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Solving reinforcement learning problems in continuous space with function approximation is currently a research hotspot of
machine learning. When dealing with the continuous space problems, the classic Q-iteration algorithms based on lookup table
or function approximation converge slowly and are difficult to derive a continuous policy. To overcome the above weaknesses, we
propose an algorithm named DFR-Sarsa(1) based on double-layer fuzzy reasoning and prove its convergence. In this algorithm,
the first reasoning layer uses fuzzy sets of state to compute continuous actions; the second reasoning layer uses fuzzy sets of action
to compute the components of Q-value. Then, these two fuzzy layers are combined to compute the Q-value function of continuous
action space. Besides, this algorithm utilizes the membership degrees of activation rules in the two fuzzy reasoning layers to update
the eligibility traces. Applying DFR-Sarsa(A) to the Mountain Car and Cart-pole Balancing problems, experimental results show
that the algorithm not only can be used to get a continuous action policy, but also has a better convergence performance.

1. Introduction

Reinforcement learning is a kind of machine learning meth-
ods that gets the maximum cumulative rewards by interacting
with the environment [1, 2]. If a reinforcement learning prob-
lem can be modeled as a Markov decision process (MDP),
methods such as dynamic programming (DP), Monte Carlo
(MC), and temporal difference (DP) can be used to get an
optimal policy.

Classic reinforcement learning methods are generally
used for dealing with discrete state and action space prob-
lems, where each of the state values or state action values
is stored in a lookup table. This kind of methods can
effectively solve simple tasks, but not for large, continuous
space problems. At present, the most common approach to
solve this problem is using function approximation methods
to approximate the state value or action value function. The
approximate function can generalize the learned experience
from a state space subset to the entire state space. Besides, an
agent can choose the best action sequence through the func-
tion approximation [3, 4]. A variety of function approxima-
tion methods are used to reinforcement learning problems at

present. Sutton et al. proposed a gradient TD (GTD) learning
algorithm [5], which combined TD algorithms with linear
function approximation, and also introduced a new objec-
tive function related to Bellman errors. Sherstov and Stone
proposed a linear function approximation algorithm based
on online adaptive tile coding, in which the experimental
results verified its effectiveness [6]. Heinen and Engel used
incremental probabilistic neural network to approximate
value function in reinforcement learning, which can be used
to solve continuous state space problems well [7].
Reinforcement algorithms with the function approxima-
tion methods mentioned above usually have slow conver-
gence and generally can only be used for getting discrete
action policies [5-9]. By introducing prior knowledge, rein-
forcement learning algorithms based on fuzzy inference sys-
tems (FIS) not only can effectively accelerate the convergence
rate, but also may get continuous action policies [10-12].
Horiuchi et al. put forward fuzzy interpolation-based Q-
learning, which can solve the continuous space problems [13].
Glorennec and Jouffe combined FIS and Q-learning, using
prior knowledge to make the global approximator, which
can effectively speed up the convergence rate. However, the



algorithm cannot be used to get a continuous action policy
[14]. Fuzzy Sarsa proposed by Tokarchuk et al. can effectively
reduce the scale of state space and accelerate the convergence
rate, but it easily causes “curse of dimensionality” when
applied to multidimensional state-space problems [15]. Type-
2 fuzzy Q-learning proposed by Hsu and Juang has strong
robustness to noise, but its time complexity is relatively high,
and meanwhile, it cannot guarantee convergence [12].

Though the classic Q-iteration algorithms based on only
one fuzzy inference system can be used for solving continuous
action space problems, there still exist reasons for the slow
convergence: for each iteration step in the learning process,
there might exist a state-action pair that corresponds to
different Q-values due to the structure of FIS. If the next
iteration step needs to use the Q-value of the mentioned state-
action pair to update the value function, the algorithm will
simply select a Q-value randomly, since there are no criteria
on how to choose the best one from different Q-values, which
will influence the learning speed. Because this situation may
happen many times in the learning process, it will greatly slow
down the convergence rate.

