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Abstract We make a scalar representation of interactive
models with cold dark matter and modified holographic Ricci
dark energy through unified models driven by scalar fields
with non-canonical kinetic term. These models are applica-
tions of the formalism of exotic k-essences generated by the
global description of cosmological models with two interac-
tive fluids in the dark sector and in these cases they corre-
spond to the usual k-essences. The formalism is applied to the
cases of constant potential in Friedmann–Robertson–Walker
geometries.

1 Introduction

There are a number of cosmological observations, partic-
ularly from Type Ia Supernovae [1–3], Cosmic Microwave
Background Radiation [4], and Baryon Accoustic Oscillation
[5,6] studies showing an accelerating effect on the expan-
sion of our universe. Therefore, there must be a cosmological
component responsible for the repulsive behavior that allows
a system to counteract and overcome the gravitational attrac-
tion. For this constituent with negative pressure, dubbed dark
energy (DE), there have been some proposals. The cosmo-
logical constant seems to give the best fit with the observa-
tions but also there are good dynamical models including
quintessence [7–11], k-essence [12–23], models with inter-
nal structure as quintom [24–27] and N-quintom [28] and
applications of the holographic principle [29] to cosmology
[30–34]. The other majority contribution to the source of
Einstein equations is called dark matter (DM), and is the
ingredient that comes to supplement the lack of observed
non-relativistic matter. Again, we cannot say anything about
its nature and moreover, we cannot argue with some sym-
metry or microphysical criteria that it is evolving regardless
of the DE. In fact, the possibility of an interaction between
DM and DE has received many attention in the literature
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[35–46] and appears to be even favored over non-interacting
cosmologies [47]. This work has the goal of showing the con-
nection between models led by common k-essences (but with
special conditions on the signs of the first and second deriva-
tives) and interactive models of cold dark matter (CDM) and
modified holographic Ricci type dark energy (MHRDE) flu-
ids. We nickname holographik to these common k-essences
to stand out the fact that they are related to interactive mod-
els where the dark energy corresponds to a holographic fluid.
The idea has precedents in the linking of exotic quintessences
[48,49] or exotic k-essences [50] with interactive systems of
two arbitrary perfect fluids, but here the purely k-essence φ

is derivable from a Lagrangian of the form L = −V0F(φ̇2)

and the interactive systems are compound with fluids whose
continuity equation can be replaced by a modified equation
using constant coefficients. The MHRDE fluid used here was
proposed in [51] as a particular class of the more general holo-
graphic Ricci type dark energy introduced in [52] and it was
the unique holographic component of a cosmological model
that avoided the problem of causality [53]. This statement
can be explained as follows. According to the application
of the holographic principle to cosmology, the vacuum den-
sity of energy can be bounded by the full energy inside a
region because it cannot exceed the mass of a black hole of
the same size. From effective quantum field theory, an effec-
tive infrared (IR) cut-off can saturate the length scale that is
included in the expression of the vacuum density of energy
and in the literature, the IR cut-off has been taken as the Hub-
ble horizon, or the particle horizon, or the event horizon and
also as some generalized IR cut-off. The papers devoted to
holographic dark energy models with Hubble horizon or par-
ticle horizon as the IR cut-off have shown that these models
cannot lead to the current accelerated expansion of the uni-
verse. When event horizon is taken as the cut-off, as future
event horizon is a global concept of space-time while the den-
sity of dark energy is a local quantity, the relation between
them will raise challenges to the causality. This leads to the
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introduction of the holographic Ricci type dark energy, where
the IR cut-off is taken as proportional to the Ricci scalar cur-
vature, where the problem can be avoided. In the context of
interactive systems the MHRDE fluid was used in a plethora
of models [54–62].

The paper is organized as follows: In Sect. 2 we con-
sider the non-canonical scalar representation of an interact-
ing cosmological model realized with CDM and a MHRDE
fluid and introduce the expressions of the different physical
magnitudes in terms of the constant potential V0 and of the
suitable kinetic functions F of a k-essence field φ. In Sect. 3
we gain deeper insight into the subject analyzing the equation
that must be fulfilled by the kinetic functions and the related
interactions Q(V0, F). Also in this section, we show worked
examples in both ways. On the one hand, for a given inter-
action we obtain the corresponding kinetic function and on
the other hand we discover which interaction can be consid-
ered associated with widely studied k-essences. In Sect. 4 we
draw conclusions about the examples in terms of the work-
ability provided by the scalar representation and also on the
generation of new functional forms of interaction that can be
studied analytically.

