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Map-Reduce-Merge is an improved parallel programmingmodel based onMap-Reduce in cloud computing environment.Through
the new Merge module, Map-Reduce-Merge can support processing multiple related heterogeneous datasets more efficiently. In
order to demonstrate the validity and effectiveness of this new model, we present a rigorous description for Map-Reduce-Merge
model using Haskell. Firstly, we describe the basic program skeleton of Map-Reduce-Merge programming model. Secondly, an
abstract description for the Merge module is presented by analyzing the structure and function of the Merge module with Haskell
as the description tool.Thirdly, we evaluate theMap-Reduce-Mergemodel on the basis of our description.We capture the functional
characteristics of theMap-Reduce-Mergemodel by our abstract description, which can provide theoretical basis for designingmore
efficient parallel programming model to process join operation.

1. Introduction
Recently, lots of research works on improving Google’s Map-
Reduce [1] model have been proposed to analyze large
volumes of data [2–5]. One important type of data analysis
is joining multiple datasets. There are increasing efforts for
implementing join algorithms using Map-Reduce or the
improved Map-Reduce programming model [6–11]. Map-
Reduce-Merge is such an effort that can directly express
join operation and implement several join algorithms by the
new Merge module. In this new model, Map and Reduce
modules are inherited from Map-Reduce model, so that
existing Map-Reduce programs can run directly on this new
framework without modifications. Not only join operator
but also all the other relational operators can be modeled
using various combinations of the three primitives: Map,
Reduce, andMerge. Map-Reduce-Merge removes the burden
of implementing join algorithms. The emergency of Map-
Reduce-Merge shows a trend that parallel databases and
Map-Reduce learnwith each other and newdata analysis eco-
systems are developed [12, 13].

Many formal methods can be used to describe pro-
gramming model [14–17]. Lämmel [18] first delivers a rig-
orous description of Map-Reduce programming model as

well as its advancement called Sawzall [19]. He uses typed
functional programming Haskell as a tool to describe the
fundamental characteristics underlying the Map-Reduce and
Sawzall model. The description is made up of several Haskell
functions. Our paper is based on his work. We will present
an abstract description for Map-Reduce-Merge model, espe-
cially for the new addedMergemodule.This paper makes the
following contributions. Firstly, we define the basic program
skeleton ofMap-Reduce-Merge to capture the abstraction for
Map-Reduce-Merge computations. Secondly, we decompose
the Merge module according to its structure and present the
rigorous description calledmoduleMerge.Thirdly, we analyze
the Map-Reduce-Merge programming model based on our
abstract description with an example. Some implementation
details (such as fault tolerance and task scheduling [20–25])
will be considered in the future.

Haskell is characterized by strong type inference and type
checking [26]. The recent paper [18] suggests that Haskell
can be used as a tool to support executable specification.
Using Haskell as a description tool can be beneficial for both
programmingmodel designers and users. For designers, they
can know explicitly what will happen during the execution of
a Map-Reduce-Merge job, which is good for them to analyze
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map :: (a → b)→ [a]→ [b ] --type of map
map f [] = [] --the empty list case
map f (x: xs) = f x :map f xs --the non-empty list case

Algorithm 1

map (+1) [1,2,3]
= 2:map (+1) [2,3]
= 2: 3:map (+1)[3]
= 2: 3: 4: []
= [2, 3, 4]

Algorithm 2

and evaluate this new model. For users, they can use the
abstract description as an executable specification in software
development to ensure the correctness and robustness of
software.

This paper is organized as follows. Section 2 gives a brief
introduction of Map-Reduce-Merge programming model
and Haskell programming language. Section 3 defines the
basic programming skeleton of Map-Reduce-Merge pro-
gramming model. Section 4 designs the helper functions
composing the Merge module. Section 5 defines the helper
functions designed in Section 4. Section 6 shows an example
and gives a brief comment. Section 7 concludes this paper.

2. Background

In this section, we will briefly recall Map-Reduce-Merge
programming model and some concepts in Haskell.

