average durations of the latent and

infective periods. All the above parameters are assumed to be
positive so as to represent a real situation. These parameters
can be arranged into a single vector 𝜃 as follows:

𝜃
𝑇
= [𝜇 𝜔 ] 𝜎 𝛾 𝛽 𝛼] (5)

in such a way that the SEIR model (1)–(4) can be written as

𝑥̇ (𝑡) = 𝐹 (𝑥 (𝑡) , 𝜃) (6)

highlighting its explicit dependence on the parameters, 𝜃.
The total population dynamics at time 𝑡 can be calculated by
summing up all the equations (1)–(4), leading to

𝑁̇ (𝑡) = (] − 𝜇)𝑁 (𝑡) . (7)

It is worth noticing that the vaccination function
𝑉(𝑡) represents the fraction of the total population to
be vaccinated at each time instant, 𝑡. Thus, 𝑉(𝑡) ∈ [0, 1] for
all 𝑡 ≥ 0.

The objective of this work is to design a vaccination
law 𝑉(𝑡) capable of achieving 𝑅(𝑡) → 𝑁(𝑡) as 𝑡 → ∞ when
the exact values of the parameters in 𝜃 are unknown,
that is, when a nominal set of parameters 𝜃 is used to
define 𝑉(𝑡) instead of the actual ones (contained in 𝜃). A
sliding-mode control is designed in the next section to
achieve this objective.
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3. Robust Sliding Control Design

This section contains the design of a robust sliding-mode
control for the epidemic model (1)–(4) so that all the
population becomes immune asymptotically.Thus, define the
tracking error as

𝑒 (𝑡) = 𝑅 (𝑡) − 𝑁ref (𝑡) , (8)

where 𝑅(𝑡) denotes the number of immune population at
each time while 𝑁ref(𝑡) is a tracking reference signal satisfy-
ing

𝑁ref (0) = 𝑅 (0) , (9)

(𝑁ref (𝑡) − 𝑁 (𝑡)) 󳨀→ 0, 𝑡 󳨀→ ∞. (10)

Equation (9) specifies the fact that, initially, the tracking error
(8) is zero, 𝑒(0) = 0. On the other hand, (10) states the
fact that the reference signal tends to be the total population
asymptotically.The condition 𝑒(𝑡) = 0 for all 𝑡 means that all
the population tends to be immune asymptotically according
to the shape imposed by the reference signal 𝑁ref(𝑡). This
signal can be selected as desired by the designer while
satisfying (9) and (10). The proposed reference signal used in
the sequel for theoretical and simulation purposes is chosen
as

𝑁ref (𝑡) = (𝑅 (0) − 𝑁 (0)) 𝑒
−𝜖t

+ 𝑁 (𝑡) , (11)

where the parameter 𝜖 > 0 controls the rate at which the
reference signal converges to the total population.The control
objective is to attain 𝑒(𝑡) = 0 for all 𝑡 ≥ 0 regardless
of the potential mismatch in the system’s parameters. For
this purpose, the following sliding variable Φ(𝑡) with integral
term is considered:

Φ (𝑡) = 𝑒 (𝑡) + 𝜆∫

𝑡

0

𝑒 (𝜏) 𝑑𝜏, (12)

where 𝜆 is a constant positive gain. The sliding surface
guaranteeing the control objective is given by

Φ (𝑡) = 𝑒 (𝑡) + 𝜆∫

𝑡

0

𝑒 (𝜏) 𝑑𝜏 = 0. (13)

The control law is now designed in a two-step procedure.
Firstly, an equivalent control 𝑉eq(𝑡) is calculated in such a
way that the sliding surface could be reached if the actual
parameters of the model were known. For this, let us obtain
the derivative of the sliding surface (12):

Φ̇ (𝑡) = ̇𝑒 (𝑡) + 𝜆𝑒 (𝑡)

= 𝑅̇ (𝑡) − 𝑁̇ref (𝑡) + 𝜆𝑅 (𝑡) − 𝜆𝑁ref (𝑡)

= − (𝜇 + 𝜔)𝑅 (𝑡) + 𝛾𝐼 (𝑡) + 𝑁 (𝑡) 𝑉 (𝑡) − (] − 𝜇)𝑁 (𝑡)

+ 𝜖𝑒
−𝜖t

(𝑅 (0) − 𝑁 (0)) + 𝜆𝑅 (𝑡) − 𝜆𝑁 (𝑡)

− 𝜆𝑒
−𝜖t

(𝑅 (0) − 𝑁 (0)) .

(14)

For the sake of simplicity, take 𝜖 = 𝜆 and all the terms
associated with initial conditions in (14) will vanish. Let us
equate now (14) to zero to obtain the equivalent control:

− (𝜇 + 𝜔)𝑅 (𝑡) + 𝛾𝐼 (𝑡) + 𝑁 (𝑡) 𝑉 (𝑡)

− (] − 𝜇)𝑁 (𝑡) + 𝜆𝑅 (𝑡) − 𝜆𝑁 (𝑡) = 0.

(15)

The equivalent control is given by the solution of (15) with
respect to 𝑉(𝑡):

𝑉eq (𝑡) =
1

𝑁 (𝑡)
[(𝜆 + ] − 𝜇)𝑁 (𝑡)

+ (𝜇 + 𝜔 − 𝜆) 𝑅 (𝑡) − 𝛾𝐼 (𝑡)] .