In allusion to the problem that classic Q-iteration algo-
rithms based on the lookup table and fuzzy inference system
converge slowly and cannot obtain continuous action policies
as well, DFR-Sarsa(A), which means Sarsa(A) based on
double-layer fuzzy reasoning, is proposed in this paper, and
the convergence is proven theoretically. The algorithm has
two-layer fuzzy reasoning. Firstly, it puts states as input of
the first fuzzy reasoning layer and gets continuous actions as
output. Secondly, the second fuzzy reasoning layer uses the
obtained actions from the first layer as input and gets Q-value
component of each activation rule of the first layer. Finally,
through the combination of two-layer fuzzy reasoning, Q-
values of the input states are obtained. What is more, a new
eligibility trace based on gradient descent is defined, which
is dependent on membership degrees of activation rule in
two-layer fuzzy reasoning. Applying DFR-Sarsa(A) and other
algorithms to Mountain Car and Cart-pole Balancing prob-
lems, the results show that DFR-Sarsa(A) not only can obtain
a continuous action policy, but also has a better convergence
performance.

2. Backgrounds

2.1. Markov Decision Process. In reinforcement learning
framework, the process interacting with the environment can
be modeled as an MDP [16], and the MDP can be described
as a quadruple M = (X, U, p, f), where

(1) X is the state set and x, € X is the state at time ¢;

(2) U is the action set and u, € U is the action that the
agent takes at time ¢;

(3) p: X xU — R"is the reward function, that means,
after the agent takes action u, at time ¢, the current
state transfers from x, to x,,, and the agent receives
an immediate reward r(x;, u,, x,,,) at the same time.
r, represents a random reward generated from a
distribution with mean r(x,, 4, x,,1);
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(4) f: XxUxX — [0, 1] is the state transition function,
where f(x,u,x") represents the probability of reach-
ing x' after taking action u in state x.

The policy h(x,u) is a mapping from state space X to
action space U, h : X — U, which represents the probability
that the agent selects action u in state x. h(x, u) is used to solve
the state value function (V-function) or action value function
(Q-function). V-function satisfies (1)

Vx € X:

vh (x) = Zh(x,u) <p(x,u) +y Z f(x,u,x')Vh (x’)).

ueU x'eX
€]

And Q-function satisfies (2)

Vx € X:Qh (x,u) =p(x,u)+y Z f(x,u,x')Vh (x').
x'eX
(2)

The objective of reinforcement learning is to get the opti-
mal policy h*. It satisfies for all x € X : v (x) > V*(x).
Under the optimal policy h*, the optimal V-function and
optimal Q-function satisfy (3) and (4), respectively:

Vx € X:

V* (x) = max (p(x, u) + yxgxf (x, u,x') I'a (x')) ,

3)
VxeX,ueh(x):

Q" (x,u)=p(x,u)+y Z f(x, u, x')maxQ* (x',u').

ex u'eU
(4)

If f and p are known, DP is a good solution for getting
optimal action policy. However if f and p are unknown, TD
algorithms such as Q-learning or Sarsa can be the choice.
Sarsa is an on-policy algorithm, and when the eligibility
trace mechanism is introduced, it becomes a more efficient
algorithm, which can effectively deal with temporal credit
assignment. Besides, Sarsa(A) can be combined with function
approximation to solve continuous state space problems.

Definition 1 is a constraint on bounded MDP (mainly
about state-space, action-space, reward, and value function).
Attention should be given that all algorithms in this paper
meet the definition.

Definition 1 (bounded MDP). X and U are known as finite
sets; let Z represent the state-action set; that is, Z : X x U,
and then Z is also a finite set. Reward function p satisfies 0 <
p(x,u) < C. The bound factor of MDP is 3 = 1/(1 —7y), where
y is a discount factor. For all x € X and for all (x,u) € Z,
0<V(x) < BCand0 < Q(x,u) < SC hold.
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2.2. Fuzzy Inference System. FIS is a system that can handle
fuzzy information. Typically, it mainly consists of a set of
fuzzy rules whose design and interaction are crucial to the
FIS’s performance.