2.1. Map-Reduce-Merge Programming Model. The most
important feature of Map-Reduce-Merge is that it adds to
Map-Reduce a Merge phase, so that it can directly support
join algorithms of different datasets. Figure 1 illustrates the
data flow of the Map-Reduce-Merge framework. It consists
of three phases, two independent Map-Reduce phases,
and a Merge phase. At first, two datasets are processed by
corresponding Map and Reduce phases. Then in the Merge
phase, a merger can select data to be merged from those two
reducer outputs according to different join algorithm. Notice
that the reducer outputs are stored in local disks instead of
distributed file system because the Reduce phase is not the
last phase any more.

The main purpose of the Merge module is to implement
join algorithms. The Merge module includes four compo-
nents: Partition Selector, Processors, Configurable Iterators,
and Merger as shown in Figure 2. Partition Selector is a
selector that determines which data partitions produced by
up-stream reducers should be retrieved and then merged.
Configurable Iterators include two logical iterators which can
implement different join algorithms, including sort-merge
join, nested-loop join, and hash join. Processors include two
processor functions which define the logic to process data

from different datasets. Merger includes a merger function
where users can implement data processing logic on data
from two sources.

2.2. Haskell Programming Language. To avoid confusion, we
will introduce themap function and theMap type in Haskell,
as well as the map primitive in Map-Reduce programming
model.

In Haskell, the map function is a higher-order function.
It takes two parameters, the first is a function whose type is
𝑎 → 𝑏, and the second is a list whose type is [𝑎]. It returns
a list whose type is [𝑏]. The formal definition of map is as
in Algorithm 1.

We illustrate how to usemap to add one to every element
in a list. Here, the expression (+1) represents a function that
adds one to a variable, which equals to the function 𝑓(𝑥) =
𝑥 + 1. The example is shown as in Algorithm 2.

The typeMap is a build-in type inHaskell. It is an efficient
implementation of maps from keys to values. We can use the
function toList to convert aMap to an association list and the
function fromList to build aMap from an association list.

The signature of map primitive is (K1, V1) → [(K2,
V2)]. The map primitive in essence corresponds to the first
parameter of the functionmap in Haskell [18]. We define the
signatures of map, reduce, and merge primitives in Table 1.
The first digit after letter K/V is used to distinguish different
keys/values, while the second digit is used to distinguish
different datasets.

3. Definition of mapReduceMerge

In this section, we define the mapReduceMerge function to
model the abstraction forMap-Reduce-Merge computations.
A full Map-Reduce-Merge job includes two individual Map-
Reduce phases and a Merge phase as shown in Figure 1.
Hence, we take for granted that the mapReduceMerge func-
tion can be decomposed into three helper functions that
represent these three phases, respectively. The type and
definition formapReduceMerge are shown as in Algorithm 3.

The mapReduceMerge function is defined in terms of
function application in Haskell. The arguments lTable and
rTable corresponding to the types [Map K11 V11] and [Map
K12 V12] are the input data for a Map-Reduce-Merge job.
They are first processed by the functions mapReduce 1 and
mapReduce2, respectively, and then are merged by the func-
tion moduleMerge. These helper functions correspond to
three phases in a Map-Reduce-Merge computation.

By taking advantage of the works done in [18], a Map-
Reduce job is divided into three phases: Map, Shuffle, and
Reduce. We can definemapReduce as in Algorithm 4.
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Figure 1: Data flow for the Map-Reduce-Merge framework.

Here, function composition, which is denoted by Haskell
infix operator (.), is used to compose three helper functions.
A more detailed definition for mapReduce can be found
in [18]. In this paper, we mainly focus on describing the
Merge module with themoduleMerge function. By analyzing
mapReduceMerge and mapReduce, we can discover the type
for moduleMerge with its definition to be defined later
(Algorithm 5).