2 The holographic k-essence

We consider a model consisting of two perfect fluids with
an energy-momentum tensor Tik = T (1)

ik + T (2)
ik where

T (n)
ik = (ρn + pn)uiuk + pngik , ρn and pn being the den-

sity of energy and the equilibrium pressure of fluid n and
ui their four-velocity. Assuming that the two fluids interact
between them in a spatially flat, homogeneous, and isotropic
Friedmann–Robertson–Walker (FRW) cosmological back-
ground, the Einstein equations reduce to

3H2 = ρ1 + ρ2 ≡ ρ, (1)

ρ̇1 + ρ̇2 + 3H [(1 + ω1)ρ1 + (1 + ω2)ρ2]
= ρ̇ + 3H(1 + ω)ρ = 0, (2)

where H = ȧ/a and a stand for the Hubble expansion rate
and the scale factor, respectively, and where we consider
equations of state (EoS) ωi = (pi/ρi ) for i = 1, 2. Above,
we have assumed an overall perfect fluid description with
an effective equation of state, ω = p/ρ = −2Ḣ/3H2 − 1,
where p = p1 + p2 and ρ = ρ1 +ρ2. The dot means deriva-
tive with respect to the cosmological time and from Eqs. (1)
and (2) we get

− 2Ḣ = (1 + ω1)ρ1 + (1 + ω2)ρ2 = (1 + ω)ρ. (3)

In this paper a more general version of the holographic fluid
described in [51,63] is used as DE. This is the simplest case
where the density of energy of the DE is expressed as a gen-
eral function of the Hubble parameter and its derivative, for

which the models avoid the causality problem. Then the holo-
graphic density of energy ρ2 is written as

ρMHRDE
2 = 2

A − B

(
Ḣ + 3

2
AH2

)
, (4)

where A and B are two arbitrary constants that we can sup-
pose that they satisfy A > B > 0. From (3) and (4) we obtain

(1 + ω1)ρ1 + (1 + ω2)ρ2 = Aρ1 + Bρ2, (5)

which is a very useful relation because in our description of
the interactive system the equations of state must be constant
and in general this does not happen with the EoS of the holo-
graphic fluid. Note also that Eqs. (1), (2), and (5) allow us to
write the partial densities of energy as

ρ1 = − Bρ + ρ′

A − B
ρ2 = Aρ + ρ′

A − B
, (6)

for ρ′ = ρ̇/3H .
The interaction Q that connects both fluids is specified

through the partial equations of conservation,

ρ̇1 + 3H(1 + ω1)ρ1 = −3HQ, (7a)

ρ̇2 + 3H(1 + ω2)ρ2 = 3HQ. (7b)

Or better, a modified interaction QM can be defined by using
Eqs. (5) and (7) by means of

ρ̇1 + 3H Aρ1 = −3HQM, (8a)

ρ̇2 + 3HBρ2 = 3HQM. (8b)

Clearly, the relation between QM and Q is QM = Q + (1 −
A)ρ1 = Q+(B−ω2−1)ρ2, where we apply the formalism to
interactions between cold dark matter (CDM) and a modified
holographic Ricci type dark energy (MHRDE) fluid.

