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A novel dynamic interacting particle swarm optimization algorithm (DYN-PSO) is proposed. The algorithm can be considered to
be the synthesis of two established trajectory methods for unconstrained minimization. In the new method, the minimization of
a function is achieved through the dynamic motion of a strongly interacting particle swarm, where each particle in the swarm is
simultaneously attracted by all other particles located at positions of lower function value. The force of attraction experienced by a
particle at higher function value due to a particle at a lower function value is equal to the difference between the respective function-
values divided by their stochastically perturbed position difference. The resultant motion of the particles under the influence of
the attracting forces is computed by solving the associated equations of motion numerically. An energy dissipation strategy is
applied to each particle. The specific chosen force law and the dissipation strategy result in the rapid collapse (convergence) of the
swarm to a stationary point. Numerical results show that, in comparison to the standard particle swarm algorithm, the proposed
DYN-PSO algorithm is promising.
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1. INTRODUCTION

A new direct search method using only function values is
proposed for finding a local minimizer x∗ with associated
function value f ∗ of a real valued function f (x), x = [x1,
x2, . . . , xn]T ∈ Rn. The method proposed may be consid-
ered as the synthesis of two unconventional trajectory meth-
ods for the unconstrained minimization of a multivariable
function. The first is the dynamic method of Snyman [1, 2],
and the second method is the particle swarm optimization
(PSO) method of Eberhardt and Kennedy [3]. In the dy-
namic method, also known as the leap-frog algorithm, the
minimum of the function is sought by considering the dy-
namic motion of a single particle of unit mass in an n-
dimensional force field, where the potential energy of the
particle is represented by the function to be minimized. In
the computation of the numerical trajectory (by means of
the leap-frog integration scheme of Greenspan [4]), an in-
terfering strategy is applied to the motion of the particle by
extracting kinetic energy whenever it moves “uphill” along
its trajectory. In this way, the particle is forced to converge

to a local minimum. This method requires the availability of
the gradient vector of the function, denoted ∇ f , the nega-
tive of which represents the force acting on the particle. The
particle’s acceleration is therefore proportional to−∇ f . This
is in contrast to classical gradient-based optimization, where
position updates (or parts thereof) are proportional to−∇ f .
In the PSO method, the motion of a swarm of loosely inter-
acting particles is considered. In this method, each particle is
attracted to the best location (lowest function value position)
along its path, as well as to the globally overall best position
over all the particle trajectories to date. This method requires
no gradient information and may therefore be considered a
direct search method.

In the new method proposed here, the minimization of
a function is achieved through the dynamic motion of a
strongly interacting particle swarm, where each particle in
the swarm is simultaneously attracted by all other particles
located at positions of lower function value. The specific
force law for the interaction between the individual parti-
cles within the swarm dictates that the force of attraction
experienced by a particle at higher function value position
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due to a particle at a lower function value position be equal
to the difference between the respective function values di-
vided by their distance of separation. The resultant motion
of the particles under the influence of the attracting forces
is computed by solving the associated equations of motion
numerically by using again the leap-frog numerical integra-
tion scheme. An energy dissipation strategy, similar to that
used in the original dynamic method, is applied to each par-
ticle by extracting kinetic energy from a particle whenever it
moves “uphill”. The specific chosen force law and the dissi-
pation strategy result in the rapid collapse (convergence) of
the swarm to a stationary point. To prevent the collapse of
the swarm to a minimum in a subspace of Rn, the computed
components of the respective attracting forces are individu-
ally stochastically perturbed in computing the respective par-
ticle trajectories. Because of the strong interaction, the result-
ing algorithm converges rapidly to a local minimum, as does
the original dynamic algorithm, but now without the need
of explicit gradient information. Note that the method pro-
posed here is not similar to the method proposed by Engel-
brecht [5], where the position of only the global best particle
is adjusted using the dynamic method, with the remainder of
the swarm using a standard PSO algorithm.

The proposed dynamic particle swarm optimization
(DYN-PSO) algorithm promises to be an extremely reliable,
robust, and easy-to-use method. As a preliminary test, it was
decided to evaluate its performance against that of both tra-
jectory methods it was constructed from, namely, a standard
PSO algorithm [6] and the dynamic method of Snyman. The
choice of a standard PSO algorithm is a deliberate one. The
intention with this paper is to determine whether or not
DYN-PSO deserves further investigation, not to suggest that
this is a superior algorithm. A comparison to a standard PSO
rather than a highly refined PSO variant serves this purpose
better.