(16)

However, since the actual parameters of the system, 𝜃, are
not known, we have to use the nominal ones, 𝜃, to define the
equivalent control (16) for practical use. In this way, define

𝛿 = 𝜆 + ] − 𝜇, 𝛿 = 𝜆 + ]̂ − 𝜇,

𝜌 = 𝜇 + 𝜔 − 𝜆, 𝜌 = 𝜇 + 𝜔̂ − 𝜆,

(17)

and the equivalent control law takes the form

𝑉eq (𝑡) =
1

𝑁 (𝑡)
[𝛿𝑁 (𝑡) + 𝜌𝑅 (𝑡) − 𝛾𝐼 (𝑡)] , (18)

where the nominal parameters have already been substituted.
The application of the equivalent control (18) to the system
(1)–(4) may not make it attain the control objective due to the
mismatch between the actual and the nominal parameters.
Hence, the equivalent control (18) is augmented in the
following nonlinear way so as to provide a robust behavior
with respect to uncertainties:

𝑉 (𝑡) = 𝑉eq (𝑡) −
𝑔 (𝑥, 𝑡)

𝑁 (𝑡)
sgn (Φ (𝑡)) , (19)

where sgn(⋅) is the sign function defined as

sgn (𝑥) =

{{

{{

{

1 if 𝑥 > 0

0 if 𝑥 = 0

−1 if 𝑥 < 0

(20)

and 𝑔(𝑥, 𝑡) is a switching gain to be specified in order to
be able to overcome the uncertainties in the parameters.
Thus, the augmented control law (19) allows guaranteeing
the convergence to zero of the tracking error (8) as it is
proved in the sequel. Note that the enhanced control law
(19) is nonlinear due to the presence of the sign function.
Therefore, the closed-loop system obtained by applying (19)
to the system of (1)–(4) becomes nonlinear as well. The
switching gain is defined based on the following assumptions.

Assumption 1. There exists a state-dependent function
𝑏(𝑥, 𝑡) such that the following upper-bounding holds:

󵄨󵄨󵄨󵄨󵄨
(𝛿 − 𝛿)𝑁 (𝑡) + (𝜌 − 𝜌) 𝑅 (𝑡) − (𝛾 − 𝛾) 𝐼 (𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑏 (𝑥, 𝑡)

(21)

for all 𝑡 ≥ 0.



4 Mathematical Problems in Engineering

Assumption 2. The upper-bounding function 𝑏(𝑥, 𝑡) is
known.

Assumption 3. The switching gain 𝑔(𝑥, 𝑡) is selected as

𝑔 (𝑥, 𝑡) = 𝑏 (𝑥, 𝑡) + 𝜂 (22)

with 𝜂 > 0 arbitrary.
Assumption 1 is related to the maximum amount of

uncertainty caused by the mismatch in the parameters. Note
that the function 𝑏(𝑥, 𝑡) always exists since the model is
parameterized by certain parameter values despite being
unknown. Furthermore, Assumption 1 has also a sound
epidemiological interpretation. In order to present it clearly,
we can rewrite (21) as

󵄨󵄨󵄨󵄨󵄨
𝛿𝑁 (𝑡) − 𝛿𝑁 (𝑡) + 𝜌𝑅 (𝑡) − 𝜌𝑅 (𝑡) − 𝛾𝐼 (𝑡) + 𝛾𝐼 (𝑡)

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑁 (𝑡) 𝑉eq (𝑡) − 𝑁 (𝑡) 𝑉eq,true (𝑡)

󵄨󵄨󵄨󵄨󵄨

= 𝑁 (𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑉eq (𝑡) − 𝑉eq,true (𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑏 (𝑥, 𝑡) ,

(23)

where 𝑉eq(𝑡) is the equivalent control law given by
(18) and expressed in terms of the nominal values 𝜃,
while 𝑉eq,true(𝑡) denotes the equivalent control when the
actual parameters are known. Therefore, Assumption 1 states
the fact that the absolute value of the difference between the
applied vaccination control functions when the parameters
are known and when they are unknown is upper-bounded by
a certain function. Hence, the assumption is directly related
to the error made in the number of vaccines applied due to
the parameters mismatch. Assumption 2 states the fact that
the upper-bounding is effectively known. This is a typical
assumption in sliding-mode control systems [34]. However,
this assumption does not limit the applicability of the
control since the upper-bound (21) could be calculated from
lower- and upper-bounds in the system’s parameters. Finally,
Assumption 3 defines how the sliding gain 𝑔(𝑥, 𝑡) should
be selected. Furthermore, Assumption 2 will be weakened
in Section 3.1, where the switching gain 𝑔(𝑥, 𝑡) is adapted
online removing any a priori knowledge on the parameters of
the system or on their bounds. Now, the following theorem
can be proved.

Theorem 4. Consider the SEIR epidemic model (1)–(4) with
the control law (19). Thus, if Assumptions 1, 2, and 3 hold, then
the tracking error 𝑒(𝑡) vanishes asymptotically.

Proof. The proof is carried out by using Lyapunov’s stability
theorem. Hence, consider the Lyapunov candidate function:

𝐿 (𝑡) =
1

2
Φ(𝑡)
2
. (24)

Its time-derivative is calculated as

𝐿̇ (𝑡) = Φ (𝑡) Φ̇ (𝑡) (25)

= Φ (𝑡) [ ̇𝑒 (𝑡) + 𝜆𝑒 (𝑡)] (26)

= Φ (𝑡) [−𝜌𝑅 (𝑡) + 𝛾𝐼 (𝑡) + 𝑁 (𝑡) 𝑉 (𝑡) − 𝛿𝑁 (𝑡)] (27)

= Φ (𝑡) [(𝜌 − 𝜌) 𝑅 (𝑡) + (𝛾 − 𝛾) 𝐼 (𝑡)

+ (𝛿 − 𝛿)𝑁 (𝑡) − 𝑔 (𝑥, 𝑡) sgn (Φ)]

(28)

≤Φ (𝑡) [𝑏 (𝑥, 𝑡) − 𝑔 (𝑥, 𝑡) sgn (Φ)] (29)

= Φ (𝑡) [𝑏 (𝑥, 𝑡) − 𝑏 (𝑥, 𝑡) sgn (Φ) − 𝜂 sgn (Φ)] (30)

≤ − 𝜂 |Φ (𝑡)| ≤ 0. (31)

Notice that Assumptions 1, 2, and 3 have been used
to prove that the time-derivative is always negative defi-
nite. Hence, 𝐿(𝑡) is positive definite and radially unbounded
while 𝐿̇(𝑡) is negative definite.Thus, according to Lyapunov’s
direct method, the equilibrium point at the origin Φ(𝑡) =

