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Abstract We study dynamics of (m, n)-string in (p, q)-
five-brane and (p, q)-string background. We determine
world-volume stress energy tensor and we analyze the depen-
dence of the string’s dynamics on the values of the charges
(m, n) and the value of the angular momentum.

1 Introduction and summary

Low energy effective actions of superstring theories have
reached a spectrum of solutions that preserve some frac-
tions of supersymmetry; for a review see for example [1–
4]. These objects have the property that they are sources of
various form fields that are presented in supergravity theo-
ries. Further, fundamental string, D-brane, and NS5-brane
solutions preserve one half of the space-time supersymme-
tries and can be considered as the building block of other
solutions. For example, taking the intersection of these con-
figurations we get backgrounds that preserve some fractions
of supersymmetry [5]. Another possibility is to generate new
solutions using the U-duality symmetry of M-theory (for a
review see for example [6]), which is basically the symme-
try of M-theory on its maximally supersymmetric toroidal
compactifications. For example, M-theory compactified on
a two torus possesses the SL(2, Z) symmetry, which turns
out to be the non-perturbative SL(2, Z) duality of type IIB
theory. More precisely, it is well known that the low effective
action of type IIB supergravity written in an Einstein frame is
invariant under SL(2, R) duality. A special case of SL(2, R)

transformation is the S-duality transformation that roughly
speaking transforms the theory at weak coupling to strong
coupling. The fact that the type IIB supergravity action is
invariant under this symmetry suggests the possibility to gen-
erate new supergravity solutions when we apply a SL(2, R)

rotation on known supergravity solutions, as for example fun-
damental string or NS5-brane backgrounds. Such a proce-
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dure was first used in a famous paper [7] where the mani-
festly SL(2, R) covariant supergravity solution correspond-
ing to a (p, q)-string was found. The extension of this anal-
ysis to the case of an NS5-brane was performed in [8] when
the SL(2, Z) covariant expression for supergravity solutions
corresponding to the (p, q)-five brane was derived.1 These
backgrounds are very interesting and certainly deserve to
be studied further. In particular, it is well known that the
continuous classical symmetry group SL(2, R) of type IIB
supergravity cannot be a symmetry of the full string theory
when non-perturbative effects break it to a discrete subgroup
SL(2, Z). To see this more clearly, note that the fundamen-
tal string carries one unit of NSNS two-form charge and
hence this charge has to be quantized in integer units. On
the other hand SL(2, R) transformations map a fundamental
string into a string with d units of this charge where d is an
entry of the SL(2, R) matrix. From this result we conclude
that d has to be integer. In a similar way we can argue that
the SL(2, R) symmetry of the low energy effective action
has to be broken to its SL(2, Z) subgroup when a funda-
mental string is mapped under this duality to a (p, q)-string
that carries charge p of NSNS two-form and charge q of the
Ramond–Ramond two-form [9]. It was also shown in [9] that
the type IIB string effective action together with the (p, q)-
string action is covariant under SL(2, R) transformations.
However, the fact that the (p, q) string has to map to another
(p′, q ′)-string where p′, q ′ are integers suggests that the full
symmetry group of the combined action breaks to SL(2, Z).
On the other hand, solutions found in [7,8] were determined
using the SL(2, R) matrices so that it is interesting to analyze
the problem of an (m, n)-string probe in such a background
and this is precisely the aim of this paper.

We begin with the D1-brane action that we rewrite into
a manifestly covariant SL(2, Z) form; for a related analysis
see [10] and for a very elegant formulation of the manifestly
SL(2, Z) covariant superstring, see [11,12]. Now using the

1 For a non-extremal form of these solutions, see [17].
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fact that (p, q)-five and fundamental string solutions were
derived using SL(2, R) transformations we can map the
problem of the dynamics of the (m, n)-string in this back-
ground to the problem of the analysis of the (m′, n′)-string
in the original NS5-brane and fundamental string background
with the crucial exception that the harmonic functions that
define these solutions have constant factors that differ from
the factors that define NS5-brane and fundamental string
solutions. It is also important to stress that now (m′, n′) are
not integers but depend on p, q and also on asymptotic val-
ues of the dilaton and Ramond–Ramond zero-form. We think
that this is not a quite satisfactory resort and one can ask the
questions whether it would be possible to find (p, q)-string
and five-brane backgrounds that are derived from the NS5-
brane and fundamental string background through manifest
SL(2, Z) transformations when the probe (m, n)-string will
transform in an appropriate way. This problem is currently
under study and we return to it in the near future. We rather
focus on the dynamics of the probe (m, n)-string in the back-
grounds [7,8], following the very nice analysis introduced
in [14]. Using a manifest SL(2, Z) covariant formulation
of a probe (m, n)-string we can analyze the time evolution
of the homogeneous time-dependent string in a given back-
ground. We determine the components of the world-sheet
stress energy tensor and study its time evolution. The prop-
erties of this stress energy tensor and the dynamics of the
probe depend on the values of m, n and hence our results can
be considered as a generalization of the analysis performed
in [14].

As the next step we analyze the dynamics of the probe
(m, n)-string in the background of (p, q)-macroscopic string.
Thanks to the form of the solution [7] we formulate this prob-
lem as the analysis of the dynamics of (m′, n′)-string in the
background of fundamental string. This problem was studied
previously in [15] but we focus on a different aspect of the
dynamics of the probe. Explicitly we will be interested in the
behavior of the probe where the difference between its energy
and the rest energy is small. We find that the potential is flat,
which is in agreement with the fact that the string probe in the
fundamental string background can form a marginal bound
state with the strings that are sources of this background. We
also analyze the situation with a non-zero angular momen-
tum and we find that there is a potential barrier that does
not allow the probe string to move towards to the horizon.
These results are in agreement with the analysis performed
in [15].