Before proceeding, the constrained molecular dynamics
PSO by Poli and Stephens [7] deserves to be mentioned. In
essence, their method is similar is spirit, but the details differ.
They embed the cost function (the height above the search
space) as an artificial coordinate, and then constrain the par-
ticles “to be on the fitness landscape” via an equality con-
straint. Their general formulation allows for different types
of forces, one of which is a gravity-like force. In our imple-
mentation, this gravity-like force is the only external force.
Poli and Stephens also consider particle-interaction forces.
In particular, they discuss the case of particles connected by
springs and energy dissipation that occur via friction/viscous
damping. They then also numerically integrate the result-
ing differential equation, but elect to use the forward Euler
method. Their method still requires cost function gradients,
as well as second-order derivatives, which they approximate
numerically. Limited numerical testing was performed.

2. DESCRIPTION OF THE DYNAMIC-PSO METHOD

2.1. Computation of particle trajectories

The DYN-PSO method is started by generating at time t = 0,
a swarm of np particles, each of unit mass, with random ini-

tial positions denoted by x{i}(0) = x0{i}, i = 1, 2, . . . , np,
within the region (“box”) of interest in Rn. Initially, at t = 0,
these particles all have zero velocities, that is, v{i}(0) =
v0{i} = 0, i = 1, 2, . . . , np. We now postulate that at time
t each particle i experiences a force a{i}(t), which is to be a
function of the positions x{ j}(t) and corresponding func-
tion values f (x{ j}(t)), j = 1, 2, . . . , np of all the particles
at time t. The explicit analytical form of the force law giv-
ing a{i}(t) will be discussed in the next subsection. Thus, the
trajectories x{i}(t) of the particles are given by the solution
to the system of initial value problems

ẍ{i}(t) = a{i}(t) (1)

with initial conditions

x{i}(0) = x0{i},

ẋ{i}(0) = v{i}(0) = v0{i} = 0;
(2)

for i = 1, 2, . . . , np.
In practice, these equations are solved numerically by

discretizing the time interval into time steps δ, and com-
puting for i = 1, 2, . . . , np approximations xk{i} to x{i}(tk)
and vk{i} to v{i}(tk) at discrete time mesh points tk =
kδ, k = 0, 1, 2, . . . , by some suitable numerical integration
scheme. Here, we use the simple leap-frog numerical inte-
gration scheme of Greenspan [4].

Given x0{i} and v0{i} for i = 1, 2, . . . , np, then for itera-
tions k = 0, 1, 2, . . . , compute for i = 1, 2, . . . , np:

vk+1{i} = vk{i} + ak{i}δ,

xk+1{i} = xk{i} + vk+1{i}δ,
(3)

where ak{i} denotes the resultant force on particle i due to
the individual forces of all the other particles at respective
positions xk{ j}, j = 1, 2, . . . , np, j /= i (see next subsection).

This scheme has been found to be stable for sufficiently
small time steps δ. It is also approximately energy conserving
in the absence of energy dissipating forces, and was success-
fully used in the original single-particle dynamic method of
Snyman [1].

2.2. The interacting force law

In the original dynamic method of Snyman [1, 2], a single
particle is considered. The force a acting on this particle is
equal to the negative of the function gradient. Since we pro-
pose a direct search method, we no longer have gradient in-
formation available. Rather, we will use information available
in the swarm to generate the particle forces.