Now, as was done with the exotic canonical scalar field
in [48] and with the exotic field in [50], we propose that the
interactive system as a whole be represented by a unified
model driven by a special class of purely k-essence field φ

(labeled by a constant potential V0 and a kinetic function
F(x), x = −φ̇2), through the relationship

(1+ω)ρ = Aρ1+Bρ2 = −2V0xFx (x), Fx = dF(x)

dx
. (9)

Then the global density of energy ρ and the global pressure
p = ωρ can be written as

ρ = V0(F(x) − 2xFx (x)), p = −V0F(x). (10)

The field φ satisfies the equation of movement

[Fx + 2xFxx ] φ̈ + 3HFx φ̇ = 0 Fxx = dFx/dx, (11)

123



Eur. Phys. J. C (2016) 76 :707 Page 3 of 9 707

which allows us to find the functional form of the k-field φ

once the kinetic function F(x) is given. If the kinetic function
is strictly monotonic Fx �= 0, there is the well-known first
integral

√−x Fx = m0a
−3, (12)

for m0 a constant of integration. Alternatively, when the
kinetic functions have an extreme xe = x(te) such that
Fx (xe) = 0, the above first integral (12) does not exist.
Instead, at time t = te, Eq. (11) is reduced to xeFxx (xe)φ̈|te =
0 and thus it must happen that φ̇ has a root or an extreme at
t = te, or that F(x) has a saddle point at xe. We will not
address cases with non-monotonic kinetic functions.

We must note that, from (4), (6), (10), and (11), the partial
densities of energy are

ρ1 = − V0

A − B
(BF(x) − 2xFx (x)(B − 1)), (13a)

ρMHRDE
2 = V0

A − B
(AF(x) − 2xFx (x)(A − 1))

= A − 1 − ω

A − B
ρ, (13b)

and therefore, with A− B > 0 holding, the maximum possi-
ble value for the overall EoS should be ω = ωmax = A − 1.
This one is the first characteristic that these “special” k-
essences must have and, interestingly, it comes exclusively
from the associated interactive models using MHRDE fluids
because ρMHRDE

2 must be non-negative. The expression for
the global equation of state ω in the unified representation of
the k-essence is

ω = − F

F − 2xFx
, (14)

and so (13b) and (14) imply −2xFx/(F − 2xFx ) ≤ A.
Also, from (3) and (5) is ω = (A−1+ (B−1)r)/(1+r),

where r = ρ2/ρ1. Thus, if the universe supports a constant
EoS ω = ω0, then the ratio between densities must be a con-
stant r = r0 = (A − 1 − ω0)/(1 + ω0 − B). Conversely,
in these models with an interactive MHRDE fluid, we can-
not have a stationary solution to the problem of coincidence,
r = r0, without paying the price of a universe with constant
EoS ω0. In that sense, from (14) we can see that the polyno-
mial kinetic functions F = (−x)n , with n = constant, have
constant ω = (2n − 1)−1. Therefore the interactive mod-
els with interactions associated with these F should not be
considered interesting examples to describe realistic cosmo-
logical models.

Figure 1 describes the global EoS ω = g/(1 − g) in
terms of the auxiliary function g ≡ F/(2xFx ) and also
shows the prohibited zone ω ≥ A− 1. There, the left branch
(g < 1 − 1/A) correctly describes a unified model of which
the behavior interpolates between a stiff [64,65], radiation or

1

0 1

A 1

1 1 A
F

2 xFx

Fig. 1 Evolution of the global equation of state for the holographic
unified model as a function of the magnitude g = F/(2x Fx ). The
shaded area corresponds to the prohibited values ω ≥ A−1, throughout
all the evolution of the model. The maximum ωM = A − 1 is reached
at g = (A − 1)/A belonging to the left branch of the graph, the more
useful in modeling realistic universes. The right branch is related with
phantom universes. The models with asymptotic stiff behavior must
have g ≤ 1/2 and those with asymptotic radiation behavior must have
g ≤ 1/4. The models with asymptotic dust behavior must have g ≤ 0
and F ≥ 0

dust type (for A = 2, 4/3 or 1) and a cosmological constant
type. The right branch (g > 1) describes phantom models
provided that the EoS is kept ω < −1 along the whole cos-
mological history.

Let us focus on left branch. The bound ω ≤ A− 1 results
in the bound g ≤ 1 − 1/A and therefore in the “bounding”
functions F(x)max = F0(−x)A/(2(A−1)) for A = 2 or A =
4/3 and anyone for which g < 0 if A = 1. The meaning of
“bounding” is evident in Fig. 2, where the general behaviors
of ω(x) for different functions F appear “limited” by the
curve with n = 0

Other two conditions exist to carry out for these functions,
which come from the reality of the Hubble factor H and
from the stability of the model. From (10) the total density
of energy can be written as ρ/V0 = 2xFx (g − 1). and with
positive potentials and g < 1 it must always be observed that
Fx > 0. Therefore, this second condition leads to F < 0 for
0 < g < 1 − 1/A and to F > 0 for g < 0.

