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A dual fractal reservoir transient flowmodel was created by embedding a fracture system simulated by a tree-shaped fractal network
into a matrix system simulated by fractal porous media. The dimensionless bottom hole pressure model was created using the
Laplace transform and Stehfest numerical inversion methods. According to the model’s solution, the bilogarithmic type curves of
the dual fractal reservoirs are illustrated, and the influence of different fractal factors on pressure transient responses is discussed.
This semianalytical model provides a practical and reliable method for empirical applications.

1. Introduction

Numerous researchers have simulated the nonuniform dis-
tribution of fractures using fractal networks and have studied
fluid flow behavior in fractured reservoirs. By assuming that
the fracture network is fractal, Camacho-Velázquez et al.
[1] studied the production decline behavior in a naturally
fractured reservoir. Zhang and Tong [2] introduced a stress-
sensitive coefficient and built a transient pressure analysis
model for fractal reservoirs which considers stress-sensitive
effects.

Jafari and Babadagli [3] illustrated the 3D permeability
distribution of a reservoir using outcrop, well log, and well
test data which served as the basis for applying fractal
networks to a reservoir. Zhang et al. [4] solved a nonlinear
flow model for a stress-sensitive dual media fractal reservoir
using a finite element method.

Previous scholars often embedded fractal structures into
matrix networks by using straight or intersecting lines, but
this did not correctly simulate well bottom radial flow. This
type of radial flow has not been sufficiently studied in the
underground seepage and oil development fields.

By referring to a plant lamina’s bifurcation structure,
Wechsatol et al. [5] used a tree-shaped fractal structure that

connected center points to different circles. The fractal net-
work could simulate the radial flow tending toward the well
bottom. Based on their research, the construction method
and optimization rules for tree-shaped fractal structures [6]
were formulated.

Xu and Yu [7] presented a tree-shaped fractal flow model
that considered the dynamic behavior of branching tubes in a
tree-shaped fractal network. Based on thismodel, ourmodel’s
transport properties andmass transfer capabilities [8, 9] were
analyzed.

Given the capillary pressure effect, the starting pressure
gradient influence, and pore fractal characteristics, Yun et al.
[10] developed a fractal model that describes Bingham fluid
flow in porous media. Based on Yun et al. [10], Wang et al.
[11] proposed a tree-shaped fractal model that considered the
influence of the starting pressure gradient on Bingham fluid
seepage in a porous medium.

In this paper, fractures are simulated using a tree-shaped
fractal network, as it accurately simulates radial flow tending
to the well bottom, and the matrix system is simulated using
fractal porous media. A transient flow model of dual fractal
reservoirs is then presented by embedding the fracture net-
work into a matrix system. Factors influencing the dynamic
characteristics of transient pressure responses in dual fractal
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Figure 1: Dual fractal reservoir.

reservoirs are analyzed.This semianalytical model provides a
practical and reliable method for empirical applications.

2. Physical Model

Figure 1 shows a well located in the reservoir center, 𝑂, with
a thickness, ℎ, and a well radius, 𝑟

𝑤
. The physical model

assumptions are as follows.

(1) The fractal porous media is divided into M annular
sections in a tree-shaped fractal network.

(2) Each fracture section’s properties are different, but the
fluid properties are identical. Matrix permeability is
much lower than that of the fracture.

(3) Rock and single-phase fluid are slightly compressible
causing isothermal flow to be considered. Capillary
pressure and gravity effects are neglected.

(4) Fluid flows to the wellbore only through the fracture
system. Fluid flow in the matrix and the fracture
system of each section satisfies the linear flow rule.

3. Mathematical Model

3.1. Matrix System. According to fractal geometry theory, the
fractal scaling law can be used to describe the cumulative size
distribution of pores in matrix system [12]:

𝑁
𝑚
(𝐿 ≥ 𝜆) = (

𝛿max
𝛿

)

𝐷𝑓

, (1)

where 𝛿 is pore diameter, 𝛿max is maximum pore diameter,
and𝐷

𝑓
is the fractal dimension of the pore space.

Tortuosity is often used to describe flow path tortuosity,
as flow in porous media is tortuous. The matrix flow path
tortuosity is defined as [13]:

𝑇
𝑚
=
𝐿
𝑡

𝐿
0

, (2)

where 𝐿
𝑡
is the actual length of the tortuous flow path and 𝐿

0

is the straight length along themacroscopic pressure gradient.
The matrix system porosity and permeability are defined

as [14]:

𝜙
𝑚
=

𝜋𝑇
𝑚
𝐷
𝑓

4 (2 − 𝐷
𝑓
)

𝛿
2

max
𝐴
0

[1 − (
𝛿min
𝛿max

)

2−𝐷𝑓

] , (3)

𝐾
𝑚
=

𝜋𝐷
𝑓

128𝑇
𝑚
(4 − 𝐷

𝑓
)

𝛿
4

max
𝐴
0

, (4)

where 𝐴
0
is the unit cell area.