0 is globally asymptotically stable and, therefore, 𝐿(𝑡) tends
to zero as time tends to infinity. Moreover, all trajectories
starting out the sliding surface Φ = 0 must reach it in finite
time and then will remain on this surface. This fact can be
directly verified from (31) since

1

2

𝑑

𝑑𝑡
Φ(𝑡)
2
=

1

2

𝑑

𝑑𝑡
|Φ (𝑡)|

2
≤ −𝜂 |Φ (𝑡)| , Φ (0) ̸= 0 (32)

implies |Φ(𝑡)| ≤ |Φ(0)| − 𝜂𝑡. Therefore, for a finite time 𝑡𝑠 ≤

|Φ(0)|/𝜂 , the sliding surface is reached. Then, 𝐿(𝑡) = 0

and 𝐿̇(𝑡) = 0 for 𝑡 ≥ 𝑡𝑠 deducing that the system’s
trajectories remain on the surface. When this condition is
met, the dynamic behaviour of the tracking error (12) is given
by

̇𝑒 (𝑡) + 𝜆𝑒 (𝑡) = 0. (33)

Thus, the tracking error tends to zero exponentially and
the control objective is achieved regardless of the mismatch
in the parameters values. In this way, (𝑅(𝑡) − 𝑁ref(𝑡)) →

0, (𝑅(𝑡)−𝑁(𝑡)) → 0 as 𝑡 → ∞ and all the population tends
to be immune, eradicating the illness.

Therefore, this theorem guarantees the eradication of the
illness when the main parameters of the disease are not
known since it calculates an appropriate number of vaccines
in this scenario. In this way, it provides authorities with
effective tools to control the epidemic spreading from the
very beginning in the absence of complete knowledge of the
problem.

Remark 5. Note that the particular structure of the incidence
rate 𝜑(𝑆, 𝐸, 𝐼, 𝑅) does not appear in the control law (19).
Thus, the proposed robust controller can be applied as it is
to any model with any incidence rate. Hence, it has a wide
range of applicability.
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Remark 6. On the other hand, one of the drawbacks
appearing in this approach is that an upper-bounding
function 𝑏(𝑥, 𝑡) must be known (Assumption 2) since the
switching gain is defined based on its value (Assumption 3).
In some cases this informationmay not be known beforehand
which complicates the applicability of the proposed control.
Therefore, in the next subsection the switching gain is
adapted through time in order to avoid the required a priori
knowledge on the upper-bound of the signals.

Remark 7. The rate at which the reference signal, 𝑁ref(𝑡),
converges to the total population, 𝑁(𝑡), is given by 𝜖. This
value is made equal to 𝜆 in (15) in order to simplify the
derivation of the control law. Thus, the convergence rate
influences the control law (19) through 𝜆. This means that
the control law depends on the desired convergence rate
implying that a different convergence rate requires a different
vaccination law. This fact will be illustrated in Section 4
through simulation examples. Moreover, when 𝜆 ̸= 𝜖, the
general control law can be obtained from (14) straightfor-
wardly.

3.1. Adaptation of the Sliding Gain. In this section, the
switching gain 𝑔(𝑥, 𝑡) in (19) is automatically adapted online
with the aim of removing the beforehand knowledge on
the upper-bound of the mismatch signal (Assumption 2).
However, Assumption 1 concerning the existence of such
upper-bound is still applied but it is not explicitly used during
the controller design process. Furthermore, the following
Assumption 8, extending Assumption 1, is used in the sequel
to just prove the stability properties of the scheme.

Assumption 8. There exists a finite, potentially unknown,
positive constant 𝑏 such that

𝑏 ≥ 𝑏 (𝑥, 𝑡) (34)

for all 𝑡 ≥ 0.
Notice that Assumption 1 states the fact that the

upper-bounding may be a state-depending function while
Assumption 8 extends this assumption requiring the
function 𝑏(𝑥, 𝑡) to be upper-bounded by a constant. From
a biological perspective, this assumption implies that the
absolute error between the nominally calculated and truly
required vaccination laws (i.e., a measure of the vaccination
control discrepancy due to modeling errors) is upper-
bounded by a constant. However, it is worth noting that this
upper-bounding may be unknown since it is not explicitly
used in the design of the controller but only in the proof of
stability.

There are two ways of adapting the switching gain. The
first one consists in starting with a very high value and then
reducing it until it arrives to an appropriate tuning [25].
The other one consists in starting with a value of zero and
then increasing it until the sliding condition is met [31].
This second approach is used in this subsection to perform

the adaptation of the sliding gain. For this, the control
equation (19) is changed to

𝑉 (𝑡) = 𝑉eq (𝑡) −
𝑔 (𝑡)

𝑁 (𝑡)
Γ sgn (Φ (𝑡)) , (35)

where 𝑔(𝑡) denotes the time-varying switching gain and Γ ≥

1 is a constant defined by the designer. The switching gain is
updated by

𝑑𝑔 (𝑡)

𝑑𝑡
= ΓΦ (𝑡) sgn (Φ (𝑡)) = Γ |Φ (𝑡)| , 𝑔 (0) = 0. (36)

Note that (36) defines a potentially diverging equation since
the derivative of 𝑔 is always nonnegative through time. The
key issue to guarantee the stability of the closed-loop is that,
although it is not known, the constant upper-bound given by
Assumption 8 exists. Thus, the switching gain increases until
it reaches a sufficiently high value for which upper-bounding
(34) is achieved. Then, the system converges to the sliding
surface and the sliding condition is met, making Φ = 0 and
stopping the increase in 𝑔. The combined working of these
mechanisms makes the entire system stable as the following
theorem states.

Theorem 9. Consider the SEIR epidemic model (1)–(4) with
control law (35)-(36). Thus, if Assumptions 1 and 8 hold for an
unknown but finite constant upper-bound 𝑏 and Γ ≥ 1, then
the tracking error 𝑒(𝑡) vanishes asymptotically.