The last restriction arises from having considered the adi-
abatic speed of sound c2

s = (δp/δρ)s = px/ρx (the sub-
script s means at constant entropy), because the local stability
and causality requirements 0 ≤ c2

s ≤ 1 [66–72] determine,
through c2

s = Fx/(Fx + 2xFxx ), the realistic models to be
those with Fxx ≤ 0. We use this last condition although in
[73] it is shown that the condition c2

s ≤ 1 is not necessary
for causality.

All three conditions: g < 1, Fx > 0, and Fxx ≤ 0, are
essential to describe realistic models driven by k-essence that
are associated with acceptable interactions Q in the dark
sector.
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Fig. 2 Top panel EoS interpolating between ω = 1 and ω = −1
corresponding to the kinetic functions F[x] = −mx + n, m =
1, 2, 3, 4, 5, 6, n = 1, 2, 3, 4, 5. Intermediate panel EoS interpolating
between ω = 1/3 and ω = −1 corresponding to the kinetic functions
F[x] = −mx2 +n, m = 1, 2, 3, 4, 5, 6, n = 1, 2, 3, 4, 5. Bottom panel
EoS interpolating between ω = 0 and ω = −1 or without dust like era
but with an accelerated behavior at early time for tiny n, corresponding
to the kinetic functions F(x) = e−mx2 + n, with m = 1, 0.1, 0.05,
n = 0, 0.00005, 0.05

There are several functions that satisfy these three condi-
tions. For example the quadratic function F[x] = −mx2 +
nx+c, which includes the linear one, the one proportional to
the tachyonic function F[x] = m

√
1 + x + n, the exponen-

tial F(x) = e−mx2 + n and also F(x) = −m cosh(
√−x)

with m > 0, n > 0, and c > 0. Some of them will be used in
the next section to find the appropriate associated interaction
Q in the dark sector. Figure 2 shows the EoS corresponding
to functions F(x)stiff = −mx+n, F(x)rad = −mx2 +n and

F(x)dust = e−mx2 + n, with m > 0 and n > 0, for which we
can see the corresponding asymptotic limits.

Note that the global equation of state of the k-essence is
independent of the potential used and therefore the above
results preserve their validity for variable forms of V , but in
the last cases the first integral (12) no longer exists. Moreover,
note that the crossing of the phantom divide line (PDL) is not
allowed. This was for the first time proven for k-essence in
[74].

3 The associate interactions

The results of the previous section are quite general and apply
to any kinetic function F(x), but the particular choice of
the function will be determined by the interaction Q that
manages the evolution of both fluids. Equations (8b) and (14)
let us write the equation that must be fulfilled by the kinetic
function F(x) once the interaction QM(V0, F) is fixed,(
QM

V0
− B

[AF − 2x(A − 1)Fx ]

(A − B)

)(
2M − (A − B)N

)

+2xFx AN = 0, (15)

with M = Fx + xFxx and N = ((2 − A)Fx − 2xFxx (A −
1))/(A − B).

The expression QM(V0, F) means that the interaction,
often expressed as a function of ρ and its derivatives, should
be given using Eqs. (6), (10), and (12), and ρ′ = 2xF(x)V0.

Equation (15) is a highly nonlinear equation for F . How-
ever, the change of variables ζ = ∫

ρx/(2xFxV0)dx and
ρ(x) = V0(F − 2xFx ) lets us obtain a simpler differential
equation for ρ,

ρ′′ + (A + B)ρ′ + ABρ = QM(A − B), (16)

with ρ′ = dρ/dζ and ρ′′ = d2ρ/dζ 2. This is the holographic
version [54] of the already known source equation for the
energy density described in [75]. On the other hand, Eq. (15)
allows one to use the representation in both directions. One
direction is to find the system handled by the k-essence F
that represents the interactive system and the other one is to
assign an interaction Q to an interactive system that is studied
as a unified model of k-essence. Let us have a look at some
worked examples.