We now postulate that at iteration k each particle i in the
swarm is simultaneously attracted by all other particles lo-
cated at current computed positions of lower function value.
No force is exerted on particle i by particles at higher function
value positions. The explicit force law that we assume here
dictates that the force of attraction experienced by a particle
at higher function value due to a particle at a lower function
value position is equal to the difference between the respec-
tive function values, divided by their distance of separation.
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If the particle positions are randomly distributed, this force
law can be viewed as a coarse finite difference computation,
with the finite difference step equal to the distance of sepa-
ration. As the particle positions become biased, the analogy
between this proposed force law and a finite difference com-
putation breaks down. This breakdown occurs since multi-
ple forces in the same direction add up, opposed to stan-
dard finite difference perturbations which form an orthog-
onal set. Even considering generalized finite differences [8],
the gradient components due to multiple perturbations in
the same direction are averaged, rather than added together
as in our proposed force law. A stochastic element is intro-
duced into the proposed force law by randomly perturbing
the direction of action of the attracting force. More explic-
itly and precisely, at each iteration k the resultant force ex-
erted on particle i at current position xk{i} with function
value f (xk{i}) by the other np − 1 particles at current posi-
tions xk{ j}, j = 1, 2, . . . , np, j /= i with corresponding func-
tion values f (xk{ j}) is given by the force ak{i} with compo-
nents

akm{i} =
∑np

j=1, j /=i
[
xkm{ j} − xkm{i}

]
cj2(rd)

∥
∥xk{ j} − xk{i}∥∥ (4)

for m = 1, 2, . . . ,n. Here cj = max[0, f (xk{i}) − f (xk{ j})]
and rd is, for each j, an independent random number in [0,
1]. Note that the multiplication of a uniform random num-
ber in [0,1] by 2 results in a scheme that on average assigns
unit weight to each of the computed components. If this
stochastic element is omitted, the proposed algorithm suffers
from premature convergence due to collapse of the swarm to
a subspace in Rn. Similar observations have been made for
the linear PSO [9].

This proposed force law is in contrast to the standard
PSO, where particles are attracted to historic positions (per-
sonal and global bests) rather than the current position of
other particles. In addition, this force law automatically re-
sults in a dynamic neighborhood, where it is possible that
completely different particles exert forces on particle i in it-
eration k + 1, as compared to iteration k. In a given iteration
k, the complete range of interaction is also covered. One ex-
treme is the particle with the current worst function value,
which experiences forces from all other particles. The other
extreme is the particle with the current best function value,
which experiences no force and travels at constant velocity.

2.3. Energy dissipation strategy

In computing the trajectories of the particles xk{i}, i =
1, 2, . . . , np, for k = 0, 1, 2, . . . , the function values fk(i) =
f (xk{i}) at xk{i} are monitored at each iteration k so that
the best (lowest) function value fb{i} and the corresponding
best position xb{i} along each trajectory i are recorded. The
current overall globally best function value fg = mini( fb{i})
and the corresponding position xg are also recorded.

The following energy dissipation strategy is now applied
to ensure local descent of a particle and the overall collapse
of the swarm to a local minimum. Whenever a particle i
moves “uphill” at iteration k, that is, when fk+1{i} > fk{i},

then set xk+1{i} := [2xk{i} + xb{i} + xk+1{i}]/4 and set
vk+1{i} := [vk+1{i} + vk{i}]/4. Notice that the current ve-
locity vk+1{i} is recomputed to be half the average velocity
over the past two time steps. This interference will normally
result in a decrease in kinetic energy and together with the
“backward” adjustment of the position xk+1{i} will initiate
controlled motion of the particle towards a position of lower
function value. The trajectory of particle i is assumed to have
converged if the relative function value difference from iter-
ation k to k + 1, that is, | fk+1{i} − fk{i}|/(1 + | fk+1{i}|), is
less than some prescribed tolerance ε. The computation of
the trajectories are continued until a sufficient number (npc)
of the particles have converged to a stationary point. In prac-
tice, we choose npc = min[n, np].

A formal presentation of the basic DYN-PSO algorithm
is presented in Algorithm 1. For the sake of clarity and sim-
plicity of presentation of the algorithm, the function value
computation and monitoring procedure, and the recording
of best local fb{i} and global fg function values and corre-
sponding best local and global positions, xb{i} and xg are not
explicitly listed, but are implicitly assumed to be done in the
execution of Algorithm 1. Also the computation of the forces
ak{i}, i = 1, 2, . . . , np, according to (4), is assumed to have
been done as the need for the ak{i} arises in Algorithm 1.

2.4. Selection of suitable integration time step

An outstanding matter is the selection of an appropriate time
step δ to be used in the leap-frog integration scheme. This
value can be chosen arbitrarily, but if chosen too large may
result in individually erratic and unstable trajectories that fail
to converge because of very large zigzagging steps being taken
in space. On the other hand, if δ is too small, the steps in
space will be correspondingly small and the collapse of the
swarm may be very slow, requiring an excessively large num-
ber of iterations for convergence.