Now, we will explain the types used in the definition of
mapReduceMerge. The type Map K1 V1 represents the input
split type for moduleMap. Typically, every split corresponds
to a map task. Hence, the list type [Map K1 V1] represents all
the input data of a Map-Reduce job. Similarly, the type Map
K2 V3 represents the output result of a reduce task, and the
list type [Map K2 V3] represents all the output data of a Map-
Reduce job. Our types are compatible with the types defined
in [18].

In parallel databases, a table is divided into different splits
in order to store in large clusters. The splits form the unit of
distribution and load balancing. In this paper, we use Table
to represent a table, Tablet to represent a split of a table,
and Record to represent a row in a table. According to our
discussion above, Table has a type of [Map K V], Tablet has a
type ofMap K V, and Record has a type of (K, V). It happens
that a table in Google’s Bigtable [27] is a sparse, distributed,
persistent multidimensional sortedMap.

4. Discovery of the Types in Merge

In this section, we design some helper functions for mod-
uleMerge and discover the types of those functions. The
moduleMerge function is defined tomodel the abstraction for
the Merge module. According to Figure 2, the components
of the Merge module can be divided into two parts, data
transferring and data processing. First part includes Partition
Selector, which can select and transfer the output of up-stream
reducers. Second part is made up of Processors, Configurable
Iterators, andMerger, which canmerge two different datasets.
Hence, we design two helper functions for moduleMerge,
which are getPartitionPair and mergeTwoPartition. The get-
PartitionPair function selects the output Tablets from up-
stream reducers and then delivers those Tablets to mergers.
The mergeTwoPartition function takes two Tablets as input
and returns a new Tablet as the merge result. The types of
these two functions are shown as in Algorithm 6.

Here, [Map K21 V31] denotes the input type of module-
Merge. It coincides with the result type ofmapReduce1, which
reflects the fact that the output of mapReduce1 is one input
for moduleMerge. The type (Map K21 V31, Map K22 V32)
represents twoTablets to bemerged.The type [(MapK21V31,
Map K22V32)] represents all theTablet pairs that is amerger,
process and the type [[(Map K21 V31, Map K22 V32)]]
represents all the Tablet pairs that is all the mergers process.
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Figure 2: Data flow for the Merge module.

Table 1: The signatures of three Map-Reduce-Merge primitives.

Source 1 Source 2
Map K11 →V11 → [(K21, V21)] K12 →V12 → [(K22, V22)]
Reduce K21 → [V21]→Maybe V31 K22 → [V22] →Maybe V32
Merge (K21, V31) → (K22, V32) → (K23, V33)

mapReduceMerge :: [Map K11 V11] → [Map K12 V12] → [Map K23 V33]
mapReduceMerge lTable rTable = moduleMerge (mapReduce1 lTable)(mapReduce2 rTable)

Algorithm 3

mapReduce :: [Map K1 V1] → [Map K2 V3]
mapReduce =moduleReduce.moduleShuffle.moduleMap

Algorithm 4

moduleMerge :: [Map K21 V31] → [Map K22 V32] → [Map K23 V33]
moduleMerge = undefined

Algorithm 5
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getPartitionPair :: [Map K21 V31] --Table1 as distributed input data
→ [Map K22 V32] --Table2 as distributed input data
→ [[(Map K21 V31, Map K22 V32)]] --The tasks of all mergers

mergeTwoPartition ::Map K21 V31 --Tablet1 as input data
→ Map K22 V32 --Tablet2 as input data
→ Map K23 V33 --Tablet3 as output data

Algorithm 6

getPair ::Map K21 V31 --Tablet1 as input data
→ Map K22 V32 --Tablet2 as input data
→ [(KV1, KV2)] --The task of one merger

mergeTwoRecord :: KV1 --Record1 as input data
→ KV2 --Record2 as input data
→Maybe KV3 --Maybe Record3 or Nothing as output data

Algorithm 7

Every merger has a serial number in the Map-Reduce-Merge
programmingmodel.We implicitly express this characteristic
by the merger position in the list.