– Examples Q → F

– CDM and MHRDE
This interesting case was already presented at the
general formalism developed in [50], where it was
applied to the null interaction Q = 0 or equivalently
when we replace QM = (1 − A)ρ1 in (15). The solu-
tion is F(x) = (F0 + F1

√−x)B/(B−1), with F0 < 0,
F1 > 0, 0 < B < 1, and lets us write the den-
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sities of energy ρMHRDE = b1a−3 + b2a−3B and
ρMHRDE

2 = ((A − 1)/(A − B))b1a−3 + b2a−3B . It
can be seen that the MHRDE fluid is always a self-
interacting component, because even when Q is null,
the dark energy component is far from remaining
independent of the CDM. The asymptotic values of
the EoS ω = −b2(1 − B)a3(1−B)/(b1 + b2a3(1−B))

are 0 and B − 1 < A − 1 in the asymptotic lim-
its a → 0 and a → ∞, respectively. However, the
model is not viable because always c2

s < 0.

– The holographic �

In this example we consider the case in which a holo-
graphic interactive fluid is behind the concept of cos-
mological constant. The system of a CDM fluid inter-
acting with a MHRDE fluid (5) through the interac-
tion �Q = Bρ + (1 − �)ρ′, � = A − B, can
be interpreted as a cosmological model driven by
a purely k-essence identified by the constant poten-
tial V0 and the kinetic function obtained from (15),

F = F1 + 2F0
(1−A)

A (−x)
A

2(A−1) , with the positive
constants of integration F0 and F1. From (10), (12),
and (13b) the expressions for the global density of
energy and the density of energy of MHRDE fluid
are

ρ = �
A − B

A
+ ρm

a3A ρ2 = �, (17)

respectively, with � = AV0F1/(A − B) and ρm =
2V0mA

0 /(AF A−1
0 ).

If 1 < A < 2, the corresponding global EoS,

ω = −�(A − B) + A(1 − A)ρma−3A

�(A − B) + Aρma−3A , (18)

ranges between the values ωet = A−1 at early times
and ωlt = −1 at late times and the sound speed is
c2

s = A − 1 < 1.
Solving ρMHRDE

2 = (2Ḣ + 3AH2)/(A − B) = �

we obtain the factor of scale

a(t) =
(

cosh(κ(t − t0)) + H0 sinh(κ(t − t0))
) 2

3A

κ2 = 3A�(A − B)/4, (19)

where we set t0 as the present time for which the
factor of scale is a(t0) = 1 and the Hubble param-
eter is H(t0) = H0. Notice that the argument of
the hyperbolic functions in (19) corresponds to the
usual solution of the factor of scale for the model
�CDM if B = (A2 − 1)/A. Also, Eq. (17) cor-
responds to the model � plus WDM (A is very
slightly greater than one) or to the model � plus
radiation (A = 4/3). However, unlike a true cosmo-

logical constant, the equation of state for dark energy
ω2 = ωρ/ρ2 diverges at early times and tends asymp-
totically to −�/A at late times, because its expres-
sion is

ω2 = − (A − B)

A
+ (A − 1)ρm

�a3A . (20)

– The sign-change holographic

There exist a number of works that studied interac-
tions able to change their sign along the evolution
of the universe. One of them is Qsc = Bρ2 − ρ1,
which replaced in (15) allows us to obtain two lin-
ear differential equations xFx − y±F = 0 where
y± = √

AB/(2(
√
AB ± 1)) and then the two kinetic

functions F± = F±
0 (−x)y

±
. Using the first integral

(12) for each particular kinetic function, the corre-
sponding global energy density is

ρ = (ρ0 − ρ−)a3
√
AB + ρ−a−3

√
AB,

ρ− = V0F
−
0

(1 − √
AB)

, (21)

with ρ0 the actual global density and the constant
of integration m−

0 coming from (12) taken so that
m−

0 = −F−
0 y−. Therefore, the global EoS oscillates

between −(1−√
AB) at early times and −(1+√

AB)

at late times, as can be seen in

ω = − (ρ0 − ρ−)(1 + √
AB)a6

√
AB + ρ−(1 − √

AB)

(ρ0 − ρ−)a6
√
AB + ρ−

.

