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We propose and generalize a new nonlinear conjugate gradient method for unconstrained opti-
mization. The global convergence is proved with the Wolfe line search. Numerical experiments are
reported which support the theoretical analyses and show the presented methods outperforming
CGDESCENT method.

1. Introduction

This paper is concerned with conjugate gradient methods for unconstrained optimization

minf(x), x ∈ �n, (1.1)

where f(x) : �n → � is continuously differentiable and bounded from below. Starting from
an initial point x1, a nonlinear conjugate gradient method generates sequences {xk} and {dk}
by the below iteration

xk+1 = xk + αkdk, k ≥ 1, (1.2)

where αk is a step length which is determined by a line search and the direction dk is gener-
ated as

dk =

{
−gk, if k = 1,
−gk + βkdk−1, if k ≥ 2,

(1.3)

where gk = ∇f(xk) is the gradient of f(x) at xk and βk is a scalar.
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Different conjugate gradient algorithms correspond to different choices for the scale
parameter βk. The well-known formulae of βk are given by

βFRk =

∥∥gk∥∥2∥∥gk−1∥∥2 ,

βPRk =
gT
k

(
gk − gk−1

)
∥∥gk−1∥∥2 ,

βDY
k =

∥∥gk∥∥2
dT
k−1
(
gk − gk−1

) ,

βHS
k =

gT
k

(
gk − gk−1

)
dT
k−1
(
gk − gk−1

) ,

(1.4)

which are called Fletcher-Reeves [1] (FR), Polak-Ribière-Polyak [2] (PRP), Dai-Yuan [3]
(DY), and Hestenes-Stiefel [4] (HS), respectively. Though FR and DY have strong conver-
gence properties, they may have modest practical performance. While PRP and HS often
have better computational performance, but they may not generally be convergent.

Thesemotivate us to derive some efficient algorithms. In this paper, we focus onmixed
conjugate gradient methods. These methods are combinations of different conjugate gradient
methods. The aim of this paper is to propose the newmethods that possess both convergence
and well numerical results.

The line search in the conjugate gradient algorithms is often based on theWolfe inexact
line search

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk, (1.5)

g(xk + αkdk)
Tdk ≥ σgT

k dk, (1.6)

where 0 < δ < σ < 1.
Many research on the parameter βk have been concerned [5–7]. Such as Al-Baali [8]

proved that FR global convergent with inexact line search in which σ < 1/2. Liu et al. [9]
spread the results of [8] to the case of σ = 1/2. Dai and Yuan [10] gave an example when
σ > 1/2, FR may produce a rise direction.

PRP is famous as the best performance of all conjugate gradient methods which is
the restart method in nature. When the direction dk−1 is small and the factor gk − gk−1 in the
numerator of βPRP

k
tends to zero, the search direction dk is close to −gk. Gilbert and Nocedal

[11] proposed PRP+ which is the most successful modified method, that is,

βPRP
+

k = max
{
βPRPk , 0

}
. (1.7)
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Dai and Yuan [12] presented DY method and proved the global convergence when the line
search satisfies the Wolfe conditions. Zheng et al. [13] derived

βnewk =
gT
k

(
gk − dk−1

)
dT
k−1
(
gk − gk−1

) ,

βk =

⎧⎪⎨
⎪⎩
βnew
k

, if 0 < gT
k
dk−1 < min

(
2,

1
σ

)∥∥gk∥∥2,
βDY
k

, otherwise,

(1.8)

and discussed the properties of the new formulas.
HS is similar to PRP. It is equal to PRPwhen using the precision line search. HS satisfies

the conjugate condition which is different from other methods.
Touati-Ahmed and Storey [14] gave

βTSk =

⎧⎨
⎩
βPRPk , if 0 ≤ βPRPk ≤ βFRk ,

βFRk , otherwise.
(1.9)

Dai and Chen [15] proposed

βk =

⎧⎪⎨
⎪⎩
βHS
k

, if 0 < gT
k
gk−1 < min

(
2,

1
σ

)∥∥gk∥∥2,
βDY
k , otherwise.

(1.10)

Dai and Ni [16] derived

βk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−bβDY

k
, if βHS

k
< −bβDY

k
,

βHS
k

, if − bβDY
k

≤ βHS
k

≤ βDY
k

,

βDY
k

, if βHS
k

> βDY
k

.