There are many types of fuzzy inference systems at present
[17] in which a simple type of FIS named TSK-FIS is described
as follows:

Rule R,: if x; is ] AND---AND x,, is y, then y = g,(x),
€)

where the first part is called antecedent and the second part
is called consequent. R, means rth rule in the rule base. x =
(%1, X5, ..., xy) is an N-dimensional input variable. y! is the
fuzzy set in the rth fuzzy rule which corresponds to the ith
dimension of input variable. A membership function g, (x;)
is usually used to describe it. y = g,(x) is a polynomial
function with an input variable x. If the input x is a vector,
the output y is also a vector. When g,(x) is a constant, FIS is
called zero-order FIS.

When the FIS has an exact input value x = (xy,x,,...,
xy), we can calculate the firing strength ¢, (x) of the rth rule
(for T-norm product):

o8 (x) = Hy,, (xl) "Wy, (xZ) """ By n (xN) » r=L,...Npg.
(6)

¢, (x) is used to calculate the output of FIS: set firing strength
¢, (x) as weight, multiply their corresponding consequent and
sum up; then we can obtain the final output Y (x) as follows:

Y (¢ Dy +d @)y, + + y, XY, )

Y () =
B S (61 () + 2 (9 + - + by, (%))

7)

TSK-FIS can be used for function approximation which
approximates the objective function by updating the con-
sequent of fuzzy rules. In general, the approximation error
is measured by mean square error (MSE). When FIS gets
an optimal approximation performance, the vector 8, which
consists of all rules consequents, satisfies (8)

al -~ 2
0= arg;ninZ(Yi ®-Y®), (8)
i=1

where Y;(x) is the objective function and Y;(x) is its approxi-
mate function.

3. DFR-Sarsa(\)

3.1. The Update of Q-Value. Under the framework of MDP,
two-layer fuzzy inference structures are constructed to
approximate Q-function. Figure 1shows the framework using
two-layer fuzzy reasoning to approximate Q-function, where
the inputs of FISI are states; the outputs are continuous
actions obtained by FISI through fuzzy reasoning; the inputs
of FIS2 are continuous actions obtained from FISI; the out-
puts are the components of Q-value of the continuous

Fuzzy rule
base 2

;. \|Continuous| : Fuzzy
inference 2

FIGURE I: Framework of approximating the Q-value functions by
using double-layer fuzzy reasoning.

actions. Then, the two-layer FISs are combined to get the
approximating Q-function of continuous action C(x).

The main structure of the two-layer FIS is described as
follows.

(1) The rule of FISI is given as follows:

Rule R,: if x; is y; AND---AND x, is y/,
then y = u,, with g, =0,

or y = ur,Z Wlth qr’z = er,z (9)

ory= ur,M with qr,M = er,M’

where x = (x1,X,,...,xy) is the state and u, ; is the jth
discrete action in the rth fuzzy rule. The action space is
divided into M discrete actions. g, ; is a component of Q-
value corresponding to the jth discrete action in the rth fuzzy
rule. When the state is X, the firing strength of the rth rule is

@ () =ty (o01) gy, () ooy () (10)

If ¢,(x) > 0, we call the rth rule “the activation rule”

In the activation rule R,, we select an action from M
discrete actions by e-greedy action selection policy according
to the value g, ;. The selected action is called activation action,
denoted by #,. Therefore, by multiplying activation actions
selected from FISI to its firing strength ¢,(x) and summing
them up, we get the continuous action C(x) as follows:

Ng ~
C(x) = 21 ¢ () (11)

YN (x)

We call C(x) a continuous action because the change of
C(x) is smooth with state x, which does not mean that any
action in action space can be selected in state x. To simplify
(11), regularize the firing strength ¢, (x) as follows:

@, (x)
Ny

y(X) =y ——
¢ g zr:lq)r(x)

; (12)



so (11) can be written as

N
C(x) =) ¢, x),. (13)
r=1

(2) The rule of FIS2 is given as follows:
R, :ifuisv,, theng,, =0,,

R,,:if uis v,, then g,, = 6, ,
(14)

R, ppif uis v,y then g, 5 = 6, 5.