Many different schemes may be proposed to automati-
cally select and control the time step so that acceptable con-
vergence rates are obtained. Here, we firstly select an initial
time step which guarantees sufficiently large trajectory steps
in space for all the particles. Secondly, after the trajectories
are initiated, for each iteration k and for each particle i, the
magnitude of the actual step taken in space is monitored; and
if larger than some specified step limit, the time step associ-
ated with the particular trajectory is reduced, that is, we now
allow for different time steps δ{i}, i = 1, 2, . . . , np, for the
different particles. The details of these additional automatic
time step control procedures follow below.

In Step 1 of Algorithm 1, after the generation of the np
random particles, compute the average magnitude a of the
forces acting on the particles a =∑i‖a{i}‖/np. An associated
average computed initial step size follows from the leap-frog
scheme as Δx = aδ2. Requiring initially, on average, a step
size of Δx = D, where D is the diameter of the initial vari-
able “box”, we initially select as sufficiently large initial time
steps δ{i} = δ = √

D/ a, i = 1, 2, . . . , np, which is now in-
serted in Step 1 just after the generation of the initial random
particle positions. However, for a particular particle, this ini-
tial choice for the time step may still be too large and result
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Given the following:

(i) function f (x), x = [x1, x2, . . . , xn]T ∈ Rn;
(ii) np = number of particles;

(iii) y = central point of region (“box”) of interest;
(iv) range(i) = range of ith dimension of variable “box”;
(v) δ = integration time step;

(vi) ε = tolerance for convergence of a trajectory on
function value;

(vii) npc = number of particle trajectories required to
converge before termination (default: npc = min[n,
np]);

(viii) max = maximum number of iterations allowed,

then perform the following steps.
Step 1.

(i) For i = 1, 2, . . . , np, generate random particle
starting positions x0{i} within the specified box
with components: x0

j {i} = yj + range( j)(rd − 1/2);
j = 1, 2, . . . ,n, where rd is an independent random
number in the interval [0, 1];

(ii) set initial velocities equal to zero: v0{i} = 0 and set
iteration number k := 0; and convergence counter
ic := 0.

Step 2.

(i) Compute trajectory step k to k + 1 for each particle
i = 1, 2, . . . , np, using the leap-frog integration scheme:
for i = 1, 2, . . . , np,

vk+1{i} := vk{i} + ak{i}δ,
xk+1{i} := xk{i} + vk+1{i}δ,

end for

Step 3.

(i) for i = 1, 2, . . . , np:
if fk+1{i} > fk{i}, then

xk+1{i} := [2xk{i} + xb{i} + xk+1{i}]/4,
vk+1{i} := [vk+1{i} + vk{i}]/4

end if
if | fk+1{i} − fk{i}|/(1 + | fk+1{i}|) < ε and k > 0, then

set ic = ic + 1;
if ic = npc, then set x∗ := xg and f ∗ := fg and stop.
if k = max, then stop.
end for

(ii) set k := k + 1; ic := 0 and go to Step 2.

Algorithm 1: Basic DYN-PSO algorithm.

in erratic behavior along the computed trajectory. Thus, as a
further control measure, the magnitude of the step taken by
each particle is monitored at each iteration, and if it exceeds
a specified limit xlim, the current velocity is scaled down by
a factor xlim/‖xk+1{i} − xk{i}‖, the particle’s time step for
subsequent steps is reduced by a factor α, and the step to
xk+1{i} is recomputed using the rescaled velocity and new
time step. More specifically, we introduce at the end of Step
2 of Algorithm 1, for each iteration k and for each particle i,
the additional procedure given in Algorithm 2.

In practice, good choices for the additional parameters
introduced here are xlim = D/2 and α = 0.5. These values are
used in the numerical tests that are reported here.

if ‖xk+1{i} − xk{i}‖ > xlim then
δ{i} := αδ{i}
vk+1{i} := xlimvk+1{i}/‖xk+1{i} − xk{i}‖
xk+1{i} := xk{i} + vk+1δ{i}

end if

Algorithm 2: Adjustment of time step δ.

