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Computed tomography (CT) is a popular type of medical imaging that generates images of the internal structure of an object
based on projection scans of the object from several angles. There are numerous methods to reconstruct the original shape of
the target object from scans, but they are still dependent on the number of angles and iterations. To overcome the drawbacks of
iterative reconstruction approaches like the algebraic reconstruction technique (ART), while the recovery is slightly impacted from
a randomnoise (small amount of ℓ

2
norm error) and projection scans (small amount of ℓ

1
norm error) as well, we propose amedical

image reconstruction methodology using the properties of sparse coding. It is a very powerful matrix factorization method which
each pixel point is represented as a linear combination of a small number of basis vectors.

1. Introduction

The challenge of continually improving the technology for
generating noninvasivemedical images of internal anatomy is
an area of great interest in the area of radiology. In particular,
computed tomography (CT) is one of the most common
modalities used for noninvasive medical diagnostic imaging.
Cross-sectional CT images are reconstructed from projection
data, which is generated by passing X-rays through the target
object and measuring the resulting attenuation of those rays.
For some noninvasive imagingmodalities, themeasurements
made (i.e., the projection data) can be converted into samples
of a Radon transform [1] in order to be reconstructed. In CT,
dividing the measured photon counts by the incident photon
counts and taking the negative logarithm yields the linear
attenuation map of each projection, which, when noted at
each projection angle, can be used to determine the Radon
transform of the object of interest.

In the fields of accelerator physics, one expects that the
relatively simple charged particle beam distributions can be
reconstructed from a small number of projections. Tomo-
graphic imaging involves the reconstruction of an image from

its projections. The reconstruction problem belongs to the
class of inverse problems, and it is characterized by the fact
that the information of interest is not directly available for
measurement. If f denotes the unknown distribution and
b the quantity measured by the imaging device, then the
measurement system is written as b = Rf for the Radon
transform R [1]. The discrete problem, which is based on
expanding f in a finite series of basis function, can be written
as b = Af . The matrix A, typically large and sparse, is
a discretization of the Radon transform. An approximate
solution to this linear system could be computed by iterative
methods, which only require matrix-vector products and
hence do not alter the structure of A.

There are numerous approaches to reconstruct the shape
of the target object from numerous angular projections. The
iterative reconstruction algorithms are known to generate
higher quality CT images than the filtered backprojection
(FBP) algorithm. For example, the algebraic reconstruction
technique (ART) [2] efficiently solves the inverse problem.
Yet, although ART is effective, it still produces noise
within a reconstructed image. To reduce the noise from
reconstructed images using ART, the postprocessing is
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Figure 1: Our proposed CT image reconstruction method and its mathematical notations: 𝑏
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is the line integral of f along the ray 𝑝

𝑖
, and 𝑎

𝑖𝑗

is the length of the intersection of the ray 𝑝
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required. Unfortunately, it is possible to lose important data
while removing the noise. Here, we propose a sparse-coding-
based reconstruction method to overcome the drawbacks
of iterative reconstruction approaches like ART and to
minimize the influence of the deficiency of the projection
measurements that are very sparse, while the recovery is
slightly impacted from random noises. The recovery is
achieved by finding an approximation vector with small ℓ

1

and ℓ
2
norm errors, which provides a good fit locally and

globally. Our contribution in this paper is to solve the inverse
problem using sparse coding by reducing both the random
noise and the dependency on projection scans, which is
less dependent on the number of angular projections than
previous iterative reconstruction methods.

2. Our Proposed Approach

To reconstruct the original shape from projected measure-
ments, we regard an original image as a discrete function
𝑓(𝑥, 𝑦) defined on a domain Ω = {(𝑥, 𝑦) ∈ R2 : 0 ≤ 𝑥 ≤

𝑛, 0 ≤ 𝑦 ≤ 𝑚} such that 𝑓(𝑥, 𝑦) is constant on each cell 𝐼
𝑖,𝑗
=

[𝑖−1, 𝑖] × [𝑗−1, 𝑗] for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚.Wenumber

the cells in lexicographical order so that 𝐼
(𝑖−1)𝑚+𝑗

= 𝐼
𝑖,𝑗

for
𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚. Let 𝑓

𝑖
be the constant in the 𝑖th

cell. For each angle 𝜃
𝑘
given in degree, 𝑘 = 1, . . . , 𝑞, we project

the image along parallel rays 𝑝 with width 𝑤 as follows:

𝑏
𝑖
=

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
, 𝑖 = 1, . . . , 𝑃 (𝑁 := 𝑛𝑚) , (1)

where𝑃 is the total number of projections, and the coefficient
𝑎
𝑖𝑗
is defined to be the length (or area) of the 𝑖th ray through

the 𝑗th cell and 𝑎
𝑖𝑗
= 0 if the ray does not touch the cell; that is,

the value 𝑏
𝑖
is the ray summeasured along the 𝑖th ray and 𝑎

𝑖𝑗
is

the weighting factor representing the contribution of the 𝑗th
cell to the ray sum. The tomography problem is then related
to the reconstruction of an unknown image f = (𝑓