We decompose the mergeTwoPartition function into two
helper functions called getPair and mergeTwoRecord. The
getPair function chooses and emits all the Record pairs that
will be processed by the mergeTwoRecord function, where a
Record pair is merged into a new Record. In fact, mergeT-
woPartition is implemented by executing mergeTwoRecord
many times. The types of these two functions are shown as
in Algorithm 7.

Here, the type KV1 is short for the type (K21, V31), KV2
is short for (K22, V32), and KV3 is short for (K23, V33). The
type [(KV1, KV2)] represents all the possible Record pairs
that need to be merged. The type Maybe is a built-in type in
Haskell, which is defined as “dataMaybe a = Just a |Nothing.”
Only those Record pairs that satisfy the merge condition can
bemerged into a newRecordwhose type is Just KV3.The type
(Map K21V31, Int) represents a Tablet and its number, which
corresponds to the reducer number in Map-Reduce-Merge.

The getPair function has to decide whether two Records
need to be merged or not, so the iterationLogic function is
designed to implement this work. The same thing happened
in the getPartitionPair function, where partitionSelector is
designed to judge whether two Tablets need to be merged.
The types for iterationLogic and partitionSelector are shown
as in Algorithm 8.

Wenow summarize the components of theMergemodule
and the designed functions, as well as the relationship
between them. In theMergemodule, Partition Selector selects
the input data for mergers from reducers. We design the
partitionSelector function to model it. The partitionSelector
function is invoked by getPartitionPair to transfer data from
reducers tomergers. Hence, this phase is similar to the shuffle
phase in Map-Reduce. Configurable Iterator includes two
iterators corresponding to two datasets. All join algorithms,
such as sort-merge join, nested-loop join, and hash join,
have their own processing logic to control the relative

movements of two iterators. In our paper, we abstract it by
the iterationLogic function according to the characteristics
of Haskell. The iterationLogic function is called by getPair to
generate all the wanted Record pairs.Merger that implements
the user-defined logic is captured by the mergeTwoRecord
function. Processors include two functions called leftProcessor
and rightProcessor, which can implement hash join. For
simplicity, we model it with the iterationLogic function. The
relationship of our functions is summarized in Figure 3.

5. Definition of the Helper Functions in Merge

In this section, we describe how to implement the functions
whose types have been determined in last section. After
every function, some concepts of Haskell are explained when
needed.

5.1. mergeTwoRecord. ThemergeTwoRecord function is com-
posed of two helper functions match and mergeResult. We
use the match function to judge whether the join keys of
two Records satisfy the given condition. If K21 and K22
satisfy a merge condition defined by the match function,
these two Records will be processed by mergeResult where
users can implement data processing logic.The definitions of
match andmergeResult are related to concrete applications. In
Section 6, we will illustrate how to use these two functions.
The definition ofmergeTwoRecord is as in Algorithm 9.

In the definition of mergeTwoRecord, the symbol “@”
which is called as-pattern is a kind of pattern matching forms
in Haskell. It denotes that KV1 can be replaced by (K21,
V31) and KV2 can be replaced by (K22, V32). The symbol
“$” denotes function application which can be substituted by
parentheses. In this definition, “Just $ mergeResult KV1 KV2”
is equal to “Just (mergeResult KV1 KV2).” This representation
is much simpler than using parentheses, especially when
nested parentheses are needed.The vertical pipe “ ” represents
guards in Haskell. It is used to judge whether the parameters
satisfy some conditions. In this definition, if K21 and K22
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Figure 3: The relationship of the functions in Merge.

iterationLogic :: KV1 --Record1 as input data
→ KV2 --Record2 as input data
→ Bool --Need to be merged or not

partitionSelector :: (Map K21 V31, Int) --Tuple (Tablet1, Id1) as input data
→ (Map K22 V32, Int) --Tuple (Tablet2, Id2) as input data
→ Bool --Choose Tablet pair to be merged

Algorithm 8

mergeTwoRecord KV1@(K21, V31) KV2@(K22, V32)
|match K21 K22 = Just $mergeResult KV1 KV2
| otherwise = Nothing

Algorithm 9

getPair lTablet rTablet =
filter (uncurry iterationLogic) -- Step 2
[(pairLeft, pairRight) | pairLeft← toList lTablet, pairRight← toList rTablet ] -- Step 1

Algorithm 10

satisfy the condition defined in thematch function, KV1 and
KV2 will be processed by the mergeResult function and then
wrapped by the typeMaybe. Otherwise,mergeTwoRecordwill
return Nothing as the result.