One complication of the above strategy arises if the na-
ture of the cost function changes dramatically as the search
proceeds. The initial time steps are appropriate during the
initial stages of the search. However, the average force acting
on the particles often decreases over time. Hence, the average
particle step size also decreases over time. This seems appro-
priate for swarm convergence, but the step size decrease may
be excessive if the average magnitudes of the forces computed
by (4) decrease dramatically. This typically happens in the
neighborhood of a local minimum of highly nonlinear func-
tions. To overcome this drawback, we simply recompute the
time steps δ{i} = δ = √D/ a, i = 1, 2, . . . , np, whenever ap-
propriate, using the recomputed average force a. For all the
results presented in this paper, the time steps are recomputed
every 100 iterations.

3. NUMERICAL PERFORMANCE OF
THE DYN-PSO METHOD

3.1. Illustrative two-dimensional trajectories

To illustrate the mechanics of the DYN-PSO algorithm, we
compute the trajectories for f (x) = x2

1 + 2x2
2 with 3 particles,

that is, the case n = 2 with np = 3. As starting points, we se-
lect the vertices (40, 40); (−40, 0); (40,−40). Figure 1 depicts
the three computed trajectories (using diameterD = 100) up
to the 30th iteration at which point fg = 9.48 × 10−4, with
x
g
1 = −0.0201; x

g
2 = 0.0165.

3.2. Choice of number of particles

Throughout the numerical experiments done here, the num-
ber of particle trajectories required to converge before termi-
nation of the algorithm is taken as npc = min[n, np]. It is
now required to obtain an indication of what is a good or an
optimum choice for the number of particles np to be used for
“normal” problems where one expects a single unique global
minimum in the region of interest. To get an indication of
what it should be, some experiments were performed (with
function value tolerance ε= 10−8) on the extended homoge-
neous quadratic test function (see list of test problems) for
n = 10 and n = 20, using different values for np and de-
termining the average number of functions evaluations (over
100 independent runs) required for successful convergence
in each case. The variation of the number of function evalu-
ations against np is shown in Figure 2. Note that for n = 20,
the number of function evaluations appears to be almost in-
sensitive to np over the range np = 15 to np = 25, with a
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Figure 2: Average number of function evaluations at convergence
versus number of particles.

variation of less than 4 percent being recorded. The corre-
sponding variation of average function value at convergence
with np is depicted in Figure 3. The results appear to indicate
that in general a choice of np = n+ 1 (i.e., with the positions
of the particles defining the vertices of an n-dimensional sim-
plex in Rn) is probably a good one. Consequently, the choice
np = n + 1 is used throughout the experiments performed
in the next subsection. Since this guideline is based on a very
narrow test, some future effort should be directed towards
improved guidelines to determine the number of particles. It
is anticipated that highly multimodal problems might benefit
from an increased number of particles.
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3.3. Performance on a set of test functions

The newly proposed DYN-PSO algorithm is tested on the fol-
lowing eight test problems.

(i) Homogeneous quadratic (unimodal)

f (x) =
n∑

i=1

ix2
i (5)

subject to −5 < xi < 5 for i = 1, 2, . . . ,n; f ∗ = 0, at x∗ =
[0, 0, . . . , 0]T .

(ii) Oren’s power function (unimodal) [1]

f (x) =
( n∑

i=1

ix2
i

)2

(6)

subject to −10 < xi < 10 for i = 1, 2, . . . ,n; f ∗ = 0, at x∗ =
[0, 0, . . . , 0]T .

(iii) Extended Rosenbrock (multimodal) [10]

f (x) =
n−1∑

i=1

[
100(xi+1 − x2

i )2 + (1− xi)2] (7)

subject to −2.048 < xi < 2.048 for i = 1, 2, . . . ,n; f ∗ = 0, at
x∗ = [1, 1, . . . , 1]T .

(iv) Neumaier 3 (multimodal) [10]

f (x) =
n∑

i=1

(xi − 1)2 −
n∑

i=2

xixi−1 (8)

subject to −n2 < xi < n2 for i = 1, 2, . . . ,n; f ∗ = −n(n +
4)(n− 1)/6, at x∗i = i(n + 1− i).