3.2. Fracture System. Fracture system parameters are directly
generated from a tree-shaped fractal network. Sets of branch
structures form the tree-shaped fractal network. During
network generation, the branches on each level must end up
on the same circle with all circles having the same center of
origin, 𝑂.𝑁 tubes which start at 𝑂make up the tree-shaped
fractal network. The tube’s initial length and diameter are 𝑙

0

and 𝑑
0
, respectively. The double branches (𝑛 = 2), whose

angles are 𝜃(𝜃 < 𝜋/2) and total network branch levels are𝑀,
are applied in this network. Furthermore, two scale factors
are used in this fractal network, length ratio, 𝛼, and diameter
ratio, 𝛽. The branch tube is assumed to be smooth, and tube
wall thickness is ignored.

For the 𝑘th level fracture, length is given by

𝑙
𝑘
= 𝛼
𝑘

𝑙
0
. (5)

For the 𝑘th level fracture, diameter is

𝑑
𝑘
= 𝛽
𝑘

𝑑
0
. (6)

Distance from the well to each section’s boundary is
defined as the radial distance, which is expressed by [8]:

𝑟
𝑘
=

𝑘

∑

𝑖=0

𝑙
𝑖
cos 𝜃 = 𝑙

0
[1 +

𝛼 (1 − 𝛼
𝑘

) cos 𝜃
1 − 𝛼

] . (7)

Xu et al. [8] proposed the 𝑘th level permeability expres-
sion of fracture system, which is expressed by

𝐾
𝑘
=
𝑑
2

𝑘

32

1

𝑇
𝑘

. (8)

The 𝑘th section tortuosity of fracture systems can be
obtained by the following expression:

𝑇
𝑘
=

𝑙
𝑘

𝑟
𝑘
− 𝑟
𝑘−1

=
{

{

{

1, 𝑘 = 0,

1

cos 𝜃
, 𝑘 > 0.

(9)

Substituting (6) and (9) into (8), the 𝑘th section perme-
ability in the fracture system is

𝐾
𝑓𝑘
= 𝑁𝑛
𝑘
𝑑
2

𝑘

32

1

𝑇
𝑘

=

{{{{

{{{{

{

𝑁𝑑
2

0

32
, 𝑘 = 0,

𝑁𝑛
𝑘

𝛽
2𝑘

𝑑
2

0
cos 𝜃

32
, 𝑘 > 0.

(10)



Journal of Applied Mathematics 3

For the 𝑘th section, total system volume can be calculated
by

𝑉
𝑡𝑘
=
{

{

{

𝜋ℎ𝑟
2

0
, 𝑘 = 0,

𝜋ℎ (𝑟
2

𝑘
− 𝑟
2

𝑘−1
) , 𝑘 > 0,

(11)

where ℎ is the reservoir thickness.
For the 𝑘th section, pore volume of fracture systems can

be calculated by

𝑉
𝑓𝑡𝑘

= 𝑁𝑛
𝑘
𝜋𝑙
𝑘
𝑑
2

𝑘

4
=
𝑁𝜋𝑛
𝑘

𝛼
𝑘

𝛽
2𝑘

𝑙
0
𝑑
2

0

4
. (12)

For the 𝑘th section, total system volume,𝑉
𝑡𝑘
, is expressed

as 𝑉
𝑡𝑘
= 𝑉
𝑚𝑡𝑘

+ 𝑉
𝑓𝑡𝑘

, where 𝑉
𝑚𝑡𝑘

is total volume of the matrix
system. 𝑉

𝑚𝑡𝑘
is related to the pore volume of matrix system,

𝑉
𝑚𝑘
, and expressed as 𝑉

𝑚𝑡𝑘
= 𝜙
𝑚
𝑉
𝑚𝑘
, where 𝜙

𝑚
is the matrix

system porosity. Thus, 𝑉
𝑚𝑘

can be calculated as

𝑉
𝑚𝑘

= 𝜙
𝑚
(𝑉
𝑡𝑘
− 𝑉
𝑓𝑡𝑘
) . (13)

For the kth section, porosity of a fracture system can be
obtained by dividing (12) by (11):

𝜙
𝑓𝑘
=
𝑉
𝑓𝑡𝑘

𝑉
𝑡𝑘

=

{{{{{{

{{{{{{

{

𝑁𝑑
2

0

4ℎ𝑙
0

, 𝑘 = 0,

𝑁𝑛
𝑘

𝛼
𝑘

𝛽
2𝑘

𝑙
0
𝑑
2

0

4ℎ (𝑟
2

𝑘
− 𝑟
2

𝑘−1
)

, 𝑘 > 0.