(22)

Assuming � > 0 and
√
AB < 1, the change of

sign of the interaction is produced at ωsc = (AB −
1)/(B + 1) for which the factor of scale is

asc =
(

ρ−(
√
AB(B + 1) − (A + 1)B)

(ρ0 − ρ−)(
√
AB(B + 1) + (A + 1)B)

) 1
6
√
AB

.

(23)

This interactive system, affected by Qsc is consis-
tently maintained until ρ1 is exhausted at

amax =
( ρ−(

√
AB − B)

(ρ0 − ρ−)(
√
AB + B)

) 1
6
√
AB , (24)

when the sign change has already occurred because
amax > asc.
Figure 3 shows the global density of energy (21) and
the partial densities of energy

ρ1 = 1

�

{
− (ρ0 − ρ−)(

√
AB + B)a3

√
AB + ρ−(

√
AB − B)a−3

√
AB

}
,

(25a)
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Fig. 3 Densities of energy, ratio r = ρ1/ρ2 and Qsc for ρ0 − ρ− =
0.04, ρ− = 0.96, A = 5/4, B = 3/4

ρ2 = 1

�

{
(ρ0 − ρ−)(A + √

AB)a3
√
AB + ρ−(A − √

AB)a−3
√
AB

}
,

(25b)

where it can be seen that with the right choice of
the constants of integration (ρ0 − ρ−) and (ρ−), the
model is consistent with current estimates of dark
energy densities and shows a relief in the problem of
coincidence. Also, the ratio r = ρ1/ρ2 and Qsc are
depicted for ρ0 − ρ− = 0.04, ρ− = 0.96, A = 5/4,
B = 3/4.

– Examples F → Q

– The linear function F(x) = 1 + mx , with m > 0,
was already used in [15,21] with exponential poten-
tials. Here, with the constant V = V0, it is replaced in
(15) obtaining the interaction QM� = ABρ + (A +
B − 2)ρ′. That is, a cosmological model with CDM
fluid interacting with MHRDE through the interac-
tion �Q = Bρ + (B − 1)ρ′ can be seen as a model
driven by a purely linear k-essence. With the greatest
simplicity, the densities of energy and the EoS of the
global model are obtained as well as the time varia-
tion of the scale of factor and the k-essence field φ.
We have

ρ = V0 + ρ0

a6 , ρ2 = 1

�

(
AV0 + (A − 1)

ρ0

a6

)
,

(26a)

a(t) =
[

sinh(
√

3V0t)

sinh(
√

3V0tT)

]1/3

ρ0 = m2
0V0

m
,

ω = −V0a6 − ρ0

V0a6 + ρ0 , (26b)

φ = φ0 ln(tanh(

√
3V0t

2
)) φ0 = m0 sinh(

√
3V0tT)

m
√

3V0
,

(26c)

with tT the actual time. The adiabatic velocity of
sound is constantly equal to 1 as in the cases of the
quintessence regardless of the values of the parame-
ters A and B.

– In [20], the simple quadratic function F(x) = b
6 +

x − x2

2b is used with the arbitrary parameter b > 0 to
ensure positivity of the density of energy and stability
observed through the speed of sound. In this context
of purely holographic k-essence with constant poten-
tial V0 it leads, through (15), to the associated inter-
action QM� = ABρ + (A + B − 1)ρ′ + ρ′′/4 +
ρ′/(2

√
6ρ/bV0) or

Q� = Bρ + Bρ′ + ρ′′

4
+ ρ′

2
√

6ρ
bV0

. (27)