Proof. Firstly, notice that since Assumption 8 holds there
exists an unknown but bounded constant 𝑔 satisfying 𝑔 ≥

𝑏+𝜂 for any constant 𝜂 > 0. Now, the proof is again based on
Lyapunov’s stability theorem. Define the following Lyapunov
candidate function [31]:

𝐿 (𝑡) =
1

2
Φ(𝑡)
2
+

1

2
𝑔(𝑡)
2
, (37)

where 𝑔(𝑡) = 𝑔(𝑡) − 𝑔 is the difference between the actual
value of 𝑔(𝑡) at each time and the constant unknown upper-
bound 𝑔. The time-derivative of (37) is calculated as

𝐿̇ = Φ (𝑡) Φ̇ + 𝑔 ̇̂𝑔 (38)

= Φ (𝑡) [(𝜌 − 𝜌) 𝑅 (𝑡) + (𝛾 − 𝛾) 𝐼 (𝑡)

+ (𝛿 − 𝛿)𝑁 (𝑡) − 𝑔Γ sgn (Φ)] + 𝑔Γ |Φ (𝑡)|

(39)

≤ Φ (𝑡) [𝑏 (𝑥, 𝑡) − 𝑔Γ sgn (Φ)] + (𝑔 − 𝑔) Γ |Φ (𝑡)| (40)

= 𝑏 (𝑥, 𝑡) Φ (𝑡) − 𝑔Γ |Φ (𝑡)| − 𝑔Γ |Φ (𝑡)| + 𝑔Γ |Φ (𝑡)| (41)

= 𝑏 (𝑥, 𝑡) Φ (𝑡) − 𝑔Γ |Φ (𝑡)| (42)

≤ |𝑏 (𝑥, 𝑡)| Φ (𝑡) − 𝑏Γ |Φ (𝑡)| − 𝜂Γ |Φ (𝑡)| (43)

≤ − 𝜂Γ |Φ (𝑡)| ≤ 0. (44)

Thus, 𝐿(𝑡) is a positive definite radially unbounded function
in the variables [Φ 𝑔] while 𝐿̇(𝑡) is negative semidefinite
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function. Hence, according to Lyapunov’s direct method, the
equilibrium point at the origin is globally stable. Notice that
we cannot conclude the asymptotic stability of the system
since the derivative of the Lyapunov function is only negative
semidefinite. However, a contradiction-type argument will
allow us to prove the asymptotic convergence of the system’s
trajectories to the sliding surface.

In this way, recall that 𝐿(𝑡) is a lower-bounded function
with negative semidefinite derivative. Thus, 𝐿(𝑡) converges
(i.e., it has finite limit when 𝑡 → ∞). Therefore,
both Φ(𝑡) and 𝑔(𝑡) possess finite limits as 𝑡 →

∞ since 𝑔(𝑡) cannot be oscillatory due to (36). Now
assume that Φ(𝑡) does not converge to zero. Hence, there
exist two positive constants 𝑡

0
and 𝑐 such that |Φ(𝑡)| > 𝑐

for 𝑡 ≥ 𝑡
0
. Thus for 𝑡 ≥ 𝑡

0
(44) becomes

𝐿̇ (𝑡) ≤ −𝜂Γ𝑐 < 0. (45)

The integration of (45) leads to

𝐿 (𝑡) ≤ 𝐿 (𝑡
0
) − 𝜂Γ𝑐𝑡 (46)

implying that, asymptotically, 𝐿(𝑡) becomes negative. How-
ever, this is impossible and, therefore, the initial assumption
is false and Φ(𝑡) must converge to zero asymptotically. This
fact can also be proved in an alternative manner as follows.
Since 𝐿(𝑡) = 𝐿(Φ(𝑡), 𝑔(𝑡)) is a positive definite function with
negative semidefinite derivative, we have the fact that it is
bounded, it has finite limit, and 0 ≤ 𝐿(𝑡) ≤ 𝐿(0) < +∞ for
all 𝑡 ≥ 0. Therefore, 0 ≤ 𝐿(∞) ≤ 𝐿(0) < +∞. Thus, the
integration of (44) yields

𝐿 (∞) − 𝐿 (0) ≤ −𝜂Γ∫

∞

0

|Φ (𝑡)| 𝑑𝑡,

+ ∞ > 𝐿 (0) − 𝐿 (∞) ≥ 𝜂Γ∫

∞

0

|Φ (𝑡)| 𝑑𝑡 ≥ 0.

(47)

Since the improper integral of the right-hand side of (47) is
convergent, we must have lim

𝑡→∞
|Φ(𝑡)| = 0. Hence, we can

write

Φ (𝑡) = 𝑒 (𝑡) + 𝜆∫

𝑡

0

𝑒 (𝜏) 𝑑𝜏 = 𝜀 (𝑡) (48)

with 𝜀(𝑡) → 0 as 𝑡 → ∞. Furthermore, the latter implies in
the Laplace domain

lim
𝑡→∞

𝜀 (𝑡) = lim
𝑠→0

𝑠E (𝑠) = 0, (49)

where E(𝑠) denotes the Laplace transformof 𝜀(𝑡).Thus, if we
take the Laplace transform to (48) we obtain

𝐸 (𝑠) +
𝜆

𝑠
𝐸 (𝑠) = E (𝑠) (50)

since 𝑒(0) = 0 due to the reference signal definition through
(8)–(10). Therefore,

𝐸 (𝑠) =
𝑠

𝑠 + 𝜆
E (𝑠) . (51)

In this way,

lim
𝑡→∞

𝑒 (𝑡) = lim
𝑠→0

𝑠𝐸 (𝑠) = lim
𝑠→0

𝑠
2

𝑠 + 𝜆
E (𝑠)

= lim
𝑠→0

𝑠

𝑠 + 𝜆
× lim
𝑠→0

𝑠E (𝑠) = 0 × 0 = 0

(52)

since both limits exist and are finite. Consequently, the track-
ing error vanishes asymptotically. Thus, (𝑅(𝑡) − 𝑁ref(𝑡)) →

0, (𝑅(𝑡) − 𝑁(𝑡)) → 0 as 𝑡 → ∞ and all the population
becomes immune. As a consequence, the control objective
of removing the illness from the population is achieved
without precise a priori knowledge of the parameters of
the system or of their bounds, which is a rather common
situation.