(14)

For the kth section, porosity of a matrix system can be
obtained by the following expression:

𝜙
𝑚𝑘

=
𝑉
𝑚𝑘

𝑉
𝑡𝑘

= 𝜙
𝑚
(1 − 𝜙

𝑓𝑘
) . (15)

The permeability of a fracture system, 𝐾
𝑓
, and the

porosity of a fracture system, 𝜙
𝑓
, do not change with the

radial distance, r, in traditional double porosity (fracture and
matrix system) reservoir transient flow models [15]. In order
to compare dual fractal reservoir transient flow models with
double porosity reservoir transient flow models, we have to
clarify how to keep𝐾

𝑓
and 𝜙
𝑓
independent of r in dual fractal

reservoir transient flow models.
Under the condition of double branches (𝑛 = 2), the

permeability, 𝐾
𝑓𝑘
, and porosity, 𝜙

𝑓𝑘
, of every section in a

fracture system are equal; that is,

𝐾
𝑓𝑘
= 𝐾
𝑓(𝑘+1)

,

𝜙
𝑓𝑘
= 𝜙
𝑓(𝑘+1)

.

(16)

Substituting (10) and (14) into (16), we can obtain: 𝑛 = 2,
𝛼 = 1, and 𝛽 = 0.707.

When 𝛽 is smaller than 0.707, permeability of a fracture
system increases with the radius of a dual fractal reservoir.
When 𝛽 is larger than 0.707, permeability of a fracture system
decreases with the radius of a dual fractal reservoir.

3.3. Dual Fractal Reservoir. According to the physical model,
the flow mathematical model of a dual fractal reservoir can
be described as follows.

Governing differential equations in a dual fractal reser-
voir, we have the following.

For fracture system [15],

𝐾
𝑓𝑘

𝜇
(
𝜕
2

𝑝
𝑓𝑘

𝜕𝑟2
+
1

𝑟

𝜕𝑝
𝑓𝑘

𝜕𝑟
) +

𝑎𝐾
𝑚

𝜇
(𝑝
𝑚𝑘
− 𝑝
𝑓𝑘
) =

𝜑
𝑓𝑘
𝐶
𝑡𝑓

3.6

𝜕𝑝
𝑓𝑘

𝜕𝑡

𝑟
𝑘−1

≤ 𝑟 ≤ 𝑟
𝑘
.

(17)

For matrix system [15],

−
𝑎𝐾
𝑚

𝜇
(𝑝
𝑚𝑘
− 𝑝
𝑓𝑘
) =

𝜑
𝑚𝑘
𝐶
𝑡𝑚

3.6

𝜕𝑝
𝑚𝑘

𝜕𝑡
𝑟
𝑘−1

≤ 𝑟 ≤ 𝑟
𝑘
. (18)

Initial condition:

𝑝
𝑓𝑘
(𝑟, 0) = 𝑝

𝑚𝑘
(𝑟, 0) = 𝑝

𝑖
(𝑘 = 0, 1, . . . ,𝑀) . (19)

Interface connecting conditions of each zone, pressure
continuity [16]:

𝑝
𝑓𝑘

𝑟=𝑟𝑘
= 𝑝
𝑓(𝑘+1)

𝑟=𝑟𝑘
(𝑘 = 0, 1, . . . ,𝑀 − 1) . (20)

Interface connecting conditions of each zone, rate conti-
nuity [16]:

𝜕𝑝
𝑓𝑘

𝜕𝑟

𝑟=𝑟𝑘

=
𝑘
𝑓(𝑘+1)

𝑘
𝑓𝑘

𝜕𝑝
𝑓(𝑘+1)

𝜕𝑟

𝑟=𝑟𝑘

(𝑘 = 0, 1, . . . ,𝑀 − 1) .

(21)

Well production condition [17]:

𝑞
𝑠𝑓
= 𝑞 +

24𝐶

𝐵

𝑑𝑝
𝑤𝑓

𝑑𝑡
𝑝
𝑤𝑓
= 𝑝
𝑓1

𝑟=𝑟𝑤𝑒
−𝑆 .

(22)

External boundary condition (infinite):

𝑝
𝑓𝑀

(𝑟 → ∞, 𝑡) = 𝑝
𝑖
. (23)

External boundary condition (constant pressure):

𝑝
𝑓𝑀

(𝑟 = 𝑟
𝑀
, 𝑡) = 𝑝

𝑖
. (24)

External boundary condition (closed):

𝜕𝑝
𝑓𝑀

𝜕𝑟

𝑟=𝑟𝑀

= 0. (25)

4. Mathematical Model Solution

To simplify the mathematical model and its solution, dimen-
sionless parameters are defined as follows [18, 19].