(v) Extended Manevich (unimodal) [11]

f (x) =
n∑

i=1

(
1− xi

)2

2i−1
(9)
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Figure 4: Convergence history on the homogeneous quadratic test
function.
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Figure 5: Convergence history on Oren’s power test function.

subject to −10 < xi < 10 for i = 1, 2, . . . ,n; f ∗ = 0, at x∗ =
[1, 1, . . . , 1]T .

(vi) Zakharov (unimodal) [12]

f (x) =
( n∑

i=1

x2
i

)

+

( n∑

i=1

0.5ixi

)2

+

( n∑

i=1

0.5ixi

)4

(10)

subject to −5 < xi < 10 for i = 1, 2, . . . ,n; f ∗ = 0, at x∗ =
[0, 0, . . . , 0]T .

(vii) Griewank (multimodal) [10]

f (x) = 1 +
1

4000

n∑

i=1

x2
i −

n∏

i=1

cos
(
xi√
i

)

(11)

102

100

10−2

10−4

10−6

A
ve

ra
ge

ab
so

lu
te

re
la

ti
ve

er
ro

r

0 0.5 1 1.5 2 2.5 3
×105

Average number of function evaluations

STD-DYN n = 10 STD-DYN n = 30
DYN-PSO n = 10 DYN-PSO n = 30

STD-PSO n = 10 STD-PSO n = 30

Figure 6: Convergence history on the Rosenbrock test function.

subject to −600 < xi < 600 for i = 1, 2, . . . ,n; f ∗ = 0, at
x∗ = [0, 0, . . . , 0]T .

(viii) Rastrigin (multimodal) [10]

f (x) = 10n +
n∑

i=1

[x2
i − 10cos

(
2πxi

)
] (12)

subject to −5.12 < xi < 5.12 for i = 1, 2, . . . ,n; f ∗ = 0, at
x∗ = [0, 0, . . . , 0]T .

Each test problem is solved 100 times for problem di-
mension n = 10 and 30. The DYN-PSO algorithm is com-
pared to the dynamic method of Snyman [1, 2] (STD-
DYN) and a standard PSO algorithm (STD-PSO) (http://
www.particleswarm.info/Standard PSO 2006.c), making use
of settings proposed by Eberhart and Shi [6] (c1 = c2 =
1.49445, constant inertia weight of 0.729 and swarm size
of 20). The gradients required by the dynamic method are
computed using a forward difference method, using a per-
turbation size of 10−6. These additional function evaluations
are taken into consideration in the results of STD-DYN pre-
sented below. The convergence histories of the STD-DYN,
DYN-PSO, and STD-PSO algorithms are depicted in Figures
4 to 11, for the eight test functions. In these graphs, at each
iteration k = 0, 1, 2, . . . , the absolute relative error

er =
∣
∣ fg − f ∗

∣
∣

1 +
∣
∣ f ∗

∣
∣ , (13)

averaged over the 100 runs, is plotted against the correspond-
ing average number of function evaluations.

Two common scenarios exist to terminate optimization
algorithms. First, some convergence criteria are satisfied,
which indicates that no substantial improvement is likely and
search can terminate. Alternatively, a maximum number of
function evaluations may be specified. For the test problems
considered here, both these scenarios occur. The many local

http://www.particleswarm.info/Standard$_$PSO$_$2006.c
http://www.particleswarm.info/Standard$_$PSO$_$2006.c
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Figure 7: Convergence history on the Neumaier 3 test function.
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Figure 8: Convergence history on the Manevich test function.

minima present in the multimodal Griewank and Rastrigin
test functions prevent the majority of particle trajectories to
converge, hence these problems are terminated based on a
maximum allowable number of function evaluations. The
proposed convergence criteria work well for all the remain-
ing test functions, where we used a convergence tolerance of
ε= 10−8.

The STD-DYN and DYN-PSO algorithms always locate
the global minimum for the homogeneous quadratic, Oren’s
power function, Neumaier 3, Manevich and Zakharov prob-
lems. The STD PSO fails to do so for the 30D Neumaier
problem. Also note that out of these 5 test problems, the
STD-DYN algorithm is most efficient on the homogeneous
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Figure 9: Convergence history on the Zakharov test function.
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Figure 10: Convergence history on the Griewank test function.

quadratic, Oren’s power function, and the Zakharov func-
tion, all of which are unimodal. The DYN-PSO algorithm
performs best on the Neumaier 3 problem and the 30D
Manevich function. STD PSO is only more efficient than the
DYN-PSO algorithm for Oren’s power function.