1
, . . . , 𝑓

𝑁
)
𝑇

from the observed vector b = (𝑏
1
, . . . , 𝑏

𝑃
)
𝑇 given as

Af = b, (2)

Here, A = (𝑎
𝑖𝑗
)
𝑃,𝑁

𝑖=1,𝑗=1
, and ⋅

𝑇 denotes the transpose of
a vector/matrix. In general, 𝑃 < 𝑁, and the problem is
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(a) Ground truth data (b) ART-based approach (c) SIRT-based approach

(d) SART-based approach (e) Our proposed approach

Figure 2: Comparison of image reconstruction from 2250 angular projections around the target object.

underdetermined and so is ill-posed. Figure 1 shows our pro-
posed CT image reconstruction approach and mathematical
notations in (1) and (2).

This inverse problem emerges in areas of study involving
2D and 3D imaging such asmedical imaging, geophysics, and
material science [3–5]. To solve the inverse problem (2),many
methods such as the least squares method, ART [6, 7], SARTs
(simultaneous algebraic reconstruction techniques [8]), and
SIRT (simultaneous iterative reconstruction techniques [9])
have been proposed and studied (see [10, 11] and references
therein). We observe that almost all entries of A are zeros,
and the vector f from CT images also has sparse pixel values.
Based on this observation, we propose a method to solve the
inverse problem by applying the compressive sampling (CS)
technique. CS pertains to the recovery of x ∈ R𝐾 from rather
a small amount of measurements y ∈ R𝐿 with 𝐿 < 𝐾. Given
an underdetermined systems

y = Φx, (3)
where Φ is an 𝐿 × 𝐾 matrix, CS enables us to perform
exact recovery when x is sparse, and the matrix Φ satisfies
the restricted isometry property [12, 13] (also see [14, 15]).
The recovery performs through the so-called basis pursuit
optimization:

arg min
x∈R𝐾

‖x‖1 subject to y = Φx. (4)

Using ‖v‖
𝑝
(𝑝 = 1, 2), we denote the ℓ

𝑝
norm of a vector v =

(V
1
, . . . , V

𝐾
)
𝑇
∈ R𝐾 defined by ‖v‖

𝑝
= (|V
1
|
𝑝
+ ⋅ ⋅ ⋅ + |V

𝐾
|
𝑝
)
1/𝑝.

In the paper, we also consider the case where noise is added to
the projected image, f , so that we can model such an imaging
system as follows:

Af = b + 𝜂. (5)

In order to recover the sparse image from the inverse
problem (5) while preserving intrinsic geometric structures
such as edges, we try to find an image ̃f which provides a good
fit to the original image f globally (small amount of ‖f − ̃f‖

2
)

and locally (small amount of ‖f − ̃f‖
1
) as well. So, we propose

the following elastic net optimization:

̃f = arg min
f∈R𝑁

1

2
‖Af − b‖2

2
+ 𝛽‖f‖2

2
+ 𝛾‖f‖1. (6)

The model in (6) is a combination of the basis pursuit
denoising (𝛽 = 0) and the ridge regression (𝛾 = 0). In (6), the
first term measures the fitting, and the third regularization
term is added to recover a sparse data where 𝛾 controls
the trade-off between sparsity and reconstruction fidelity.
The quadratic term of the regularization gives rise to the
grouping effect of highly correlated variables and removes the
limitation on the number of selected variables [16]. The basis
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900 975 1050 1125 1275 1350 1500 1725 1950 2250 2700
Ours 0.1149 0.1085 0.1094 0.1167 0.1025 0.1033 0.096 0.106 0.0929 0.0918 0.0884
ART 0.3984 0.2837 0.2896 0.5283 0.2532 0.2248 0.2443 0.3581 0.2005 0.2915 0.2347
SIRT 0.4272 0.3332 0.2949 0.3426 0.292 0.2126 0.2555 0.3883 0.2187 0.3525 0.3578

SART 0.2803 0.2594 0.2959 0.2352 0.2368 0.2819 0.2646 0.2083 0.2805 0.1935 0.2167
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(a) Quantitative measurement using SAD

900 975 1050 1125 1275 1350 1500 1725 1950 2250 2700
Ours 0.0295 0.0293 0.0265 0.0253 0.0225 0.0215 0.0202 0.0154 0.0134 0.012 0.0106
ART 0.1937 0.1558 0.1416 0.1979 0.1604 0.1326 0.12 0.1998 0.0534 0.0822 0.0594
SIRT 0.1575 0.0928 0.0929 0.1818 0.0858 0.0537 0.065 0.1473 0.0359 0.0456 0.0458

SART 0.1612 0.0944 0.0879 0.073 0.0621 0.057 0.0501 0.0601 0.0366 0.0418 0.0389
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(b) Quantitative measurement using SSD

Figure 3: Quantitative comparison of previous approaches and our proposed approach using SAD and SSA by changing the number of
angular projections from 900 to 2700.

pursuit denoising enables us to reconstruct f simply in the
ℓ
1
sense, making b close to Af in the ℓ

2
sense. We solve the

optimization (6) using the feature-sign search algorithm [17].