From (12) we obtain the algebraic equation h3 + h−
u = 0 for h = √−x/b and u = m0b−1/2a−3, whose
unique real solution allows us to write the first integral
φ̇ = √−x for the kinetic function as√−x

b
= − (2/3)1/3b1/6a(

9 + √
3
√

4ba6 + 27
)1/3

+
(

9 + √
3
√

4ba6 + 27
)1/3

21/332/3b1/6a
, (28)

and thus, from (10) and (12), the global energy den-
sity ρ = 3V0b

2 (1/3 − x/b)2 proves to be

ρ = 3V0b

2

[
1

3
+

(
− (2/3)1/3b1/6a(

9 + √
3
√

4ba6 + 27
)1/3

+
(

9 + √
3
√

4ba6 + 27
)1/3

21/332/3b1/6a

)2]2

,

(29)

where the constant of integration in (12) is taken as
m0 = 1. The global EoS (14),

ω = −1

3

(
− x

b + 1 + 2√
3

) (
x
b − 1 + 2√

3

)
(− x

b + 1/3
)2 , (30)

shows that this interactive model exhibits a dust type
behavior ω = 0 when the time evolution of the k-

essence is φ̇ = √−xroot =
√
b(−1 + 2/

√
3), that is,

when adust = 1.3b−1/6. Figure 4 shows that the dust
behavior of the global EoS can be accommodated by
varying the parameterb, and also it shows that the EoS
has a single maximum regardless of b, corresponding
to A = 3/2.
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Fig. 4 Global equation of state for the quadratic function F(x) =
b
6 + x − x2

2b for different parameters b. It can be seen that the maximum
is independent of b

Thus, the constant A is fixed for the kinetic function
and b is fixed by the astronomical data. The remain-
ing constants V0 and B are determined by the cur-
rent overall energy of density ρ(a = 1) and by the
ratio between dark densities of energy r = ρ1/ρ2 =
−(B(F − 2xFx ) + 2xFx )/(AF − 2xFx (A − 1)) at
its present value r(a = 1), respectively.
The adiabatic velocity of sound c2

s = Fx/(Fx +
2xFx x) = (b − x)/(b − 3x) oscillates between
c2
s |et = 0 at early time and c2

s |lt = 1/3 at late times.
– The kinetic function F = α − β cosh(

√−x)
with α > β > 0 meets the requirement Fx =
β sinh(

√−x)/(2
√−x) > 0 in order that the density

of energy is always positive and Fxx = −(
β cosh

(
√−x)/(4(−x)3/2

)(√−x − tanh(
√−x)

)
< 0 for

the global model is stable. Then, using (12), we find
that

√−x = sinh−1(a−3) if the constant of integra-
tion is taken as m0 = β/2 and thus the global density
of energy is

ρ = V0

(
α − β

a3

√
1 + a6 + β

a3 sinh−1(a−3)

)
.

(31)

Equation (31) can be considered as the global den-
sity of energy of an interactive cosmological system
filled with CDM and MHRDE that, affected by the
interaction Q,

�Q = B(ρ + ρ′)

+βV0

[
αV0 − (ρ + ρ′)

βV0
− βV0

αV0 − (ρ + ρ′)

]
,

(32)

produces a density of energy for the holographic com-
ponent

ρMHRDE
2 = V0

�

[
Aα − A

β
√

1 + a6

a3 + β(A − 1)

a3 sinh−1(a−3)
]
.

(33)

The corresponding global EoS,

ω = αa3 − β
√

1 + a6

−β sinh−1(a−3) − αa3 + β
√

1 + a6
, (34)

has asymptotic values ωe = 0 for a = 0 and ωl = −1
at late times. Nevertheless the maximum value of
ω is positive in the intermediate epoch between the
asymptotic dust era a = 0 and the truly dust era
a = β1/3(α − β)−1/6(α + β)−1/6 because g = (α −
β cosh(

√−x))/(−2β
√−x sinh(

√−x) is not always
negative at early times. Note that the constants α and
β should be adjusted so that the holographic density is
kept positive and the quotient of densities in the dark
sector fits with the current value. The adiabatic veloc-
ity of sound c2

s = (sinh−1(a−3)
√

1 + a6)−1 oscil-
lates between c2

s = 0 at early times and c2
s = 1 at

late times, independently from the constants A, B, α,
and β.