The dimensionless pressure of the fracture system of the
kth section:

𝑝
𝐷𝑓𝑘

=
𝐾
𝑓𝑘
ℎ

1.842 × 10−3𝑞𝜇𝐵
(𝑝
𝑖
− 𝑝
𝑓𝑘
) . (26)
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The dimensionless pressure of the matrix system of the
kth section:

𝑝
𝐷𝑚𝑘

=
𝐾
𝑚𝑘
ℎ

1.842 × 10−3𝑞𝜇𝐵
(𝑝
𝑖
− 𝑝
𝑚𝑘
) . (27)

The dimensionless effective radius:

𝑟
𝐷𝑒
=

𝑟

𝑟
𝑤

𝑒
𝑆

. (28)

The dimensionless effective interface radius:

𝑟
𝐷𝑒𝑘

=
𝑟
𝑘

𝑟
𝑤

𝑒
𝑆

. (29)

The dimensionless effective time:

𝑡
𝐷𝑒
=

3.6𝐾
𝑓0
𝑡𝑒
2𝑆

(𝜑𝐶
𝑡
)
(𝑓+𝑚)0

𝜇𝑟2
𝑤

. (30)

The dimensionless effective wellbore storage coefficient:

𝐶
𝐷𝑒
=

𝐶𝑒
2𝑆

2𝜋ℎ(𝜙𝐶
𝑡
)
(𝑓+𝑚)0

𝑟2
𝑤

. (31)

The fluid capacitance coefficient of the kth section:

𝜔
𝑘
=

𝜙
𝑓𝑘
𝐶
𝑓𝑡

𝜙
𝑚𝑘
𝐶
𝑚𝑡
+ 𝜙
𝑓𝑘
𝐶
𝑓𝑡

. (32)

The interporosity flow coefficient of the kth section:

𝜆
𝑘
= 𝑎

𝐾
𝑚

𝐾
𝑓𝑘

𝑟
2

𝑤
. (33)

Substituting (26)–(33) into (17)–(25), dimensionless
mathematical models are obtained [20].

For a fracture system, the governing differential equation
in a dual fractal reservoir is

𝜕
2

𝑝
𝐷𝑓𝑘

𝜕𝑟
2

𝐷𝑒

+
1

𝑟
𝐷𝑒

𝜕𝑝
𝐷𝑓𝑘

𝜕𝑟
𝐷𝑒

+ 𝜆
𝑘
𝑒
−2𝑆

(
𝐾
𝑓𝑘

𝐾
𝑚

𝑝
𝐷𝑚𝑘

− 𝑝
𝐷𝑓𝑘

)

=
𝜔
𝑘

𝐶
𝐷𝑒

𝐾
𝑓0

𝐾
𝑓𝑘

𝜕𝑝
𝐷𝑓𝑘

𝜕 (𝑡
𝐷𝑒
/𝐶
𝐷𝑒
)

𝑟
𝐷𝑒(𝑘−1)

≤ 𝑟
𝐷𝑒
≤ 𝑟
𝐷𝑒𝑘

;

(34)

For matrix system,

− 𝜆
𝑘
𝑒
−2𝑆

(𝑝
𝐷𝑚𝑘

−
𝐾
𝑚

𝐾
𝑓𝑘

𝑝
𝐷𝑓𝑘

) =
1 − 𝜔
𝑘

𝐶
𝐷𝑒

𝐾
𝑓0

𝐾
𝑓𝑘

𝜕𝑝
𝐷𝑚𝑘

𝜕 (𝑡
𝐷𝑒
/𝐶
𝐷𝑒
)

𝑟
𝐷𝑒(𝑘−1)

≤ 𝑟
𝐷𝑒
≤ 𝑟
𝐷𝑒𝑘

.

(35)

Initial condition:

𝑝
𝐷𝑓𝑘

(𝑟
𝐷𝑒
, 0) = 𝑝

𝐷𝑚𝑘
(𝑟
𝐷𝑒
, 0) = 0 (𝑘 = 0, 1, . . . ,𝑀) . (36)

Interface connecting conditions of each zone, pressure
continuity:

𝑝
𝐷𝑓𝑘

𝑟𝐷𝑒=𝑟𝐷𝑒𝑘
= 𝑝
𝐷𝑓(𝑘+1)

𝑟𝐷𝑒=𝑟𝐷𝑒𝑘
(𝑘 = 0, 1, . . . ,𝑀 − 1) .

(37)

Interface connecting conditions of each zone, rate conti-
nuity:

𝜕𝑝
𝐷𝑓𝑘

𝜕𝑟
𝐷

𝑟𝐷𝑒=𝑟𝐷𝑒𝑘

=
𝐾
𝑓(𝑘+1)

𝐾
𝑓𝑘

𝜕𝑝
𝐷𝑓(𝑘+1)

𝜕𝑟
𝐷𝑒

𝑟𝐷𝑒=𝑟𝐷𝑒𝑘

(𝑘 = 0, 1, . . . ,𝑀 − 1) .

(38)

Well production condition:

𝑑𝑝
𝑤𝐷

𝑑 (𝑡
𝐷𝑒
/𝐶
𝐷𝑒
)
− (𝑟
𝐷𝑒

𝜕𝑝
𝐷𝑓0

𝜕𝑟
𝐷𝑒

)

𝑟𝐷𝑒=1

= 1 𝑝
𝑤𝐷

= 𝑝
𝐷𝑓0

𝑟𝐷𝑒=1
.