5.2. getPair. We implement getPair in two steps as follows.

Step 1. Get all possible combinations of Records from lTablet
and rTablet; the result is the Cartesian product of these two
Tablets.

Step 2. Filter the undesired Record pairs with iterationLogic.

In Haskell, list comprehensions are a handy way to
produce lists. Their concepts are similar to set compre-
hensions in mathematics. Here in Step 1, the list com-
prehension is used for building a list out of two lists.

We could also do the same thing using set comprehen-
sions, like this: {(𝑝𝑎𝑖𝑟𝐿𝑒𝑓𝑡, 𝑝𝑎𝑖𝑟𝑅𝑖𝑔ℎ𝑡) | 𝑝𝑎𝑖𝑟𝐿𝑒𝑓𝑡 ∈
𝑡𝑜𝐿𝑖𝑠𝑡𝑙 𝑇𝑎𝑏𝑙𝑒𝑡, 𝑝𝑎𝑖𝑟𝑅𝑖𝑔ℎ𝑡 ∈ 𝑡𝑜𝐿𝑖𝑠𝑡 𝑟𝑇𝑎𝑏𝑙𝑒𝑡}. The filter func-
tion takes a predicate and a list and returns the list whose
elements satisfy that predicate. In Step 2, those elements
which satisfy the conditions defined in iterationLogic will
remain in the list, while others will be removed from the list.
The definition of getPair is as in Algorithm 10.

5.3. mergeTwoPartition. The mergeTwoPartition function is
implemented in the following four steps.

Step 1. Get the list of pairs from lTablet and rTablet by
invoking getPair.

Step 2. Process every pair from the list withmergeTwoRecord.
As a result; the return type is [Maybe KV3].
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MergeTwoPartition lTablet rTablet =
fromList -- Step 4
$map (\(Just x)→ x) $ filter (\x → x/=Nothing) -- Step 3
$map (uncurry mergeTwoRecord) -- Step 2
$ getPair lTablet rTablet -- Step 1

Algorithm 11

getPartitionPair lTable rTable =
map (map (\((lTablet, lNum), (rTablet, rNum))→ (lTablet, rTablet))) -- Step 4
$map (filter (uncurry partitionSelcetor)) -- Step 3
$ [[(pairLeft, pairRight) | pairRight← rTableNum] | pairLeft← lTableNum] -- Step 2
where -- Step 1

lTableNum = zip lTable [1,2.. ]
rTableNum = zip rTable [1,2.. ]

Algorithm 12

moduleMerge lTable rTable =
map (foldl union empty) -- Step 3
$map (map (uncurry mergeTwoPartition)) -- Step 2
$ getPartitionPair lTable rTable -- Step 1

Algorithm 13

Step 3. Remove the element equal to Nothing from the list
with the function filter. Then change the element type from
Maybe KV3 to KV3 with the map function.

Step 4. Change the list type to the typeMapwith the fromList
function.

In the definition of the mergeTwoPartition function,
the symbol “\” denotes 𝜆 expression. For example, the 𝜆
expression “\𝑥 → 𝑥/=Nothing” represents a function whose
parameter is 𝑥 and function body is 𝑥/=Nothing. Hence, this
function decides whether𝑥 is equal toNothing.The definition
ofmergeTwoPartition is as in Algorithm 11.

5.4. getPartitionPair. We implement the getPartitionPair
function in the following four steps.

Step 1. Use the zip function to identify each Tablet with a
number. It simulates the situation that we use the reducer
number to select the output data.