4 Conclusions

In this work we have studied cosmological models driven by
k-essences with constant potential V0, generated by strictly
increasing (Fx > 0) and concave (Fxx < 0) kinetic functions
F . The study is described in a FRW background and the goal
was the possibility of finding links between these universes
and interactive models filled with CDM and MHRDE fluids.
This idea is supported in studies realized previously where
scalar representations of cosmological interactive arbitrary
systems were found using exotic quintessence [48] and exotic
k-essence as scalar fields [50]. Here we particularize the inter-
active model, considering it as integrated by CDM and the
MHRDE fluid, whose defining parameters A and B mark lim-
its on the used k-essences. According to the general method
described in [50], the fields turn out to be common k-essences
derived from a Lagrangian L = −V0F . This fact could
allow us to consider this formalism as an indirect or covert
Lagrangian description of a cosmological system with inter-
active dark energy [76]. In the k-essential approach of the
cosmological models they have not allowed the crossing of
the phantom divide (ω = −1). This is clearly seen in Fig. 1,
where the global EoS ω = g/(1 − g) is plotted as a func-
tion of an auxiliary magnitude g = F/2xFx . There are two
branches in the picture, one describing viable universes and
the other corresponding to phantom universes, and the cos-
mological constant type behavior is the asymptotic conduct
in the extreme points (Fx = 0), when we arrive at the low
limit g → −∞ of the acceptable branch g < 1 or at the top
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limit g → +∞ of the phantom branch g > 1. Restricting
ourselves to models with no phantom for which g < 1, a pos-
itive global density of energy leads to the condition Fx > 0,
while the stability measured by the adiabatic speed of sound
determines Fxx < 0. These conditions select possible k-
essences for the representation (F → Q) and simultaneously
they reject interactions that can lead, through this approach,
to cosmologically nonviable systems (Q → F). Two other
restrictions on these models of universe arising from the use
of CDM and MHRDE as interacting fluids are the inability
to have constant ratios r = r0 to alleviate the problem of the
coincidence without having a global constant EoS ω = ω0

(because r = r0 = (A−1−ω0)/(1+ω0 −B)), and the exis-
tence of a maximum value for the global EoS ωmax = A−1.

The link between both schemes arises from equalizing
the expressions of the time derivative of the Hubble param-
eter, −2Ḣ = (ρ + p) = −2xFxV0, in each description and
from supposing a linear combination of density of energy
and of pressure for the DE . Then the conservation equa-
tion for the DE gives us the expression that must hold for
the kinetic function F and for the interaction Q. From (15),
given the interaction Q(V0, F), finding the function F allows
one to write all the densities of energy as a function of the
factor of scale through Eqs. (10), (12), and (13). Inversely,
given the appropriate function F we find the interaction that
affects the CDM–MHRDE system. The last two sections
were dedicated to giving examples of these two manners
of using (15). With the CDM–MHRDE systems affected
by the interactions Q = 0, Q� = (Bρ + (1 − �)ρ′)/�,
and Qsc = Bρ2 − ρ1 we associate systems driven by the
k-essences F(x) = (F0 + F1

√−x)B/(B−1), F = F1 +
2F0

(1−A)
A (−x)

A
2(A−1) , and F± = F±

0 (−x)y
±

, respectively,
showing that they arrive at the same dynamic results in both
approaches, but in a more direct way. Also, in the partic-
ular case Q� we show that the concept of a cosmological
constant can be interpreted as the result of an interaction in
these CDM–MHRDE systems. For the inverse way, we use
the kinetic functions F(x) = 1 + mx , F(x) = b

6 + x − x2

2b ,
and F = α − β cosh(

√−x) to obtain interactions not usu-
ally considered in the literature, Q = (Bρ + (B − 1)ρ′)/�,

Q = (Bρ + Bρ′ + ρ′′
4 + ρ′(6ρ/bV0)

−1/2

2 )/�, and Q =
[B(ρ+ρ′)+βV0[αV0−(ρ+ρ′)

βV0
− βV0

αV0−(ρ+ρ′) ]]/�, respectively.
The latter case shows the difference between the maximum
value of the global EoS and its asymptotic limits. Moreover,
in the last two cases, we obtained interactions that with dif-
ficulty could be solved by the method of the source equation
and for which, nevertheless, we obtained explicit expressions
as regards all the cosmological important magnitudes.
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