(39)

External boundary condition (infinite):

𝑝
𝐷𝑓𝑀

(𝑟
𝐷𝑒
→ ∞, 𝑡

𝐷𝑒
) = 0. (40)

External boundary condition (constant pressure):

𝑝
𝐷𝑓𝑀

(𝑟
𝐷𝑒
= 𝑟
𝐷𝑒𝑀

, 𝑡
𝐷𝑒
) = 0. (41)

External boundary condition (closed):

𝜕𝑝
𝐷𝑓𝑀

𝜕𝑟
𝐷𝑒

𝑟𝐷𝑒=𝑟𝐷𝑒𝑀

= 0. (42)

Theflowmathematicalmodel in Laplace space is obtained
by taking the Laplace transformation of (34)–(42) based on
𝑡
𝐷𝑒
/𝐶
𝐷𝑒
. The flow mathematical model is as follows [20].

For fracture system,

𝑑
2

𝑝
𝐷𝑓𝑘

𝑑𝑟
2

𝐷𝑒

+
1

𝑟
𝐷𝑒

𝑑𝑝
𝐷𝑓𝑘

𝑑𝑟
𝐷𝑒

+ 𝜆
𝑘
𝑒
−2𝑆

(
𝐾
𝑓𝑘

𝐾
𝑚

𝑝
𝐷𝑚𝑘

− 𝑝
𝐷𝑓𝑘

)

=
𝜔
𝑘

𝐶
𝐷𝑒

𝐾
𝑓0

𝐾
𝑓𝑘

𝑧𝑝
𝐷𝑓𝑘

𝑟
𝐷𝑒(𝑘−1)

≤ 𝑟
𝐷𝑒
≤ 𝑟
𝐷𝑒𝑘

.

(43)

For matrix system,

− 𝜆
𝑘
𝑒
−2𝑆

(𝑝
𝐷𝑚𝑘

−
𝐾
𝑚

𝐾
𝑓𝑘

𝑝
𝐷𝑓𝑘

) =
1 − 𝜔
𝑘

𝐶
𝐷𝑒

𝐾
𝑓0

𝐾
𝑓𝑘

𝑧𝑝
𝐷𝑚𝑘

𝑟
𝐷𝑒(𝑘−1)

≤ 𝑟
𝐷𝑒
≤ 𝑟
𝐷𝑒𝑘

.

(44)

Initial condition:
𝑝
𝐷𝑓𝑘

(𝑟
𝐷𝑒
, 0) = 𝑝

𝐷𝑚𝑘
(𝑟
𝐷𝑒
, 0) = 0

(𝑘 = 0, 1, . . . ,𝑀) .

(45)

Interface connecting conditions of each zone, pressure
continuity:

𝑝
𝐷𝑓𝑘

𝑟𝐷𝑒=𝑟𝐷𝑒𝑘
= 𝑝
𝐷𝑓(𝑘+1)

𝑟𝐷𝑒=𝑟𝐷𝑒𝑘
(𝑘 = 0, 1, . . . ,𝑀 − 1) .

(46)

Interface connecting conditions of each zone, rate conti-
nuity:

𝑑𝑝
𝐷𝑓𝑘

𝑑𝑟
𝐷𝑒

𝑟𝐷𝑒=𝑟𝐷𝑒𝑘

=
𝐾
𝑓(𝑘+1)

𝐾
𝑓𝑘

𝑑𝑝
𝐷𝑓(𝑘+1)

𝑑𝑟
𝐷𝑒

𝑟𝐷𝑒=𝑟𝐷𝑒𝑘

(𝑘 = 0, 1, . . . ,𝑀 − 1) .

(47)
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Well production condition:

𝑧𝑝
𝑤𝐷

− (𝑟
𝐷𝑒

𝑑𝑝
𝐷𝑓0

𝑑𝑟
𝐷𝑒

)

𝑟𝐷𝑒=1

=
1

𝑧
𝑝
𝑤𝐷

= 𝑝
𝐷𝑓0

𝑟𝐷𝑒=1
. (48)

External boundary condition (infinite):

𝑝
𝐷𝑓𝑀

(𝑟
𝐷𝑒
→ ∞, 𝑧) = 0. (49)

External boundary condition (constant pressure),

𝑝
𝐷𝑓𝑀

(𝑟
𝐷𝑒
= 𝑟
𝐷𝑒𝑀

, 𝑧) = 0. (50)

External boundary condition (closed).

𝜕𝑝
𝐷𝑓𝑀

𝜕𝑟
𝐷𝑒

𝑟𝐷𝑒=𝑟𝐷𝑒𝑀

= 0. (51)

In (43) and (44), the general solution of 𝑝
𝐷𝑓𝑘

is calculated
by

𝑝
𝐷𝑓𝑘

= 𝐴
𝑘
𝐼
0
(𝑟
𝐷𝑒𝑘

√𝑆
𝑘
(𝑧)) + 𝐵

𝑘
𝐾
0
(𝑟
𝐷𝑒𝑘

√𝑆
𝑘
(𝑧))

(𝑘 = 0, 1, . . . ,𝑀) .