(1.11)

Throughout the paper, ‖ · ‖ stands for the Euclidean norm.
Hager and Zhang (CGDESCENT) [17] proposed a conjugate gradient method with

guaranteed descent which corresponds to the following choice for the update parameters:

β
N

k = max{βN
k
, ηk}, where

ηk =
−1

‖dk‖min
{
η,
∥∥gk∥∥} ,

βNk =
1

dT
k
yk

(
yk − 2dk

∥∥yk

∥∥2
dT
k
yk

)T

gk+1.

(1.12)

Here, η > 0 is a constant. The extensive numerical tests and comparisons with other methods
showed that this method has advantage in some aspects.
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Zhang et al. (ZZL) [18] derived a descent modified PRP conjugate method, the direc-
tion dk is generated by

dk =

{
−gk, if k = 1,
−gk + βPRPk dk − θkyk−1, if k ≥ 2.

(1.13)

The numerical results suggested that the efficiency of the MPRP method is encouraging.
Consider the above mixed techniques and the properties of the classical conjugate

gradient methods, the new mixed methods will be presented. The main difference between
the new methods and the existed methods are the choice of βk and giving the generalization
of the new method. Moreover, the direction generated by the new methods are descent
directions of the objective function under mild conditions. In the numerical results, the
method’s overall performance will be given.

Firstly, we present a new formula

βnewk =
gT
k
gk

μ
∣∣gT

k
dk−1

∣∣ + dT
k−1
(
gk − gk−1

) . (1.14)

The rest of the paper is organized as follows. In Section 2, we give a new mixed con-
jugate gradient algorithm and convergence analysis. Section 3 is devoted to a generalization
of the new mixed method. In the last section, numerical results and comparisons with the
CGDESCENT and ZZL methods on test problems are reported and show the advantage of
the new methods.

2. A New Algorithm and Convergence Analysis

We discuss a new mixed conjugate gradient method

β∗k =

{
βnewk , if

∥∥gk∥∥2 ≥ ∣∣gT
k gk−1

∣∣,
0, otherwise,

(2.1)

where μ ≥ 1.

Algorithm 2.1.

Step 1. Give x1 ∈ �n, ε > 0, d1 = −g1; k := 1.

Step 2. If ‖gk‖ < ε, stop, else go to Step 3.

Step 3. Find αk satisfying Wolfe conditions (1.5) and (1.6).

Step 4. Compute new iterative xk+1 by xk+1 = xk + αkdk.

Step 5. Compute βk by (2.1), dk+1 = −gk+1 + βk+1dk, k := k + 1, go to Step 2.
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In order to derive the global convergence of the algorithm, we use the following
assumptions.

H 2.1 The objective function f(x) is bounded in the level set as below

L1 =
{
x ∈ �n | f(x) ≤ f(x1)

}
, (2.2)

where x1 is the starting point.

H 2.2 f(x) is continuously differentiable in a neighborhoodN of L1 and its gradient g(x)
is Lipschitz continuous, there exists a constant L > 0 such that

∥∥g(x) − g
(
y
)∥∥ ≤ L

∥∥x − y
∥∥, ∀x, y ∈ N. (2.3)

Lemma 2.2 (see Zoutendijk condition [19]). Suppose that H 2.1 and H 2.2 hold. If the conjugate
gradient method satisfies gT

k
dk < 0, then

∞∑
k=1

(
gT
k
dk

)2
‖dk‖2

< +∞. (2.4)

Theorem 2.3. Suppose that H 2.1 and H 2.2 hold. Let {xk} and {dk} be generated by (1.2) and (1.3),
where βk is computed by (2.1), αk satisfies Wolfe line search conditions, then gT

k dk < 0 holds for all
k ≥ 1.

Proof. The conclusion can be proved by induction. When k = 1, we have gT
1 d1 = −‖g1‖2 < 0.

Suppose that gT
k−1dk−1 < 0 hold for k. From (1.3), we have

gT
k dk = − ∥∥gk∥∥2 + βkg

T
k dk−1

≤ − ∥∥gk∥∥2 + ∣∣βk∣∣∣∣∣gT
k dk−1

∣∣∣. (2.5)

When β∗
k
= 0, it is obvious that

gT
k dk ≤ −∥∥gk∥∥2 < 0. (2.6)

When βk = βnew
k

, from (1.6) we have

dT
k−1
(
gk − gk−1

)
= gT

k dk−1 − gT
k−1dk−1

≥ σgT
k−1dk−1 − gT

k−1dk−1

= (σ − 1)gT
k−1dk−1 > 0.