The construction of 1~Zr, - depends on FISI. The core of the
fuzzy set v, ; is the jth action of the rth rule in FIS], and its
membership function is described as Uv,-j(“)§ the value g, ;

from the consequent part of the rule equ’als the value g, ; in
FISI.

Set the continuous action C(x) obtained from FISI as the
input of FIS2; it can activate Ny rules of FIS2. Through fuzzy
reasoning of FIS2, we can get the Q-value component of the
rth rule in FISI as follows:

a(cu)zﬁmgam@j
L (x,C(x)) = .
Yo, (CX)

(15)

In the same way of getting (12), regularize the member-
ship function avrj(C (x)) in (15); we get

0, (C®)

, (CX) = 35— 16
U . X zﬁl va. (C (X)) ( )
then (15) can be written as
_ M
Q (xCX) =Y u, (CX)6,; (17)
=1

From (17), we can get 6, (%, C(x)), the Q-value component
obtained by the activation rule R, of FISL. So when taking
continuous action C(x), the Q-value of all activation rules in
FISI is given as follows:

N
Q(x.C(x) =) ¢,x)Q, (xC(x)
r=1

(18)
Ny M

=Y Y6 @u, (Cx)6,;

r=1j=1

From (18) we can see that Q-value depends on fuzzy sets
of the two-layer FIS and their shared consequent variables
0, ;- Since fuzzy sets are set according to prior knowledge
in advance, they are no longer changed in the algorithm. In
order to get convergent Q-value, the FISs require updating
0, ; until convergence.
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In order to minimize the approximation error of FIS, that
is, parameter vector @ meets (8), the algorithm uses gradient
descent method to update the parameter vector 6 as follows:

1 2
0, =6,- E‘Xvet [rear + Qs (Kpsr> tpsr) = Qp (X 14)]

=0, + afr + YQ (X ) — Qi ut)]VGtQt(xt’ Uy),
(19)

where the bracket part in (19) is the TD error. Set § = r,,, +
YQu(Xpy1> Upry) — Qu(x4, u,); combining the backward TD(A)
algorithm [1], we get

0,,, =0, + ade,, (20)

where « is a step-size parameter and e, is the eligibility trace
vector at time ¢, which corresponds to parameter vector 0,. It
is updated as follows:

e (r,7)

o {yAet—l (r,j) + Vo, Q; (xp1,), if Vo, Q; (1) # G,

yre,_, (7, 7)., else.
(21

e, of (21) isakind of accumulating trace [1], where y is the dis-
count factor and A is the decay factor. Vy Q,(x,, u,) represents
the gradient vector obtained by the partial derivative of Q-
function on each dimension of parameter vector at time # [1].
According to (18), we get the gradient value of each dimension
in 0, at time t as follows:

Np M
Vo Q (% 10) =V Y > ¢, O, ()65 = b ), (W),
i=1 j=1
where r =1,...,Np, j=1,...,M;
(22)
then (21) can be further expressed as
e (r,])
YAe .y (r ) + ¢, () p, (W), if ¢, (x)#0 and
— ,"ivr’j (u) #0)
yre,_; (7. 7). else.
(23)

3.2. The Learning Process of DFR-Sarsa()A). In this section,
DFR-Sarsa(A) is proposed based on the algorithm Sarsa in
literature [1] and the content of MDP in Section 2.1. DFR-
Sarsa(A) not only can solve reinforcement learning problems
with continuous state and discrete action space, but also can
solve problems with continuous state and continuous action
space. Algorithm 1 describes the general process of DFR-
Sarsa(A).
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M)
2
©)
4)
()
(6)