(52)

The derivative of 𝑝
𝐷𝑓𝑘

in (52) is calculated by

𝑑𝑝
𝐷𝑓𝑘

𝑑𝑟
𝐷𝑒

= √𝑆
𝑘
(𝑧)𝐴
𝑘
𝐼
1
(𝑟
𝐷𝑒𝑘

√𝑆
𝑘
(𝑧))

−√𝑆
𝑘
(𝑧)𝐵
𝑘
𝐾
1
(𝑟
𝐷𝑒𝑘

√𝑆
𝑘
(𝑧)) (𝑘=0, 1, . . . ,𝑀) .

(53)

Substitute (52) and (53) into well production condition
equation (48);

𝑧𝑝
𝑤𝑓𝐷

− √𝑆
0
(𝑧)𝐴
0
𝐼
1
(√𝑆
0
(𝑧))

+ √𝑆
0
(𝑧)𝐵
0
𝐾
1
(√𝑆
0
(𝑧)) =

1

𝑧
,

𝑝
𝑤𝑓𝐷

= 𝐴
0
𝐼
0
(√𝑆
0
(𝑧)) + 𝐵

0
𝐾
0
(√𝑆
0
(𝑧)) .

(54)

Substitute (52) and (53) into interface connecting condi-
tion equation (46);

𝐴
𝑘
𝐼
0
(𝑟
𝐷𝑒𝑘

√𝑆
𝑘
(𝑧)) + 𝐵

𝑘
𝐾
0
(𝑟
𝐷𝑒𝑘

√𝑆
𝑘
(𝑧))

= 𝐴
𝑘+1
𝐼
0
(𝑟
𝐷𝑒𝑘

√𝑆
𝑘+1

(𝑧))

+ 𝐵
𝑘+1
𝐾
0
(𝑟
𝐷𝑒𝑘

√𝑆
𝑘+1

(𝑧)) (𝑘 = 0, 1, . . . ,𝑀 − 1) .

(55)

Substitute (52) and (53) into interface connecting condi-
tion equation (47);

𝐴
𝑘
√𝑆
𝑘
(𝑧)𝐼
1
(𝑟
𝐷𝑒𝑘

√𝑆
𝑘
(𝑧)) − 𝐵

𝑘
√𝑆
𝑘
(𝑧)𝐾
1
(𝑟
𝐷𝑒𝑘

√𝑆
𝑘
(𝑧))

=
𝐾
𝑓(𝑘+1)

𝐾
𝑓𝑘

𝐴
𝑘+1
√𝑆
𝑘
(𝑧)𝐼
1
(𝑟
𝐷𝑒𝑘

√𝑆
𝑘
(𝑧))

−
𝐾
𝑓(𝑘+1)

𝐾
𝑓𝑘

𝐵
𝑘+1
√𝑆
𝑘
(𝑧)𝐾
1
(𝑟
𝐷𝑒𝑘

√𝑆
𝑘
(𝑧))

(𝑘 = 0, 1, . . . ,𝑀 − 1) .

(56)

Substitute (52) and (53) into external boundary condition
equations (49)–(51);

𝐴
𝑀
= 0, (57)

𝐴
𝑀
𝐼
0
(𝑟
𝐷𝑒𝑀

√𝑆
𝑀
(𝑧)) + 𝐵

𝑀
𝐾
0
(𝑟
𝐷𝑒𝑀

√𝑆
𝑀
(𝑧)) = 0, (58)

𝐴
𝑀
𝐼
1
(𝑟
𝐷𝑒𝑀

√𝑆
𝑀
(𝑧)) − 𝐵

𝑀
𝐾
1
(𝑟
𝐷𝑒𝑀

√𝑆
𝑀
(𝑧)) = 0. (59)

𝑝
𝐷𝑓𝑘

, 𝐴
𝑘
, and 𝐵

𝑘
(𝑘 = 0, 1, . . . ,𝑀) can be obtained by

solving the simultaneous equations (54)–(59). In (54)–(59),
the tree-shaped fractal network parameters can be directly
used to express the parameters of the permeability ratio,
𝑘
𝑓(𝑘+1)

/𝑘
𝑓𝑘
, the dimensionless effective interface radius, 𝑟

𝐷𝑒𝑘
,

and the function, 𝑆
𝑘
(𝑧).