Step 2. Get all possible combinations of the elements from
lTable and rTable, just like the Cartesian product of two
Tables. In fact, we need all possible combinations of lTablets
and rTabelts.

Step 3. Filter the useless combinations with the partitionSe-
lector function.

Step 4. Remove the Num part from pair (Tablet, Num).

The definition of getPartitionPair is as in Algorithm 12.

5.5. moduleMerge. We implement themoduleMerge function
in the following three steps.

Step 1. Get all the combinations for Tablets from lTable and
rTable with the getPartitionPair function.

Step 2. Merge two Tablets from different Tables with the
mergeTwoPartition function. The outermostmap application
corresponds to the parallel merge tasks. The innermost
map application corresponds to a merge task where the
mergeTwoPartition function is executed.

Step 3. Concatenate all the partitions that produced by a
merger with the foldl function.

In the definition of the moduleMerge function, we use
some concepts about type Map and its operations. The
function foldl has three parameters: a binary function, an
initial value, and a Map type value. It returns a result that
is the same type as the initial value. The union function
combines two dictionaries into one dictionary. The value
empty is an empty dictionary. The definition ofmoduleMerge
is as in Algorithm 13.

5.6. iterationLogic and partitionSelector. The iterationLogic
and partitionSelector functions are implemented according to
different join algorithms as in Algorithm 14.
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partitionSelcetor :: (Map K21 V31, Int) → (Map K22 V32, Int) → Bool
partitionSelcetor (lTablet, left) (rTablet, right) = True
iterationLogic :: KV1→ KV2→ Bool
iterationLogic (K21, V31)(K22, V32) = True

Algorithm 14

type K21 = (Int, String) --Employee key is (emp-id,dept-id)
type V31 = Float --Employee value is bonus
type K22 = String --Department key is dept-id
type V32 = Float --Department value is bonus-adjustment
type K23 = Int --Bonus key is emp-id
type V33 = Float --Bonus value is bonus-final

Algorithm 15

lTablet1 = fromList [((2, “A”), 0), ((3, “A”), 250), ((1, “B”), 150)] --Tablet1 of Table1
lTablet2 = fromList [((4, “B”), 0), ((7, “C”), 200), ((6, “D”), 100)] --Tablet2 of Table1
lTablet3= fromList [((5, “A”), 300), ((8, “C”), 150), ((9, “D”), 0)] -- Tablet3 of Table1
lTable = [lTablet1, lTablet2, lTablet3] --Table1
rTablet1 = fromList [(“A”, 0.95), (“B”, 1.15)] --Tablet1 of Table2
rTablet2 = fromList [(“C”, 1.00), (“D”, 1.25)] --Tablet2 of Table2
rTable = [rTablet1, rTablet2] --Table2

Algorithm 16

The iterationLogic function judges whether two Records
satisfy the merge condition. As we can see in this definition,
we assume that it is always true nomatter what the input data
is. This is correct when we want to implement nested-loop
join.The definitionwill change toK21=K22 if sort-merge join
is implemented.

The partitionSelector function selects those Tablets that
need to be merged. Just like the iterationLogic function, the
return value is true when we want to implement nested-loop
join. We will change the definition to left==right when sort-
merge join is needed, on condition that two Map-Reduce
phases use the same partitioners.

As we can see in this section and last section, our method
to describe the Merge module is “firstly design the types and
then define the functions.” The types are designed from top
to down, while the definitions are defined from bottom to up.
At last, we get the abstract description of the Merge module
by using Haskell as shown in Figure 4.

6. Case Study

In this section, an example of how to use our description is
designed to demonstrate the proposed method. Then a brief
analysis on two join algorithms that have been implemented
in Map-Reduce-Merge is given, including nested-loop join
and sort-merge join.

There are two tables in this example: Employee and
Department. We use Table1 and 𝑇𝑎𝑏𝑙𝑒2 to represent them,
respectively.The primary keys of the tables are shown in bold

in Figures 5 and 6. One possible query is to compute the
employee final bonus that is the product of bonus in Table1
and bonus adjustment in 𝑇𝑎𝑏𝑙𝑒2. This query result is stored
in 𝑇𝑎𝑏𝑙𝑒3. To accomplish this query, we take steps as follows.