3. Experiments

The schematic setup for sparse-coding-based CT image
reconstruction is illustrated in this section. To efficiently
show the robustness of our proposed approach, we have
compared our sparse-coding-based image reconstruction
method to other popular approaches, such as traditional
ART, SIRT, and SART in Figure 2. For fair comparison, we
reconstructed an image that has 50 × 50 resolution from 2250
angular projections around the target object. The previous
approaches such as ART (Figure 2(b)), SIRT (Figure 2(c)),
and SART (Figure 2(d)), require several iterations to robustly
reconstruct the target object (100 iterations in our experiment
because the reconstructed images have few improvements

in resolution after that.) As shown in Figure 2, there is still
a noise effect in the background, but our proposed sparse-
coding-based approach (Figure 2(e)) dramatically reduces
the noise in the background within a reconstructed image.

Image reconstruction using rotated angular projection
methodologies is very dependent on the number of projec-
tions. To show the robustness of the sparse-coding-based
image reconstruction methodology, we have quantitatively
compared our approach to previous approaches by changing
the number of the projections. For this, we evaluated the ℓ

1
-

norm-based similarity measure called SAD (sum of absolute
difference) and ℓ

2
-norm based-similaritymeasure called SSD

(sum of squared difference) between reconstructed images
and the original image by changing the number of projec-
tions. In Figure 3, we show how we robustly reconstruct
the original image by calculating the SAD and SSD from
the randomly selected projections from 900 to 2700 around
the ground truth data between the reconstructed images
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using ART, SIRT, SART, and our approach and ground truth
data. Figure 3 demonstrates that our proposed approach can
reconstruct the original shape of the target object while
reducing the effect of the number of projections. SAD-based
error comparison as shown in Figure 3(a) provides that our
proposed reconstruction method is less dependent on the
measurement (𝑏) than other previous approaches, and SSD-
based comparison in Figure 3(b) shows that our proposed
approach is very efficient to solve the inverse linear problem
to recover the original shape of the target object.

4. Discussion

In this paper, we propose a novel reconstruction approach
from the projected measurement of the radiation around
the target object. This nonparametric approach to the recon-
struction of medical CT images using sparse coding shows
robustness in the reconstruction of the original shapewithout
prior information of the target object. Sparse coding is a state-
of-the-art technique used to reconstruct a sparse data set
from a small number of linear measurements. We propose
a reconstruction method based on sparse coding, motivated
by the fact that medical images are often represented in
terms of only a few data pixel values in the spatial domain.
Our proposed image reconstruction methodology is less
dependent on the number of projections collected around the
target object, so the original shape can be recovered with only
a few measurements. Based on our experimental evaluation,
we argue that the proposed sparse-coding-based CT image
reconstruction scheme provides better ℓ

1
-norm and ℓ

2
-norm

error results than previous approaches.
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[6] S. Kaczmarz, “Angenäherte auflösung von systemen linearer
gleichungen,” Bulletin International de l’Académie Polonaise des
Sciences et des Lettres, vol. A35, pp. 355–357, 1938.

[7] R. Gordon, R. Bender, and G. T. Herman, “Algebraic Recon-
struction Techniques (ART) for three-dimensional electron
microscopy and X-ray photography,” Journal of Theoretical
Biology, vol. 29, no. 3, pp. 471–481, 1970.

[8] A. H. Andersen and A. C. Kak, “Simultaneous algebraic recon-
struction technique (SART): a superior implementation of the
art algorithm,” Ultrasonic Imaging, vol. 6, no. 1, pp. 81–94, 1984.

[9] P. Gilbert, “Iterative methods for the three-dimensional recon-
struction of an object from projections,” Journal of Theoretical
Biology, vol. 36, no. 1, pp. 105–117, 1972.

[10] P. C. Hansen and M. S. Hansen, “A MATLAB package of
algebraic iterative reconstruction methods,” Journal of Compu-
tational and Applied Mathematics, vol. 236, pp. 2167–2178, 2012.

[11] G. T. Herman, Fundamentals of Computerized Tomography:
Image Reconstruction from Projection, Springer, New York, NY,
USA, 2nd edition, 2009.

[12] E. Candès and T. Tao, “Decoding by linear programming,” IEEE
Transactions on Information Theory, vol. 51, no. 12, pp. 4203–
4215, 2005.

[13] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery
from incomplete and inaccurate measurements,” Communica-
tions on Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207–
1223, 2006.

[14] E. Candès, “Compressive sampling,” in Proceedings of the
International Congress of Mathematics, pp. 1433–1452, 2006.

[15] D. L. Donoho, “Compressed sensing,” IEEE Transactions on
Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[16] H. Zou and T. Hastie, “Regularization and variable selection via
the elastic net,” Journal of the Royal Statistical Society B, vol. 65,
no. 2, pp. 301–320, 2005.

[17] H. Lee, A. Battle, R. Raina, andA. Y.Ng, “Efficient sparse coding
algorithms,” in Advanced in Neural Information Processing
Systems (NIPS), vol. 19, 2007.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