The dimensionless effective interface radius expression
can be derived by substituting (7) into (29):

𝑟
𝐷𝑒𝑘

=
𝑙
0

𝑟
𝑤

[1 +

𝛼 (1 − 𝛼
𝑘

) cos 𝜃
1 − 𝛼

] 𝑒
𝑆

. (60)

The permeability ratio can be calculated using (10):

𝐾
𝑓(𝑘+1)

𝐾
𝑓𝑘

= {
𝑛𝛽
2 cos 𝜃, 𝑘 = 0,

𝑛𝛽
2

, 𝑘 > 0.
(61)

The expression of the function 𝑆
𝑘
(𝑧) is as follows:

𝑆
𝑘
(𝑧) =

(𝐾
𝑓0
/𝐾
𝑓𝑘
) 𝜆
𝑘
(1 − 𝜔

𝑘
) 𝑧

(𝐾
𝑓0
/𝐾
𝑓𝑘
) (1 − 𝜔

𝑘
) 𝑒2𝑆𝑧 + 𝜆

𝑘
𝐶
𝐷𝑒

+
𝐾
𝑓0

𝐾
𝑓𝑘

𝜔
𝑘

𝐶
𝐷𝑒

𝑧,

(62)

where

𝐾
𝑓0

𝐾
𝑓𝑘

= (𝑛𝛽
2

)
−𝑘

. (63)

The interporosity flow coefficient, 𝜆
𝑘
, can be obtained by

substituting (4) and (10) into (33), and the fluid capacitance
coefficient, 𝜔

𝑘
, can be obtained by substituting (3), (14), and

(15) into (32).
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Figure 2: Pressure type curves of dual fractal reservoirs (𝛼 = 1,
𝛽 = 0.707, 𝜃 = 1,𝑁 = 4,𝑀 = 10, 𝑙

0
= 10m, 𝑑

0
= 0.05m, 𝐷

𝑓
= 1.5,

𝑇
𝑚
= 4, 𝑟

𝑤
= 0.1m, 𝑆 = −1, 𝐶

𝐷𝑒
= 0.0001, ℎ = 10m, 𝐶

𝑚𝑡
=

2.2 × 10
−5MPa−1, and 𝐶

𝑓𝑡
= 1 × 10

−4MPa−1).

5. Analysis of Type Curve Characteristics

Dimensionless bottom hole pressure in Laplace space, 𝑝
𝑤𝑓𝐷

,
is obtained by solving the linear equations (54)–(57) using the
Stehfest numerical inversion method.The bilogarithmic type
curves of the dual fractal reservoirs can then be illustrated.

In a condition of closed top and bottom boundary, the
transient flow process, which has six flow regimes, can be
clearly shown (Figure 2). The full and dashed lines represent
pressure and pressure derivative curves, respectively. Regime
1 is the pure wellbore storage regime. Pressure and its
derivative curves appear as upward straight lines with a
slope of 1. Regime 2 is the transition flow regime. The
shape of the derivative curve looks like an “arch,” which is
influenced by the wellbore storage coefficient and skin factor.
Regime 3 is the fracture system inter-porosity flow regime.
The pressure derivative curve is V shaped, which depicts
the response of inter-porosity flow between the fractures
that are heterogeneously distributed. This inter-porosity flow
regime is caused by spread of the pressure wave through
the fracture system. Regime 4 is the fracture system radial
flow regime. Slope of the pressure derivative curve is zero. In
this scenario, the pressure wave spreads through the whole
fracture system and begins to spread to the matrix system.
Regime 5 is the inter-porosity flow regime of matrix system
to fracture system. The pressure derivative curve is also V
shaped. However, it is influenced by spread of the pressure
wave through the matrix system. Regime 6 is the total system
radial flow regime.The pressure derivative curve converges to
a horizontal line, which depicts the response of the pressure
dynamic balance state in the whole system.

Figure 3 shows the type curve characteristics affected by
pore tortuosity,𝑇

𝑚
. As𝑇
𝑚
increases, the two V shaped curves

deepen and shift to the right, which indicates a longer lasting
inter-porosity flow regime and a delayed occurring time of
the radial flow regime in the fracture system. It also indicates
a delayed inter-porosity flow regime from matrix to fracture.
An increase in the initial branch number, N, has a similar
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Figure 3: Effect of pore tortuosity (𝑇
𝑚
) on type curves (𝛼 = 1, 𝛽 =

0.707, 𝜃 = 1, 𝑁 = 4, 𝑀 = 10, 𝑙
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Figure 4: Effect of initial branch number (N) on type curves (𝛼 = 1,
𝛽 = 0.707, 𝜃 = 1,𝑀 = 10, 𝑙

0
= 10m, 𝑑

0
= 0.05m,𝐷

𝑓
= 1.5, 𝑇

𝑚
= 4,

𝑟
𝑤
= 0.1m, 𝑆 = −1,𝐶

𝐷𝑒
= 0.0001, ℎ = 10m,𝐶

𝑚𝑡
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and 𝐶
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= 1 × 10
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influence on flow regimes 3, 4, and 5 as an increase in 𝑇
𝑚
, but

the V shaped curves associated with the pressure derivative
become shallower and shift to the right (Figure 4).