In addition, this control law can also be applied tomodels
described by any incidence rate since it does not appear
explicitly in the control equations.

From a practical point of view, the discontinuous control
laws (19) and (35) may cause the undesirable effect of
chattering [30]. In order to avoid this phenomenon, the
signum function is changed by the saturation one [34] in (19)
and (35) in order to obtain a continuous control signal. Thus,
the general control law (35), for instance, would read

𝑉 (𝑡) = 𝑉eq (𝑡) −
𝑔 (𝑡)

𝑁 (𝑡)
Γ sat (Φ (𝑡)) , (53)

where sat(⋅) stands for the saturation function defined as

sat (Φ) =
{

{

{

sgn (Φ) if |Φ| ≥ Λ

Φ

Λ
if |Φ| < Λ

(54)

with Λ > 0 denoting the amplitude of the boundary layer of
the saturation [34]. Furthermore, the sliding gain adaptation
equation (36) must also be accordingly changed to

𝑑𝑔 (𝑡)

𝑑𝑡
= ΓΦ (𝑡) sat (Φ (𝑡)) , 𝑔 (0) = 0. (55)

These laws are usually implemented in practice and used
in the numerical examples of Section 4. From a theoretical
point of view, the change of the sign by the saturation
implies that the tracking error (8) cannot be proved to vanish
asymptotically but only to be ultimately bounded as the
following theorem states.

Theorem 10. Consider the SEIR epidemic model (1)–(4) with
control law (53)–(55). Thus, if Assumptions 1 and 8 hold for an
unknown but finite constant upper-bound 𝑏 and Γ ≥ 1, then
the tracking error 𝑒(𝑡) is asymptotically ultimately bounded.
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Proof. The proof is similar to that of Theorem 9. Thus,
consider the Lyapunov candidate function (37). Its time-
derivative is given by

𝐿̇ (𝑡) = ΦΦ̇ + 𝑔 ̇̂𝑔 (56)

= Φ (𝑡) [(𝜌 − 𝜌) 𝑅 (𝑡) + (𝛾 − 𝛾) 𝐼 (𝑡)

+ (𝛿 − 𝛿)𝑁 (𝑡) − 𝑔 (𝑡) Γ sat (Φ (𝑡))]

+ 𝑔 (𝑡) ΓΦ (𝑡) sat (Φ (𝑡))

(57)

≤Φ (𝑡) [𝑏 (𝑥, 𝑡) −𝑔 (𝑡) Γ sat (Φ)]

+ (𝑔 (𝑡) − 𝑔 (𝑡)) ΓΦ (𝑡) sat (Φ)

(58)

= 𝑏 (𝑥, 𝑡) Φ (𝑡) − 𝑔 (𝑡) ΓΦ (𝑡) sat (Φ)

− 𝑔ΓΦ (𝑡) sat (Φ) + 𝑔ΓΦ (𝑡) sat (Φ)

(59)

= 𝑏 (𝑥, 𝑡) Φ (𝑡) − 𝑔ΓΦ (𝑡) sat (Φ) (60)

≤ |𝑏 (𝑥, 𝑡)| Φ (𝑡) − 𝑏ΓΦ (𝑡) sat (Φ) − 𝜂ΓΦ (𝑡) sat (Φ) .

(61)

Now, if |Φ(𝑡)| ≥ Λ, then sat(Φ(𝑡)) = sgn(Φ(𝑡)) and (61)
read

𝐿̇ (𝑡) ≤ |𝑏 (𝑥, 𝑡)| Φ (𝑡) − 𝑏ΓΦ (𝑡) sat (Φ) − 𝜂ΓΦ (𝑡) sat (Φ)

(62)

= |𝑏 (𝑥, 𝑡)| Φ (𝑡) − 𝑏Γ |Φ (𝑡)| − 𝜂Γ |Φ (𝑡)| (63)

≤ − 𝜂Γ |Φ (𝑡)| < 0. (64)

Therefore, if |Φ(𝑡)| ≥ Λ , then 𝐿̇(𝑡) < 0. On the other
hand, if |Φ(𝑡)| < Λ, then (61) reads

𝐿̇ (𝑡) ≤ |𝑏 (𝑥, 𝑡)| Φ (𝑡) − 𝑏ΓΦ (𝑡)
Φ (𝑡)

Λ
− 𝜂ΓΦ (𝑡)

Φ (𝑡)

Λ
(65)

≤ 𝑏Λ − 𝑏ΓΦ (𝑡)
Φ (𝑡)

Λ
− 𝜂ΓΦ (𝑡)

Φ (𝑡)

Λ
(66)

= 𝑏Λ −

(𝑏 + 𝜂) Γ

Λ
|Φ (𝑡)|

2
. (67)

Equation (67) shows that, for small values of |Φ(𝑡)|, the
time-derivative of the Lyapunov function may be positive
implying that the Lyapunov function 𝐿(𝑡) increases.Thus, for
large values of |Φ(𝑡)|, 𝐿(𝑡) is decreasing but, for small values
of |Φ(𝑡)|, 𝐿(𝑡) may be increasing. Hence, we can only prove
that 𝐿(𝑡) is ultimately bounded. Furthermore, from (67), it
can be proved that the Lyapunov function decreases at least
until

|Φ (𝑡)| = 𝑑 = Λ√
𝑏

(𝑏 + 𝜂) Γ

< Λ (68)

since 𝜂 > 0 and Γ ≥ 1. Consequently,

lim sup
𝑡→∞

|Φ (𝑡)| ≤ Λ√
𝑏

(𝑏 + 𝜂) Γ

= 𝑜 (𝜂
−1
) , (69)

so that

|Φ (𝑡)| =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒 (𝑡) + 𝜆∫

𝑡

0

𝑒 (𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑑, (70)

−𝑑 ≤ 𝑒 (𝑡) + 𝜆∫

𝑡

0

𝑒 (𝜏) 𝑑𝜏 ≤ 𝑑. (71)

Therefore, we can firstly consider the upper-bound in (71):

𝑒 (𝑡) + 𝜆∫

𝑡

0

𝑒 (𝜏) 𝑑𝜏 ≤ 𝑑. (72)

Now, introduce a function 𝑓(𝑡) with 0 ≤ 𝑓(𝑡) ≤ 𝑑 such
that (71) holds with the equal sign:

𝑒 (𝑡) + 𝜆∫

𝑡

0

𝑒 (𝜏) 𝑑𝜏 = 𝑑 − 𝑓 (𝑡) . (73)

Equation (73) can be solved for 𝑒(𝑡) by using the Laplace
transform:

𝐸 (𝑠) +
𝜆

𝑠
𝐸 (𝑠) =

𝑑

𝑠
− 𝐹 (𝑠) , (74)

(𝑠 + 𝜆) 𝐸 (𝑠) = 𝑑 − 𝑠𝐹 (𝑠) , (75)

𝐸 (𝑠) =
𝑑

𝑠 + 𝜆
−

𝑠

𝑠 + 𝜆
𝐹 (𝑠) . (76)

The right-hand side of (76) can be rewritten as

𝐸 (𝑠) =
𝑑

𝑠 + 𝜆
−

𝑠

𝑠 + 𝜆
𝐹 (𝑠) =

𝑑

𝑠 + 𝜆
− 𝐹 (𝑠) +

𝜆

𝑠 + 𝜆
𝐹 (𝑠) .

(77)

Now, taking the inverse Laplace transform to (77), we get

𝑒 (𝑡) = L
−1

[𝐸 (𝑠)] = 𝑑 ⋅ 𝑒
−𝜆𝑡

− 𝑓 (𝑡) +L
−1

[
𝜆

𝑠 + 𝜆
𝐹 (𝑠)] .

(78)

The last term of the right-hand side of (78) is calculated as

L
−1

[
𝜆

𝑠 + 𝜆
𝐹 (𝑠)] = 𝜆∫

𝑡

0

𝑒
−𝜆(𝑡−𝜏)

𝑓 (𝜏) 𝑑 (𝜏) (79)

= 𝜆𝑒
−𝜆𝑡

∫

𝑡

0

𝑒
𝜆𝜏
𝑓 (𝜏) 𝑑𝜏 (80)

≤ 𝑑𝑒
−𝜆𝑡

(𝑒
𝜆𝑡

− 1) (81)

= 𝑑 − 𝑑𝑒
−𝜆𝑡

. (82)

Thus, by combining (78) and (82), we get

𝑒 (𝑡) ≤ 𝑑 ⋅ 𝑒
−𝜆𝑡

− 𝑓 (𝑡) + 𝑑 − 𝑑 ⋅ 𝑒
−𝜆𝑡

= 𝑑 − 𝑓 (𝑡) . (83)

On the other hand, if we take the lower-bound in (71)

−𝑑 ≤ 𝑒 (𝑡) + 𝜆∫

𝑡

0

𝑒 (𝜏) 𝑑𝜏 (84)
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we can follow the same steps as before to get

𝑒 (𝑡) ≥ 𝑓 (𝑡) − 𝑑. (85)

Therefore,

|𝑒 (𝑡)| ≤
󵄨󵄨󵄨󵄨𝑑 − 𝑓 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝑑 = Λ√
𝑏

(𝑏 + 𝜂) Γ

(86)

and 𝑒(𝑡) is ultimately bounded to a residual ball of
radius Λ√𝑏/(𝑏 + 𝜂)Γ. In this way, the theorem is proved.

Remark 11. Notice that the radius of the convergence ball
depends inversely on 𝜂. This is a positive constant used only
for theoretical developments which can be selected as being
arbitrary large. Thus, the radius of the convergence ball is
arbitrary small implying that, from a practical viewpoint,
the tracking error is also arbitrary small. Therefore, the
change of the sign by the saturation does not change the
tracking capabilities of the control law and it offers a good
performance in practice.

4. Simulation Examples

This section contains some simulation examples illustrating
the effectiveness of the proposed robust control laws. Since
the adaptive approach presented in Section 3.1 is the most
general frame, applicable to a wider range of situations, only
examples with the adaptation of the sliding gain will be
included. The actual parameters of the model are given by

𝜇
−1

= 255 days, 𝜎
−1

= 1.2 days,

𝜔
−1

= 12 days, 𝛾 = 𝜎,

]−1 = 115 days, 𝛽 = 1.66 days−1

(87)

while the nominal parameters are given by

𝜇
−1

= 215 days, 𝜎̂
−1

= 2 days,

𝜔̂
−1

= 20 days, 𝛾 = 𝜎̂,

]̂−1 = 150 days, 𝛽 = 1.36 days−1.

(88)

Thenominal parameters do not coincidewith the actual ones.
Furthermore, there is no assumption on the range of the
actual parameters; that is, there is no information on their
potential bounds. However, the proposed robust control law
will be able to achieve the control objective regardless of these
uncertainties. Also, the model’s parameters are taken from an
outbreak of influenza in a British boarding school in the late
1970s, where the 𝜇 and ] parameters have been modified in
such away that a short-term simulation is enough to show the
dynamic behaviour of the system.The standard incidence rate
is used for simulations. The parameters of the controller are

Γ = 1, Λ = 10, 𝜆 = 𝜖 =
1

2
days−1. (89)
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Figure 1: Dynamics of the system with the robust sliding-mode
controller.
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Figure 2: Applied vaccination control law.

With the proposed controller (53), the closed-loop dynamics
of the system is depicted in Figure 1.

As can be appreciated in Figure 1, the immune popula-
tion tends to be the total population while the susceptible,
infective, and infectious populations vanish. This objective
is attained through the vaccination function depicted in
Figure 2. As expected, there is no chattering due to the
utilization of the saturation function instead of the sign one.
Thus, the use of the saturation makes the control action
smooth and the relay effect is appreciated neither in the
output nor in the vaccination function. Furthermore, it can
also be appreciated that the tracking error is really small
as stated in Remark 11. Moreover, the vaccination function
satisfies 𝑉(𝑡) ∈ [0, 1] as its definition imposes.