(2.7)
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Then,

gT
k dk ≤ − ∥∥gk∥∥2 +

∥∥gk∥∥2
μ
∣∣gT

k
dk−1

∣∣ + dT
k−1
(
gk − gk−1

)∣∣∣gT
k dk−1

∣∣∣

≤ − ∥∥gk∥∥2 +
∥∥gk∥∥2

μ
∣∣gT

k dk−1
∣∣
∣∣∣gT

k dk−1
∣∣∣

=
(
−1 + 1

μ

)∥∥gk∥∥2,

(2.8)

from μ ≥ 1, then we can deduce that gT
k dk < 0 holds for all k ≥ 1.

Thus, the theorem is proved.

Theorem 2.4. Suppose that H 2.1 and H 2.2 hold. Consider Algorithm 2.1, where βk is determined
by (2.1), if gk /= 0 holds for any k, then,

lim inf
k→∞

∥∥gk∥∥ = 0. (2.9)

Proof. By contradiction, assume that (2.9) does not hold. Then there exists a constant ε > 0,
such that

∥∥gk∥∥ > ε, ∀k ≥ 1. (2.10)

From (2.1),

0 ≤ β∗k ≤
∥∥gk∥∥2

dT
k−1
(
gk − gk−1

) = βDY
k . (2.11)

By (1.3), if βk = βDY
k

, we derive

gT
k dk = −∥∥gk∥∥2 +

∥∥gk∥∥2
dT
k−1
(
gk − gk−1

)gT
k dk−1 = βDY

k gT
k−1dk−1. (2.12)

Then,

βDY
k =

gT
k dk

gT
k−1dk−1

. (2.13)

So,

∣∣β∗k∣∣ ≤ ∣∣∣βDY
k

∣∣∣ =
∣∣∣∣∣ gT

k
dk

gT
k−1dk−1

∣∣∣∣∣. (2.14)
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From (1.3), we have

dk + gk = βkdk−1. (2.15)

By squaring the two sides of (2.15) and transferring and trimming, we get

‖dk‖2 = −∥∥gk∥∥2 − 2gT
k dk + β2k‖dk−1‖2. (2.16)

Then,

‖dk‖2 ≤ −∥∥gk∥∥2 − 2gT
k dk +

(
gT
k
dk

)2
(
gT
k−1dk−1

)2 ‖dk−1‖2,

‖dk‖2(
gT
k
dk

)2 ≤ − 2
gT
k
dk

+
‖dk−1‖2(
gT
k−1dk−1

)2 −
∥∥gk∥∥2(
gT
k
dk

)2 ≤ ‖dk−1‖2(
gT
k−1dk−1

)2 +
1∥∥gk∥∥2 .

(2.17)

Since,

‖d1‖2(
gT
1 d1
)2 =

∥∥g1∥∥2(−gT
1 g1
)2 =

1∥∥gk∥∥2 ,
‖dk‖2(
gT
k
dk

)2 ≤
∑
i≥1

1∥∥gi∥∥2 .
(2.18)

From (2.10), we have

∑
i≥1

1∥∥gi∥∥2 ≤ k

ε2
. (2.19)

Therefore,

(
gT
k
dk

)2
‖dk‖2

≥ ε2

k
,

∑
k≥1

(
gT
k dk

)2
‖dk‖2

= +∞.

(2.20)

This is a contradiction to Lemma 2.2, the global convergence is got.
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3. Generalization of the New Method and Convergence

The generalization of the new mixed method is as follows:

β∗∗k =

{
λβnew

k
, if

∥∥gk∥∥2 ≥ ∣∣gT
k
gk−1
∣∣,

0, otherwise,
(3.1)

where βnew
k

= gT
k
gk/(μ|gT

k
dk−1| + dT

k−1(gk − gk−1)), μ > 1 > λ > 0.

Algorithm 3.1.

Step 1–Step 4 are the same as that of Algorithm 2.1.

Step 5. Compute βk by (3.1), dk+1 = −gk+1 + βk+1dk, k := k + 1, go to Step 2.