Initialize parameter vector 8 = 0, eligibility trace vector e = 0, discount factor y, step-size parameter
Repeat(for every episode):

x « initial state

According to (10), compute ¢, (x), 7 = 1,..., Ny

According to e-greedy policy, select activation action #,, ¥ = 1,..., Ny

According to (13), select action u when state is x

(8) According to (17) and (18), compute Q,
(9) Repeat(for each step of episode)

17) According to (17) and (18), compute Q,s
(18) 8 —8+yQy

19) 0 — 0+ ade

(20) ue—u

(21) Until x' is the terminal state

(7)  According to (16), compute P‘v,j(”)> r=1,...,Ngj=1...,.M

(10) Update eligibility trace: e(r, j) « yAe(r, j) + qﬁr(x)‘uvnj(u), r=1,...,Ngj=1...,M

11) Take action u, receive next state x' and reward r

(12) §—r-Q,

(13) According to e-greedy policy, select activation action #,, ¥ = 1,..., Ny
(14) According to (13), select action u' when state is x’

(15) According to (16), compute Hy,; (u'), r=1,..,Npj=1...,.M
(16) According to (10), compute ¢, (x'), 7 = 1,..., Ny

(22) Until preset episode number or other terminal condition meets

ALGORITHM 1: DFR-Sarsa(A).

3.3. Convergence Analysis. In the literature [18, 19], the con-
vergence of on-policy TD(A) using linear function approx-
imation is analyzed in detail. When this kind of algorithm
meets some assumptions and lemmas, it converges with
probability 1. Since DFR-Sarsa(A) is exactly such an on-policy
TD(A) algorithm, it can be proved to be convergent when it
satisfies some assumptions and lemmas in literature [18]. And
this paper will not take too much details for its convergence
proof.

Assumption 2. The state transition function and reward
function of MDP follow stable distributions.

Lemma 3. The Markov chain that DFR-Sarsa()) depends on
is irreducible and aperiodic, and the reward and value function
are bounded.

Proof. Firstly, we prove its irreducibility. According to the
property of Markov process, if any two states of a Markov
process can be transferred from each other, it is irreducible
[20]. DFR-Sarsa(A) is used for solving reinforcement learning
problems that satisfy MDP framework, and the MDP meets
Definition 1. Thus for any state x in the MDP, there must
exist an f that meets f(x,u, x') = 0, which indicates that
state x can be visited infinitely. Therefore, each state can be
transferred to any other state. So the Markov chain of DFR-
Sarsa(A) is irreducible.

Secondly, we prove that it is aperiodic. For the irreducible
Markov chain, if one of the states in Markov chain is proved
aperiodic, the entire Markov chain can be proved aperiodic.
In addition, if a state of the Markov Chain has the property
of autoregression, the state can be proven aperiodic [20]. For
state x of the MDP, there must exist a state transition

satisfying f(x,u,x) > 0, which indicates that state x is
autoregressive. From the above analysis, we can conclude that
the MDP is aperiodic. Therefore, the Markov chain that DFR-
Sarsa(A) depends on is aperiodic.

Finally, we prove that its reward and value function
are bounded. Literature [1] shows that value function is a
discounted accumulating reward function, which satisfies the
equation Q(x,u) = Z?:o yip(x, u), y € (0,1). By Definition 1,
we know that the reward function p is bounded, and it
satisfies 0 < p(x,u) < C, where C is a constant. Hence

(24)

By Inequation (24), we can conclude that value function Q(x,
u) is bounded.
In summary, Lemma 3 is proved. O

Condition 1. For each membership function i, there exists a
unique state x; that y;(x;) > w;(x), for all x # x;, while the
other membership functions in state x; are 0; that is, y; (x;) =
0, for all i’ 1.

Lemma 4. The basis functions of DFR-Sarsa()) are bounded,
and the basis function vector is linearly independent.

Proof. Firstly, we prove the basis functions are bounded.
From ¢,(x) € [0, 1] and [ (C(x)) € [0,1], we get

(25)

¢ 0p, €| =<1,



where || - ||, represents infinite norm. Since the basis func-
tion of DFR-Sarsa(A) is known as ¢,(x)‘u,,hj (C(x)) from (25),
we get that the basis functions of DFR-Sarsa(A) are bounded.