Figure 3 shows the evolution of the time-varying switch-
ing gain 𝑔(𝑡). It increases until the sliding condition is met
and then stops. The reached value is able to make the system
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Figure 3: Evolution of the time-varying switching gain 𝑔(𝑡).
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Figure 4: Zoom on the evolution of the switching gain 𝑔(𝑡).
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Figure 5: Tracking properties of the closed-loop.
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Figure 6: Zoom on the tracking properties of the closed-loop
configuration.
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Figure 7: Tracking properties of the closed-loop for different values
of 𝜖.
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Figure 8: Vaccination for different values of 𝜖.
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Figure 9: Zoom on the vaccination for different values of 𝜖.

achieve the control objective. Figure 4 shows a zoom of its
evolution, especially during its increasing phase.

Finally, Figure 5 depicts the evolution of the immune
population, 𝑅(𝑡), the reference signal 𝑁ref(𝑡) , and the total
population 𝑁(𝑡). It can be appreciated that the immune pop-
ulation and the reference signal are practically superimposed
meaning that the control objective is actually achieved.There
is a slight difference between the immune population and
the reference signal during the transient response as Figure 6
shows.This difference appears because of the adaptation pro-
cess of the switching gain. However, this difference vanishes
with time as the switching gain increases its value.

Notice that the parameter 𝜖 of the reference signal con-
trols the rate at which the total population becomes immune.
The greater this value is, the faster the total population will
tend to become immune. The selection of this parameter
influences the control action (i.e., the vaccination effort) and
the closed-loop tracking shape. Since 𝜆 = 𝜖, a variation in
the convergence rate changes the control law through 𝜆. In
this way, a number of simulations have been conducted for
different values of 𝜖 (i.e., for 𝜆) to illustrate the behaviour
of the system for different convergence rates. Thus, Figure 7
shows the different convergence rates obtained for different
values of 𝜖. It can be appreciated that, as 𝜖 increases, the
time required to arrive at the total population is smaller. The
control law also changes depending on the convergence rate,
as Figure 8 shows. However, since all the reference signals
converge to the same value, 𝑁(𝑡), then all the control laws
converge to the same steady-state. The transient response
is, nonetheless, different. Figure 9 shows a zoom on the
different vaccination laws. As the convergence rate increases
(i.e., 𝜖 increases), the peak value of the vaccination is larger,
since a larger vaccination effort must be performed in order
to attain the desired convergence rate.

Therefore, the control objective is achieved regardless
of the mismatch in the parameter values and the incidence
function used. In this way, the proposed sliding-mode control
has been able to deal with this problem.

5. Conclusions

This paper applies the sliding-mode control to a SEIR epi-
demic model. Initially, the controller is designed assuming
certain knowledge on the upper-bounding of the uncertainty
signal. Then, this condition is removed while an adaptive
sliding control system is designed. The proposed control
law is able to achieve the control objective regardless of the
parametric uncertainties of the model and the lack of a priori
knowledge of the system. In this way, the infective and the
infectious populations vanish and the epidemic is eradicated.
Mathematical proofs of all the results stated in the paper are
developed. Some numerical simulation examples complete
the paper.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was partially supported by the Spanish Ministry of
Economy and Competitiveness through Grant no. DPI2012-
30651, the Basque Government (Gobierno Vasco) through
Grant no. IE378-10, and by the University of the Basque
Country through Grant no. UFI 11/07.

References

[1] M. J. Keeling and P. Rohani, Modeling Infectious Diseases in
Humans and Animals, Princeton University Press, Princeton,
NJ, USA, 2008.

[2] S. Zhang and Y. Zhou, “Dynamics and application of an
epidemiological model for hepatitis 𝐶,” Mathematical and
Computer Modelling, vol. 56, no. 1-2, pp. 36–42, 2012.

[3] D. O. Gerardi and L. H. A. Monteiro, “System identification
and prediction of dengue fever incidence in Rio de Janeiro,”
Mathematical Problems in Engineering, vol. 2011, Article ID
720304, 13 pages, 2011.

[4] F. A. C. C. Chalub and M. O. Souza, “The SIR epidemic
model from a PDE point of view,”Mathematical and Computer
Modelling, vol. 53, no. 7-8, pp. 1568–1574, 2011.

[5] X. Zhou and J. Cui, “Stability andHopf bifurcation analysis of an
eco-epidemiological model with delay,” Journal of the Franklin
Institute, vol. 347, no. 9, pp. 1654–1680, 2010.

[6] Q. Gan, R. Xu, Y. Li, and R. Hu, “Travelling waves in an
infectious disease model with a fixed latent period and a spatio-
temporal delay,”Mathematical and Computer Modelling, vol. 53,
no. 5-6, pp. 814–823, 2011.

[7] N. Yi, Q. Zhang, K. Mao, D. Yang, and Q. Li, “Analysis and con-
trol of an SEIR epidemic system with nonlinear transmission
rate,” Mathematical and Computer Modelling, vol. 50, no. 9-10,
pp. 1498–1513, 2009.

[8] X. Zhou and J. Cui, “Analysis of stability and bifurcation for an
SEIR epidemic model with saturated recovery rate,” Communi-
cations in Nonlinear Science and Numerical Simulation, vol. 16,
no. 11, pp. 4438–4450, 2011.



Mathematical Problems in Engineering 11

[9] M. de la Sen, R. P. Agarwal, A. Ibeas, and S. Alonso-Quesada,
“On the existence of equilibrium points, boundedness, oscillat-
ing behavior and positivity of a SVEIRS epidemic model under
constant and impulsive vaccination,” Advances in Difference
Equations, vol. 2011, Article ID 748608, 32 pages, 2011.