Theorem 3.2. Suppose that H 2.1 and H 2.2 hold. Let {xk} and {dk} be generated by (1.2) and (1.3),
where βk is computed by (3.1), αk satisfies Wolfe line search conditions, then gT

k
dk < 0 holds for all

k ≥ 1.

Proof. The conclusion can be proved by induction. When k = 1, we have gT
1 d1 = −‖g1‖2 < 0.

Suppose that gT
k−1dk−1 < 0 holds. For k, it is obvious that if β∗∗

k
= 0, then

gT
k dk ≤ −∥∥gk∥∥2 < 0. (3.2)

When βk = λβnewk , from (2.5) and (3.1), we have

gT
k dk ≤ − ∥∥gk∥∥2 + λ

(
gT
k gk
)

μ
∣∣gT

k
dk−1

∣∣ + dT
k−1
(
gk − gk−1

)∣∣∣gT
k dk−1

∣∣∣

≤ − ∥∥gk∥∥2 + λ
∥∥gk∥∥2

μ
∣∣gT

k
dk−1

∣∣
∣∣∣gT

k dk−1
∣∣∣

≤ − ∥∥gk∥∥2 + λ

μ

∥∥gk∥∥2

=
∥∥gk∥∥2

(
λ

μ
− 1
)

< 0.

(3.3)

To sum up, the theorem is proved.

Theorem 3.3. Suppose that H 2.1 and H 2.2 hold. Consider Algorithm 3.1, where βk is determined
by (3.1), if gk /= 0 holds for any k, then,

lim inf
k→∞

∥∥gk∥∥ = 0. (3.4)
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Proof. By contradiction, assume that (3.4) does not hold. Then there exists a constant γ > 0
such that

∥∥gk∥∥ > γ, ∀k ≥ 1. (3.5)

From (3.1)

0 ≤ β∗∗k ≤ λ
∥∥gk∥∥2

dT
k−1
(
gk − gk−1

) ≤
∥∥gk∥∥2

dT
k−1
(
gk − gk−1

) = βDY
k . (3.6)

By (1.3), we have

dk + gk = βkdk−1. (3.7)

Then,

‖dk‖2 = −∥∥gk∥∥2 − 2gT
k dk + β2k‖dk−1‖2. (3.8)

From (3.6),

‖dk‖2 ≤ −∥∥gk∥∥2 − 2gT
k dk +

(
gT
k dk

)2
(
gT
k−1dk−1

)2 ‖dk−1‖2,

‖dk‖2(
gT
k
dk

)2 ≤ − 2
gT
k
dk

+
‖dk−1‖2(
gT
k−1dk−1

)2 −
∥∥gk∥∥2(
gT
k
dk

)2 ≤ ‖dk−1‖2(
gT
k−1dk−1

)2 +
1∥∥gk∥∥2 ,

‖dk‖2(
gT
k dk

)2 ≤
∑
i≥1

1∥∥gi∥∥2 .

(3.9)

By (3.5), we have

(
gT
k dk

)2
‖dk‖2

≥ γ2

k
,

∑
k≥1

(
gT
k
dk

)2
‖dk‖2

= +∞.

(3.10)

This is a contradiction to Lemma 2.2, and the global convergence is proved.
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Table 1: Numerical results of the NEW1 and NEW2.

Number Prob. dim k/nf/ng/t (NEW1)
‖gk‖2 (NEW1)

k/nf/ng/t (NEW2)
‖gk‖2 (NEW2)