Secondly, we prove the basis function vector is linearly
independent. In order to make the basis function vector
linearly independent, let the basis functions meet Condition 1
[21], where the function form is shown in Figure 4. From
literature [21] we know that, when Condition 1 is met, the
basis function vector is linearly independent.

The requirement in Condition 1 can be relaxed appropri-
ately by making the membership degree of y; (x;) at state x;
a small value, for example, a Gaussian membership function
with smaller standard deviation. Applying the membership
function to DFR-Sarsa(\), experimental results show that
DFR-Sarsa(A) is convergent, though the convergence still
cannot be given theoretically.

In summary, Lemma 4 is proved. O

Lemma 5. Step-size parameter o of DFR-Sarsa(A) satisfies
(26)

(o) oo
Zoc, = 00, Zocf < 00. (26)
=0 =0

Proof. Set step-size parameter of DFR-Sarsa(A) o = 1/(¢ +1),
where ¢ is the time step. By Newton power series expansion,
we get

Zat=2<1+l+...+l>=ln(t+1)+r, (27)
t=0 t=0 2 t

where r = 0.577218 is Euler’s constant. Because In ¢ is an

. . . . . (o)

increasing function, it satisfies tho o = 00 whent — ©o.
Cosider

(69

i 1\? 1\? 26 -1 1

Sar= 3 (e (L) e (1)) e 2 ean k

=0 =0 2 t t t
(28)

the inequality part in Inequation (28) can be proven by induc-
tion; thus Y5° & < 00 is met when t — co.

By (27) and Inequation (28), we get that the step-size
parameter of DFR-Sarsa(A) satisfies (26); thus we proved
Lemma 5. O

Theorem 6. Under the condition of Assumption 2, if DFR-
Sarsa(A) satisfies Lemma 3 to Lemma 5, the algorithm con-
verges with probability 1.

Proof. Literature [18] gives the related conclusion that, under
the condition of Assumption 2, when on-policy TD(A) algo-
rithms with linear function approximation meet certain
conditions (Lemma 3 to Lemma 5), the algorithms converge
with probability 1. DFR-Sarsa(A) is just such an algorithm and
it meets Assumption 2 and Lemma 3 to Lemma 5. So we get
that DFR-Sarsa(A) converges with probability 1. O

4. Experiments

In order to verify DFR-Sarsa(A)’s performance about the
convergence rate, iteration steps after convergence, and the
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FIGURE 2: Mountain Car.

— — —

FIGURE 3: Cart-pole Balancing.

effectiveness of continuous action policy, we take two prob-
lems as experimental benchmarks: Mountain Car and Cart-
pole Balancing. These two problems are classic episodic tasks
with continuous state and action spaces in reinforcement
learning, which are shown in Figures 2 and 3, respectively.

4.1. Mountain Car. Mountain Car is a representative problem
with continuous state space, as shown in Figure 2. Suppose
the underpowered car cannot accelerate up directly to reach
the top of the right side. So, it has to move around more than
once to get there. Modeling the task as an MDP, in which the
state represented a two-dimensional variable: location and
speed; that is, x = [y, v]. The action is the force that drives
the car to move horizontally, which is bounded in [-1,1]. In
this problem, the system dynamics are described as follows:

V441 = bound [v, + 0.001 u, + g cos (3y,)],

(29)
Vi1 = bound [y, + 1],

where bound(v,) € [-0.07,+0.07], bound(y,) € [-1.5,+0.5],
and g = 0.0025 is a constant related to gravity. In addition,
time step is 0.1 s and the reward function is as follows:

y < 0.5,

y>05 (30)

Equation (30) is a punishment reward function, where r,
means the reward received at time .

In the simulation, the number of episodes is set to 1000.
The maximum time step in each episode is also set to 1000.
The initial state of the car is y = —0.5, u = 0. When the
car arrives to the destination (y = 0.5) or the time steps
exceed 1000, we finish this episode and begin a new one. The
experiment will end after 1000 episodes.