Firstly, we divide the record in a table into two parts,
corresponding toKey andValue inMap-Reduce, respectively,
and assign every attribute with a Haskell type. In Employee,
we chose the composition of emp-id and dept-id as Key and
the others as the Value. As to Department, we chose dept-id
as Key and the others as the Value. All the types of Key and
Value emerging in the tables are defined as in Algorithm 15.

Notice that the Key we use in Map-Reduce is not the
same as the key we use in databases. In our example,
we use the same Key as the primary key in Table1, while
in 𝑇𝑎𝑏𝑙𝑒2 we chose not to. In the subsequent steps, we
implement the nested-loop join with our description. The
way to process sort-merge join is similar except that we
use other definitions of iterationLogic and partitionSelector,
which will be discussed later.

Secondly, we construct the input data by modifying
the table to the form of list of Maps as follows. Table1
consists of three Tablets, and 𝑇𝑎𝑏𝑙𝑒2 consists of two Tablets
(see Algorithm 16).

Thirdly, we define the functions match andmergerResult.
In the match function, we guarantee that the employee dept-
id is equal to the department dept-id. Only those Record pairs
that satisfy this condition can be merged. In the mergeResult
function, we implement the product of bonus and bonus
adjustment to get the final bonus. The types and definitions
of these two functions are shown as in Algorithm 17.
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import Data.Map (Map, empty, union, fromList, toList)
moduleMerge :: [Map K21 V31] → [Map K22 V32] → [Map K23 V33]
moduleMerge lTable rTable =

map (foldl union empty)
$ map (map (uncurry mergeTwoPartition))
$ getPartitionPair lTable rTable
where

mergeTwoPartition :: Map K21 V31 → Map K22 V32 → Map K23 V33
mergeTwoPartition lTablet rTablet =

fromList
$ map (\(Just x)→ x) $ filter (\x→ x/=Nothing)
$ map (uncurry mergeTwoRecord) $ getPair lTablet rTablet
where

mergeTwoRecord :: KV1 → KV2 → Maybe KV3
mergeTwoRecord kv1@(k21, v31) kv2@(k22, v32)

| match k21 k22 = Just $ mergeResult kv1 kv2
| otherwise = Nothing

getPair :: Map K21 V31 → Map K22 V32 → [(KV1, KV2)]
getPair lTablet rTablet =

filter (uncurry iterationLogic)
[(pairLeft, pairRight) | pairLeft ← toList lTablet,
pairRight ← toList rTablet]

getPartitionPair :: [Map K21 V31] → [Map K22 V32]
→ [[(Map K21 V31, Map K22 V32)]]

getPartitionPair lTable rTable =
map (map (\((lTablet, lNum), (rTablet, rNum))→ (lTablet,

rTablet)))
$ map (filter (uncurry partitionSelcetor))
$ [[(pairLeft, pairRight) | pairRight ← rTableNum] |
pairLeft ← lTableNum]
where

lTableNum = zip lTable [1, 2..]
rTableNum = zip rTable [1, 2..]
partitionSelcetor :: (Map K21 V31, Int)

→ (Map K22 V32, Int)
→ Bool

partitionSelcetor (lTablet, left) (rTablet, right) = True

Figure 4: The abstract description formoduleMerge.
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Table 1: Employee

emp-idemp-id dept-id Bonus

2 A $0

13 A $250

1 B $150

4 B $0

27 C $200

6 D $100

5 A $300

38 C $150

9 D $0

Table 2: Department

Bonus adjustment

A 0.95
1

B 1.15

C 1.00
2

D 1.25

Table 3: Bonus

Bonus final

Merger 1

1 $172.5

2 $0

3 $237.5

4 $0

6 $125

7 $200

5 $285

8 $150

9 $0

Internal transfer
Remote read

Merger 2

Merger 3

dept-id

Figure 5: Data flow of nested-loop join.