1 Powell badly scaled 2 6/20/9/0.0010 9/25/11/0.0010

0.2511 0.2709

2 Brown badly scaled 2 9/26/12/0.0010 9/26/11/0.0010

0 9.1712e − 005

3 Trigonometric function 10 11/48/29/0.0010 13/58/37/0.0020

0.0056 0.0061

4 Chebyquad 100 30/42/33/0.3594 61/72/65/0.4375

0.0258 0.0207

5 Penalty function I 100 5/20/12/0.0313 5/20/12/0.0313

5.4750e − 005 6.8047e − 005

500 11/36/23/0.0010 10/34/20/0.0010

1.5626e − 004 3.9363e − 004

6 Allgower 500 4/32/8/0.0156 4/32/8/0.0313

0.0147 0.0215

7 Variable dimension 500 12/50/14/0.0625 12/50/14/0.0313

5.9262e − 006 5.9262e − 006

1000 16/54/16/0.0313 16/54/16/0.0313

1.1473e − 004 1.1473e − 004

5 Penalty function I 1000 19/44/26/0.0313 22/48/30/0.0156

0.0010 3.8348e − 004

8 Integral equation 1000 2/24/2/0.0010 2/24/2/0.0020

0.0032 0.0058

9 Separable cubic 1000 9/12/11/0.3594 9/13/11/0.4219

6.1814e − 004 4.0438e − 005

3000 10/14/13/2.5469 9/13/12/2.4063

7.2599e − 005 2.0012e − 004

4. Numerical Results

This section is devoted to test the implementation of the new methods. We compare the
performance of the new methods with the CGDESCENT and ZZL methods.

All tests in this paper are implemented on a PC with 1.8MHz Pentium IV and 256MB
SDRAM using MATLAB 6.5. If ε = 10−6 then stop. Some classical test functions with standard
starting points are selected to test the methods. These functions are widely used in the
literature to test unconstrained optimization algorithms [20].

In the table, the four reported data (k/nf/ng/t) are iteration numbers/function
evaluations/gradient evaluations/CPU time(s), and ‖gk‖2 stands for the square of the
gradient at the final iterate. When we set μ = 1, λ = 0.5, η = 0.01, δ = 0.01, σ = 0.8, the
numerical results of the NEW1 and NEW2 are listed in Table 1 and the CGDESCENT and
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Table 2: Numerical results of the CGDESCENT and NEW3.

Number Prob. dim k/nf/ng/t (CGDESCENT)
‖gk‖2 (CGDESCENT)

k/nf/ng/t (NEW3)
‖gk‖2 (NEW3)

1 Powell badly scaled 2 6/16/7/0.0851 13/38/20/0.0313
0.2704 0.4305

2 Brown badly scaled 2 13/33/14/0.0010 20/82/44/0.0313
0 0.9525

3 Trigonometric function 10 12/56/33/0.0010 11/44/27/0.0313
0.0075 0.0598

4 Chebyquad 100 64/75/67/0.4219 38/58/44/0.2344
0.0178 0.0175

5 Penalty function I 100 5/20/12/0.0313 10/37/10/0.0313
5.4750e − 005 3.4737e − 004

500 10/34/20/0.0313 9/27/15/0.0010

3.8011e − 005 2.5130e − 004

6 Allgower 500 4/32/8/0.1256 4/32/8/0.1250
0.0259 0.0089

7 Variable dimension 500 12/50/14/0.0528 12/50/14/0.0313
5.9262e − 006 5.9269e − 004

1000 16/54/16/0.0313 16/53/16/0.0010

1.1473e − 004 5.6730e − 005

5 Penalty function I 1000 22/49/31/0.0313 21/50/30/0.0625
3.1604e − 004 3.4038e − 004

8 Integral equation 1000 2/24/2/0.0010 2/24/2/0.0010
0.0028 0.0156

9 Separable cubic 1000 13/16/14/0.5469 16/20/20/0.5000
2.5196e − 004 2.1274e − 004

3000 10/14/13/2.5469 10/14/13/2.5469

7.6877e − 005 2.2646e − 004

ZZL (NEW3) are listed in Table 2. When we set μ = 1.5, λ = 0.1, η = 10, δ = 0.1, σ = 0.9,
the numerical results of the NEW 1 (NEW4) and NEW 2 (NEW5) are listed in Table 3 and the
CGDESCENT (NEW6) and ZZL (NEW7) are listed in Table 4. It can be observed from Tables
1–4 that for the most of problems, the implementation of the new methods are superior to
other methods from the iteration numbers, the calls of function, and gradient evaluations.

Comparedwith the CGDESCENTmethod, the newmethods are effective (see Table 5).
Using the formula Ntotal = nf + l ∗ ng, where l is fixed constant, let l = 3. By

γi
(
NEW

(
j
))

=
Ntotal

(
NEW

(
j
))

Ntotal(CGDESCET)
, (4.1)

where j = 1, 2, . . . , 7; i ∈ S, S is the whole of classical problems’ order. If γi(NEW(j)) > 1, then
CGDESCENT method is regarded as better performance; if γi(NEW(j)) = 1, the methods
have the same performances and if γi(NEW(j)) < 1, the new methods are performed better.
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Table 3: Numerical results of the NEW4 and NEW5.