In order to show the effectiveness of DFR-Sarsa(A), we
compare the algorithm with Fuzzy Sarsa proposed by
Tokarchuk et al. [15], GD-Sarsa(A) proposed by Sutton et al.
[3], and Fuzzy Q(A) proposed by Zajdel [22]. Additionally,
the effect of eligibility trace on the convergence performance
is also tested.
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0.6

0.4

Membership (deg)
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1 1.5 2 2.5 3 3.5 4
1 dimension of state

FIGURE 4: Triangular membership functions (except the domains of
states are different, the form of membership functions of position,
and velocity is described in Figure 4. Besides, the form of member-
ship functions in Section 4.2 is also the same).

At present, there is no proper way to select parameters
that make the four algorithms have their best performance,
respectively. In order to make the comparison more reason-
able, the parameters that exist in all of the four algorithms
will be set at the same value, while the parameters that do not
exist in all of the four algorithms will be set at the value from
where it firstly comes.

We first set the parameters of DFR-Sarsa(A): 20 triangular
fuzzy sets whose cores are equidistant are used to partition
each state variable, which results in 400 fuzzy rules. Similarly,
use eight triangular fuzzy sets whose cores are equidistant to
partition the continuous action space, where the number of
fuzzy rules is 8. Set the other parameters € = 0.001, « = 0.9,
A = 0.9, and y = 1.0. The form of fuzzy partition in Fuzzy
Sarsa is the same as in DFR-Sarsa(A). Other parameters are
set to ¢ = 0.001, « = 0.9, and y = 0.9. GD-Sarsa(A) uses
10 tilings of 9 x 9 to divide state space, where the parameters
are set as the best experimental parameters given in literature
[1]: € = 0.001, « = 0.14, A = 0.3, and y = 1.0. The form
of fuzzy partition in Fuzzy Q(A) Sarsa is also the same as in
DFR-Sarsa(A). Other parameters are set in accordance with
literature [22] to € = 0.005, « = 0.1, A = 0.1, and y = 0.995.

DFR-Sarsa(A), Fuzzy Sarsa, GD-Sarsa(A), and Fuzzy Q(A)
are applied to Mountain Car. Figure5 shows the aver-
age result in 30 independent simulation experiments. The
x-coordinate indicates the number of episodes, and y-
coordinate represents the average time steps the car drives
from the initial state to the target. As can be seen from
Figure 5, the convergence performance of DFR-Sarsa(A) is
better than those of the other three algorithms.

The detailed performance of the four algorithms is shown
in Table 1 (the benchmark time is the average time of a single
iteration of DFR-Sarsa(A)).

In order to test the effectiveness of the proposed eligibility
trace, DFR-Sarsa(A) with eligibility trace and DFR-Sarsa
without eligibility trace are both applied in Mountain Car.
Figure 6 shows the convergence performance of these two
algorithms. It can be seen that these two algorithms converge
in the same average time steps, but the convergence speed of
DFR-Sarsa(A) is better than that of DFR-Sarsa.
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TABLE 1: Performance comparison of the four algorithms in Moun-
tain Car problem.

. DFR-Sarsa Fuzzy GD-Sarsa  Fuzzy
Algorithm o Q) 0 Sarsa
Average episodes 86 98 118 103
Average steps 79 101 134 112
Average time within 100% 80% 30% 65%

an iterative step

4.2. Cart-Pole Balancing. Figure 3 shows a Cart-pole Balanc-
ing system, in which the cart can move left or right on the
horizontal plane. A pole is hinged to the cart, which can
rotate freely within a certain angle. The task is to move the
cart horizontally to keep the pole standing in a certain range
[-7r/2, /2]. Similarly, modeling the task as an MDD, the state
is a two-dimensional variable, which is represented by the
vertical angle of pole 0, and the angular velocity of the pole
0; that is, x = [6,0]. These two state variables satisty 0 €
[-7/2,7/2] (rad) and @ € [-16m, 167] (rad/s). The action
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FIGURE 7: Comparisons on convergent efficiency of the two algo-
rithms.