In the case of the Rosenbrock test function, the DYN-
PSO algorithm does not always locate the global minimum.
In those cases in which the global minimum is not found,
the algorithm converges to the only other local minimum, as
reported by Shang and Qiu [13]. In the Rosenbrock exper-
iments, 89 and 96 of the 100 runs converged to the global
minimum, for n = 10 and 30, respectively. The STD-DYN
method locates the global minimum 83 and 88 times, for
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Figure 11: Convergence history on the Rastrigin test function.

n = 10 and 30, respectively. Note however that the number of
function evaluations is more than a factor 10 less compared
to the DYN-PSO algorithm. In the case of the STD-PSO al-
gorithm, the majority of runs do not converge to either the
global or local minimum. The number of runs that has a
global best less than 1 after 3 × 105 function evaluations is
98 and 4, respectively, for n=10 and 30. The absolute relative
error in Figure 6 is computed by only averaging over those
runs that converge to the global minimum (DYN PSO and
STD DYN) or those that have a global best less than unity
after 3× 105 function evaluations (STD PSO).

Finally, the DYN-PSO algorithm never locates the global
minimum for the multimodal Griewank and Rastrigin test
functions. The dynamic method, which is the backbone of
the DYN-PSO algorithm, was developed as a local minimizer.
However, the energy dissipation strategy we opted in the
DYN-PSO algorithm is unchanged from that of the original
dynamic method. This strategy is quite severe on “uphill”
moves and hence energy is lost quickly if many local min-
imizers are present, such as in the Griewank and Rastrigin
test functions. Nevertheless, compared to the performance
of the STD-DYN method, the DYN PSO is vastly superior on
the Rastrigin test function. The STD-DYN method simply lo-
cates the first strong local minimum and cannot escape it. On
the Griewank function, DYN PSO is superior to STD DYN
for 10D, and vice versa for 30D. The STD PSO however far
outperforms both STD DYN and DYN PSO for the Griewank
function. However, in our experience, the performance of the
DYN-PSO algorithm is still comparable to that of more tradi-
tional global optimization algorithms. The current algorithm
does demonstrate the ability to escape some local minima,
similar to the standard PSO algorithm. The performance on
the 30D Rastrigin function is especially noteworthy, with a
mean function value less than 20 after only 5 000 function
evaluations. This is obtained with the standard settings pro-

posed here, with no tuning of parameters to suit the prob-
lem.

In summary, the DYN-PSO algorithm seems to inherit
the desired properties from both its ancestors. It can effi-
ciently solve unimodal functions, sometimes even more ef-
ficiently than the gradient-based local minimizer it is based
on, for example, the 30D Manevich problem. This is achieved
without making use of gradient information. Therefore, the
DYN-PSO method might even work for discontinuous prob-
lems. This efficient local character is blended with nonlocal
behavior, where the swarm provides sufficient information to
solve multimodal problems, illustrated best on the Rastrigin
function.

4. CONCLUSIONS

We have proposed a novel dynamic interacting particle
swarm optimization algorithm. The algorithm compares well
to a standard PSO implementation, especially in terms of effi-
cient solution of high-dimensional problems containing few
local minimizers. Based on these promising results, the DYN-
PSO algorithm deserves further development.

A number of outstanding issues remain. The importance
of recomputing appropriate time-step sizes is already rec-
ognized, but more refined criteria should be developed. A
guideline for the number of particles for efficient search is
already proposed, but since it is based on a very narrow test,
additional experiments are required. Also, the convergence
criterion can be refined in order to also work for functions
containing a very large number of local minimizers. The
mechanism that probably requires the most attention is the
energy dissipation scheme, which can be modified to increase
the probability of convergence to the global minimum in the
case of multiple local minima. This could be achieved by less
aggressive energy dissipation during “uphill” moves, but will
necessarily retard convergence.

The initial results indicate that the proposed DYN-PSO
algorithm shows much promise as an alternative direct
search method for solving large scale unconstrained opti-
mization problems. The algorithm seems capable of solving
unimodal problems economically, and it also has competitive
performance on functions containing many local minima.
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