Number Prob. dim k/nf/ng/t (NEW4)
‖gk‖2 (NEW4)

k/nf/ng/t (NEW5)
‖gk‖2 (NEW5)

1 Powell badly scaled 2 12/25/13/0.0010 9/21/10/0.0010

0.3511 0.3709

2 Brown badly scaled 2 14/36/15/0.0010 9/26/10/0.0313

7.6024e − 005 1.1840

3 Trigonometric function 10 11/45/27/0.0010 13/51/33/0.0020

0.0026 0.0017

4 Chebyquad 44/58/47/0.3281 72/82/73/0.3750

0.0430 0.0251

5 Penalty function I 100 5/20/12/0.0313 5/20/12/0.0313

5.4750e − 005 5.4750e − 005

500 9/27/16/0.0156 9/27/16/0.0313

7.0807e − 004 7.4979e − 004

6 Allgower 500 4/32/8/0.0010 4/32/8/0.0020

0.0026 0.0017

7 Variable dimension 500 17/53/19/0.0313 19/53/19/0.0313

3.9292e − 008 2.8061e − 008

1000 16/54/16/0.0313 16/54/16/0.0010

1.1473e − 004 1.1473e − 004

5 Penalty function I 1000 11/31/13/0.0313 11/31/13/0.0313

0.0041 0.0036

8 Integral equation 1000 2/24/2/0.0020 2/24/2/0.0625

0.0041 0.0936

9 Separable cubic 1000 15/17/16/0.4531 10/12/11/0.2969

3.8684e − 004 7.7732e − 004

3000 16/20/20/4.3750 14/16/15/3.3438

1.3230e − 005 7.4737e − 006

We use

γtotal
(
NEW

(
j
))

=
(
Πi∈Sγi

(
NEW

(
j
)))1/|S| (4.2)

as a measure to compare the performance of CGDESCENT method and the new methods,
where |S| is the number of S. If γtotal(NEW(j)) < 1, then NEW(j) method outperforms
CGDESCENT method. The computational results are listed in Table 5.

It is obvious that γtotal(NEW(j)) < 1, where j = 1, 2, 4, 5, so we can deduce that the new
methods outperform CGDESCENT method.
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Table 4: Numerical results of the NEW6 and NEW7.

Number Prob. dim k/nf/ng/t (NEW6)
‖gk‖2 (NEW6)

k/nf/ng/t (NEW7)
‖gk‖2 (NEW7)

1 Powell badly scaled 2 14/29/15/0.0313 19/54/30/0.0313
0.4181 0.7893

2 Brown badly scaled 2 3/22/3/0.0156 41/111/69/0.0010
1.0000e + 006 3.8332e + 004

3 Trigonometric function 10 2/26/2/0.0010 15/63/40/0.0010
0.0059 0.7360

4 Chebyquad 4/14/5/0.0625 36/56/41/0.2344

1.5078 0.0188

5 Penalty function I 100 5/20/12/0.0313 10/37/10/0.0313
5.4750e − 005 3.4737e − 004

500 9/27/15/0.0313 9/27/15/0.0010

7.1267e − 004 2.5130e − 004

6 Allgower 500 4/32/8/0.0010 4/32/8/0.0938
0.0059 0.0563

7 Variable dimension 500 17/53/19/0.0313 19/55/20/0.0010
2.8061e − 008 2.4868e − 006

1000 16/54/16/0.0313 16/53/16/0.0010

1.1473e − 004 5.6730e − 005

5 Penalty function I 1000 11/31/13/0.0416 11/31/13/0.0010
0.0010 0.0010

8 Integral equation 1000 2/24/2/0.0020 2/24/2/0.0625
0.0041 0.0936

9 Separable cubic 1000 9/12/11/0.4063 16/18/17/0.3906
6.5318e − 004 7.9504e − 004

3000 12/16/14/3.2969 20/22/22/4.3438

1.7672e − 005 5.7872e − 004

Table 5

γtotal (CGDESCENT) 1
γtotal (NEW1) 0.9220
γtotal (NEW2) 0.9270
γtotal (NEW3) 1.1347
γtotal (NEW4) 0.9895
γtotal (NEW5) 0.9415
γtotal (NEW6) 1.1595
γtotal (NEW7) 1.2164
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