is the force exerted on the cart, which ranges from -50 N to
50 N. In addition, the force is added by a noise force which is
uniformly distributed in [-10 N, 10 N]. The system dynamics
are described as

. gsin (0) - aml(9)2 sin (20) /2 — acos (O) u
B 41/3 — aml cos? (6)

(31)

>

where g = 9.8 m/s” is acceleration of gravity, m = 2.0kg is
the mass of pole, M = 8.0 kg is the mass of cart, ] = 0.5m is
the length of pole, and constant & = 1/(m + M). The change
of reward depends on the change of state. At each time step
(0.1s), when the angle of the pole with vertical direction is no
more than 71/2, reward 0 is received. While the angle is more
than 77/2, the reward is —1, and the episode ends.

The parameter setting in this example is similar to the
settings in Section 3.1, so we only give the difference here:
12 equidistant triangular fuzzy sets are used to partition the
continuous action space, which leads to 144 fuzzy rules.

DFR-Sarsa(A) and GD-Sarsa(A) are executed on 30 inde-
pendent simulations on Cart-pole Balancing; the results are
shown in Figure 7, where the x-coordinate represents the
number of episodes; the y-coordinate represents the average
time steps. As can be seen from Figure 7, the convergence per-
formance of DFR-Sarsa(A) is also better than GD-Sarsa(A).

The detailed performance of the two algorithms is shown
in Table 2 (the benchmark time is the average time of a single
iteration of DFR-Sarsa(A)).

Figure 8 shows the results of GD-Sarsa(d) and DFR-
Sarsa(A) on Cart-pole Balancing task, respectively. We have
known that GD-Sarsa(A) is based on discrete action policies,
while DFR-Sarsa(A) is based on continuous action policies.
From Figure 8 we can see that the continuous action policy
obtained by DFR-Sarsa(A) can make the pole’s angle change
in only a small angle, while discrete action policy obtained by
GD-Sarsa(A) makes the pole’s angle change in a large range.
This fact indicates that policies obtained by DFR-Sarsa(A)
are much more stable than that of GD-Sarsa(A). Thus, DFR-
Sarsa(A) is more suitable for applications which require more
stable policies.
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TABLE 2: Performance comparison of the two algorithms in Cart-
pole Balancing problem.

Episodes ) o
. . Average time within
Algorithm Minimum  Average i
. R an iterative step
episodes episodes
DFR-Sarsa(A) 135 155 100%
GD-Sarsa(A) 179 204 46%

5. Conclusions

In allusion to the problem that classic reinforcement learning
algorithms based on lookup table or function approximation
converge slowly and are difficult to obtain continuous action
policies, this paper presents an algorithm with eligibility
trace based on double-layer fuzzy reasoning—DFR-Sarsa(A).
Firstly, the algorithm constructs two fuzzy reasoning layers
to approximate Q-function, which are associated with state,
action, and Q-value. Then, it uses gradient descent method
to update eligibility trace and the consequent of fuzzy rules
in the two FISs. Applying the proposed algorithm and other
three similar relatively new algorithms to Mountain Car and
Cart-pole Balancing system, experimental results show that,
compared with reinforcement learning algorithms using only
one fuzzy inference system, our algorithm requires fewer
steps to convergence, though it increases the time complexity;
compared with algorithms based on lookup table or some
other function approximation methods, DFR-Sarsa(A) has
better convergence performance and can obtain a continuous
action policy.

The performance of DFR-Sarsa(A) relies on the two-
layer fuzzy inference systems, while the performance of fuzzy
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inference system mainly depends on the fuzzy sets and fuzzy
rules. In this paper, the type of fuzzy sets and the number of
rules are given as prior knowledge, and they are no longer
changed during the learning process. In order to achieve
a much better convergence performance, we will focus on
using appropriate optimization algorithms to optimize the
membership functions and adjust the fuzzy rules adaptively.
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