[10] B. Mukhopadhyay and R. Bhattacharyya, “Existence of epi-
demic waves in a disease transmission model with two-habitat
population,” International Journal of Systems Science, vol. 38, no.
9, pp. 699–707, 2007.

[11] J. Li, Y. Xiao, F. Zhang, and Y. Yang, “An algebraic approach
to proving the global stability of a class of epidemic models,”
Nonlinear Analysis: Real World Applications, vol. 13, no. 5, pp.
2006–2016, 2012.

[12] S. Bowong and J. J. Tewa, “Global analysis of a dynamical
model for transmission of tuberculosis with a general contact
rate,” Communications in Nonlinear Science and Numerical
Simulation, vol. 15, no. 11, pp. 3621–3631, 2010.

[13] H. Chen and J. Sun, “Global stability of delay multigroup
epidemic models with group mixing and nonlinear incidence
rates,”AppliedMathematics and Computation, vol. 218, no. 8, pp.
4391–4400, 2011.

[14] J. P. Tian and J. Wang, “Global stability for cholera epidemic
models,” Mathematical Biosciences, vol. 232, no. 1, pp. 31–41,
2011.

[15] H. Shu, D. Fan, and J. Wei, “Global stability of multi-group
SEIR epidemic models with distributed delays and nonlinear
transmission,” Nonlinear Analysis: Real World Applications, vol.
13, no. 4, pp. 1581–1592, 2012.

[16] S.-Z. Huang, “A new SEIR epidemic model with applications
to the theory of eradication and control of diseases, and to the
calculation of 𝑅

0
,” Mathematical Biosciences, vol. 215, no. 1, pp.

84–104, 2008.
[17] M. de la Sen, A. Ibeas, and S. Alonso-Quesada, “On vaccination

controls for the SEIR epidemic model,” Communications in
Nonlinear Science and Numerical Simulation, vol. 17, no. 6, pp.
2637–2658, 2012.

[18] M. de la Sen, A. Ibeas, and S. Alonso-Quesada, “Feedback
linearization-based vaccination control strategies for true-mass
action type SEIR epidemic models,” Nonlinear Analysis: Mod-
elling and Control, vol. 16, no. 3, pp. 283–314, 2011.

[19] S. Alonso-Quesada, M. de la Sen, R. P. Agarwal, and A.
Ibeas, “Anobserver-based vaccination control law for an SEIR
epidemic modelbased on feedback linearization techniques for
nonlinear systems,” Advances in Difference Equations, vol. 2012,
p. 161, 2012.

[20] S. Gao, L. Chen, and Z. Teng, “Pulse vaccination of an SEIR
epidemic model with time delay,” Nonlinear Analysis: Real
World Applications, vol. 9, no. 2, pp. 599–607, 2008.

[21] S. Gao, Z. Teng, and D. Xie, “The effects of pulse vaccination
on SEIRmodel with two time delays,” Applied Mathematics and
Computation, vol. 201, no. 1-2, pp. 282–292, 2008.

[22] C.-Y. Chen and G. T.-C. Chiu, “H∞ robust controller design
of media advance systems with time domain specifications,”
International Journal of Innovative Computing, Information and
Control, vol. 4, no. 4, pp. 813–828, 2008.

[23] S. Tong, W. Wang, and L. Qu, “Decentralized robust control
for uncertain T-S fuzzy large-scale systems with time-delay,”
International Journal of Innovative Computing, Information and
Control, vol. 3, no. 3, pp. 657–672, 2007.

[24] M. Wang, X. Liu, and P. Shi, “Adaptive neural control of pure-
feedback nonlinear time-delay systems via dynamic surface

technique,” IEEE Transactions on Systems,Man, and Cybernetics
B, vol. 41, no. 6, pp. 1681–1692, 2011.

[25] A. Ibeas and M. de la Sen, “Robust sliding control of robotic
manipulators based on a heuristic modification of the sliding
gain,” Journal of Intelligent and Robotic Systems, vol. 48, no. 4,
pp. 485–511, 2007.

[26] C. Yang, Z. Yang, X. Huang, S. Li, and Q. Zhang, “Modeling
and robust trajectory tracking control for a novel six-rotor
unmanned aerial vehicle,” Mathematical Problems in Engineer-
ing, vol. 2013, Article ID 673525, 13 pages, 2013.

[27] Z. Xiao-Yu, Z. Yu-Xin, X. De-Xin, and H. Kun-Peng, “Slid-
ing mode control for mass moment aerospace vehicles using
dynamic inversion approach,” Mathematical Problems in Engi-
neering, vol. 2013, Article ID 284869, 11 pages, 2013.

[28] Y.-C. Chung, B.-J. Wen, and Y.-C. Lin, “Optimal fuzzy sliding-
mode control for bio-microfluidic manipulation,” Control Engi-
neering Practice, vol. 15, no. 9, pp. 1093–1105, 2007.

[29] M. K. Khan and S. K. Spurgeon, “Robust MIMO water level
control in interconnected twin-tanks using second order sliding
mode control,” Control Engineering Practice, vol. 14, no. 4, pp.
375–386, 2006.

[30] H. Lee and V. I. Utkin, “Chattering suppression methods in
sliding mode control systems,” Annual Reviews in Control, vol.
31, no. 2, pp. 179–188, 2007.

[31] O. Barambones and P. Alkorta, “A robust vector control for
induction motor drives with an adaptive sliding-mode control
law,” Journal of the Franklin Institute, vol. 348, no. 2, pp. 300–314,
2011.

[32] O. Barambones, J. M. Gonzalez de Durana, and M. de la
Sen, “Robust speed control for a variable speed wind turbine,”
International Journal of Innovative Computing, Information and
Control, vol. 8, no. 11, pp. 7627–7640, 2012.

[33] A. Ibeas, M. de la Sen, and S. Alonso-Quesada, “Sliding mode
robust control of SEIR epidemic models,” in Proceedings of
the 21st Iranian Conference on Electrical Engineering, Mashhad,
Iran, May 2013.

[34] J. J. Slotine, Applied Nonlinear Control, Prentice, 1994.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