Figure 5 exhibits the type curve characteristics affected by
pore fractal dimension, 𝐷

𝑓
. Permeability of matrix system,

𝐾
𝑚
, and porosity of matrix system, 𝜙

𝑚
, increase with an

increase in 𝐷
𝑓
. A larger 𝐾

𝑚
leads to greater flow capacity in

the matrix system with an earlier transition to regime 5. A
larger 𝜙

𝑚
leads to a larger supplying capacity in the matrix

system, and regime 5 occurs earlier and lasts longer. As 𝐷
𝑓

increases, regime 5 occurs earlier and lasts longer, which is
depicted as a deeper and wider second V shaped pressure
derivative curve.

Figure 6 shows the type curve characteristics affected
by branch angle, 𝜃. Permeability of fracture system, 𝐾

𝑓
,

decreases with an increase in 𝜃. A smaller 𝐾
𝑓
leads to lower

flow capacity in the fracture system with an earlier transition
to regime 5. Porosity of fracture system, 𝜙

𝑓
, increases with an
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Figure 5: Effect of pore fractal dimension (𝐷
𝑓
) on type curves (𝛼 =
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Figure 6: Effect of branch angle (𝜃) on type curves (𝛼 = 1, 𝛽 =

0.707, 𝑁 = 4,𝑀 = 10, 𝑙
0
= 10m, 𝑑

0
= 0.05m, 𝐷

𝑓
= 1.5, 𝑇

𝑚
= 4,

𝑟
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increase in 𝜃. A larger𝜙
𝑓
leads to greater supplying capacity in

the fracture system, and regime 5 occurs later with a shorter
duration. When 𝜃 increases, it has the opposite effect on flow
regime 5 as an increase in𝐷

𝑓
.

Figure 7 exhibits the type curve characteristics affected
by the length ratio, 𝛼. 𝜙

𝑓
decreases with an increase in 𝛼. A

smaller 𝜙
𝑓
leads to a lower supplying capacity in the fracture

system and an earlier transition to a longer lasting regime
5. When a large 𝛼 increases, regime 5 occurs earlier, which
manifests in a deeper and wider second V shaped type curve.

Figure 8 exhibits the type curve characteristics affected
by diameter ratio, 𝛽. 𝐾

𝑓
and 𝜙

𝑓
increase with an increase in

𝛽. A larger 𝐾
𝑓
leads to larger flow capacity in the fracture

system and a later transition to regime 5. A larger 𝜙
𝑓
leads

to greater supplying capacity in the fracture system with a
later and shorter regime 5. When 𝛽 is smaller than 0.707, 𝐾

𝑓

increases with an increase in r, and when 𝛽 is greater than
0.707, 𝐾

𝑓
decreases with r. 𝛽 affects all regimes except for

𝛼 = 0.7
𝛼 = 1
𝛼 = 1.5
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Figure 7: Effect of length ratio (𝛼) on type curves (𝛽 = 0.707, 𝜃 = 1,
𝑁 = 4, 𝑀 = 10, 𝑙
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Figure 8: Effect of diameter ratio (𝛽) on type curves (𝛼 = 1, 𝜃 = 1,
𝑁 = 4, 𝑀 = 10, 𝑙
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pure wellbore storage and transition flow regime, which are
not affected by 𝐾

𝑓
. A larger 𝛽 leads to a lower location of

the dimensionless pressure curve, and regime 5 occurs later,
resulting in a shallower and narrower second V shaped type
curve. When 𝛽 equals the critical value of 0.707 (16), the
horizontal line representing regime 6 equals 0.5.

Figures 9 and 10 exhibit the type curve characteristics
affected by total branch level, M, when diameter ratio, 𝛽,
is 0.65 and 0.75, respectively. Radius, 𝑟, increases with an
increase in M. Additionally, r enhances the type curve
characteristics affected by 𝑀. When 𝛽 is less than 0.707, a
largeM leads to a higher dimensionless pressure curve, and,
vice versa, when 𝛽 is greater than 0.707, a large M leads to a
lower dimensionless pressure curve.

6. Conclusions

The transient flow model for pressure responses in dual
fractal reservoirs is established and solved, type curves are
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Figure 9: Effect of total branch level (𝑀) on type curves (𝛼 = 1,
𝛽 = 0.65, 𝜃 = 1,𝑁 = 4,𝑀 = 10, 𝑙
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Figure 10: Effect of total branch level (𝑀) on type curves (𝛼 = 1,
𝛽 = 0.65, 𝜃 = 1,𝑁 = 4,𝑀 = 10, 𝑙
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illustrated, and dual fractal flow behavior characteristics are
analyzed. The following conclusions were obtained.

(1) Fracture and matrix systems can be simulated using a
tree-shaped fractal network and fractal porousmedia,
respectively.

(2) Six flow regimes for pressure type curves can be estab-
lished. Type curves are dominated by fracture and
matrix fractal parameters. These various parameters
affect type curves differently.

(3) Type curves are dominated by external boundary
conditions, fractal parameters the fluid capacitance
coefficient and the inter-porosity flow factor.

(4) Semianalytical dual fractal modeling is suitable for
various naturally fractured oil or gas reservoirs and
provides a practical method to solve empirical cases.
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