Table 1’: Employee

Table 3’: Bonus

Table 2’: Department

emp-id

emp-id

dept-id

Bonus

2 A $0 1

3 A $250

5 A $300

1 B $150

4 B $0

7 C $200 2

8 C $150

6 D $100

9 D $0

Bonus adjustment

A 0.95 1

B 1.15

C 1.00
2

D 1.25 Internal transfer
Remote read

Bonus final

Merger 1

1 $172.5

2 $0

3 $237.5

4 $0

5 $285

Merger 2

6 $125

7 $200

8 $150

9 $0

dept-id

Figure 6: Data flow of sort-merge join.
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match :: K21 --Key21 as input data
→ K22 --Key22 as input data
→ Bool --Satisfy the merge condition or not

match K21 K22 = let (int, str) = K21 in if str == K22 then True else False
mergeResult :: KV1 --Record1 as input data

→ KV2 --Record2 as input data
→ KV3 --Record3 as output data

mergeResult (K21, V31) (K22, V32)= let (int, str)= K21 in (int, V31∗𝑉32)

Algorithm 17

Finally, we run the following command in Haskell com-
piler WinGHCi:

Prelude >moduleMerge lTable rTable.
The result is as follows. It corresponds to Table 3

in Figure 5:
[fromList[(1,172.5),(2,0.0),(3,237.5)],fromList[(4,0.0),
(6,125.0),(7,200.0)],fromList[(5,285.0),(8,150.0),(9,0.0)]].
It shows that our description can implement these two

join algorithms. The corresponding dataflow graphs are
Figures 5 and 6. We set the result of the partitionSelector
function to be true in order to ensure that every Tablet from
Table1 can be merged with all tables in 𝑇𝑎𝑏𝑙𝑒2. On the other
hand, we set the function body of partitionSelector to be
left==right so as to map reducers and mergers in a one-
to-one relationship. We use the same strategy to define the
iterationLogic function. The main difference between sort-
merge join and nested-loop join is that the input of sort-
merge join has been sorted, while the input of nested-loop
join has not been. In this example, we take advantage of the
combining phase strategy in Map-Reduce-Merge framework
to reduce the remote read between reducers and mergers.
Since the size of Table1 is much bigger than the size of𝑇𝑎𝑏𝑙𝑒2,
we combine themergers with the reducers into sameworkers.

As we can see there are two processors and two itera-
tors in the Merge module. Hence, Map-Reduce-Merge can
implement two-way join algorithms. If we want to implement
multiway join algorithms, a join tree (or a Map-Reduce-
Merge workflow) is needed. According to the data flow of
Figures 5 and 6, we can find that using sort-merge join can
decrease the remote reads than nested-loop join. In Map-
Reduce-Merge, sort-merge join is more efficient than nested-
loop join when processing equal join.When processing more
complicated join, the nested-loop join algorithm is in need.

7. Conclusions

Map-Reduce-Merge is an improved work based on Google’s
Map-Reduce programming model. It improves the ability
to express and to process join operation among multiple
heterogeneous datasets. At the same time, it increases the
complexity to understand the execution flow of a job. This
paper presents a rigorous description of Map-Reduce-Merge
to abstract the fundamental functions for Map-Reduce-
Merge using Haskell. Based on the abstract description,
we analyze the characteristics of Map-Reduce-Merge pro-
gramming model. On one hand, our work can help with

an unambiguous understanding of Map-Reduce-Merge and
provide strong theoretical basis for designing more efficient
parallel programming model to process join operation. On
the other hand, programmers can use our description as a
specification in software development. Our result can ensure
the correctness and robustness of the software with Haskell
strong type checking and type inference.

Since this paper mainly concentrates on describing the
dataflow in Map-Reduce-Merge, an important future direc-
tion is to introduce some control parameters into our descrip-
tion to improve its flexibility and usability. In addition, cost
information can cooperate with our description to estimate
the performance of a Map-Reduce-Merge job.
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