The organization of this paper is as follows. In the next
section (Sect. 2) we review SL(2, R) duality of the type IIB
low energy effective action. We also introduce a manifestly
SL(2, R) covariant action for (m, n)-string. In Sect. 3 we
study the dynamics of this string in the background of a
(p, q)-five brane. Finally in Sect. 4 we study the dynamics
of the (m, n)-string in the background of a (p, q)-string.

2 SL(2, R)-Covariance of type IIB low energy effective
action

The type IIB theory has two three-form field strengths H =
dB, F = dC (2), where H corresponds to the NSNS three-
form, while F belongs to the RR sector and does not couple
to the usual string world-sheet. Type IIB theory has also two
scalar fields, which can be combined into a complex field
τ = χ + ie−�. The dilaton � is in the NSNS sector, while χ

belongs to the RR sector. The other Bose fields are the metric
gμν and the self-dual five-form field strength F5, which we set
zero in this paper. Then it is possible to write down a covariant
form of the bosonic part of type IIB effective action,

SIIB = 1

2κ̃2
10

∫
d10x

√−g

(
R + 1

4
Tr(∂μM∂μM−1)

− 1

12
HT

μνσMHμνσ

)
, (1)

where κ̃2
10 = 1

4π
(4π2α′)4 and where we have combined

B,C (2) into

H = dB =
(

dB
dC (2)

)
, (2)

and where

M = e�

(
ττ ∗ χ

χ 1

)
= e�

(
χ2 + e−2� χ

χ 1

)
. (3)

The action (1) has manifest invariance under the global
SL(2, R) transformation

M̂ = �M�T , B̂ = (�T )−1B , (4)

where

� =
(
a b
c d

)
. (5)

It is well known that all string theories contain the funda-
mental string and the magnetic dual NS5-brane as solutions
of the equations of motion of its low energy effective actions.
Using the manifest SL(2, R) covariance of type IIB effec-
tive action it is possible to derive solutions corresponding to
the (p, q)-five brane [8] and fundamental string [7]. It will
be certainly interesting to analyze the properties of a given
background with the help of the appropriate probe, which
will be a probe (m, n)-string. For that reason we introduce a
manifestly covariant form of the (m, n)-string action.

2.1 (m, n)-String action

In this section we formulate the action for the (m, n)-string.
Even if such a formulation is well known [9–13] we derive
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this action in a slightly different way with the help of the
Hamiltonian formalism which will also be useful for the anal-
ysis of the dynamics of the probe (m, n)-string in (p, q)-five
and (p, q)-string background.

To begin with we introduce an action for n coincident
D1-branes in a general background,

S = −nTD1

∫
dτdσe−�

√−detA

+ nTD1

∫
dτdσ((bτσ + 2πα′Fτσ )χ + cτσ ),

Aαβ = GMN ∂αx
M∂βx

N + 2πα′Fαβ + BMN ∂αx
M∂βx

N ,

Fαβ = ∂αAβ − ∂β Aα,

(6)

where xM , M, N = 0, 1, . . . , 9 are embedding coordinates
of the D1-brane in the background that is specified by the
metric GMN and NSNS two-form BMN = −BNM together
with Ramond–Ramond two-form C (2)

MN = −C (2)
NM . Note that

we use capital letters GMN for the string frame metric, while
gMN corresponds to the Einstein-frame metric. We further
consider a background with a non-trivial dilaton � and RR
zero-form χ . Further, σα = (τ, σ ) are world-sheet coordi-
nates and bτσ , cτσ are pull-backs of BMN and CMN to the
world-volume of D1-brane. Explicitly,

bαβ ≡ BMN ∂αx
M∂βx

N , cτσ = C (2)
MN ∂τ x

M∂σ x
N . (7)

Finally, TD1 = 1
2πα′ is the D1-brane tension and Aα, α =

τ, σ is a two dimensional gauge field that propagates on the
world-sheet of the D1-brane.

It is useful to rewrite the action (6) in the form

S = −nTD1

∫
dτdσe−�

√
−detg − (2πα′Fτσ + bτσ )2

+ nTD1

∫
dτdσ((bτσ + 2πα′Fτσ )χ + cτσ ), (8)

where gαβ = GMN ∂αxM∂βxN , detg = gττ gσσ − (gτσ )2.
Now we proceed to the Hamiltonian formulation of the theory
defined by the action (8). First of all we derive the conjugate
momenta to xM and Aα from (8)

pM = δL

δ∂τ xM
= nTD1

e−�√−detg − (2πα′Fτσ + bτσ )2

×(GMN ∂αx
N gατ detg+(2πα′Fτσ +bτσ )BMN ∂σ x

N )

+ nTD1(χBMN ∂σ x
N + C (2)

MN ∂σ x
N ),

πσ = δL

δ∂τ Aσ

= ne−�(2πα′Fτσ + bτσ )√−detg − (2πα′Fτσ + bτσ )2
+ nχ ,

πτ = δL

δ∂τ Aτ

≈ 0, (9)

and hence

�M ≡ pM − πσ

(2πα′)
BMN ∂σ x

N − nTD1C
(2)
MN ∂σ x

N ) =

= nTD1
e−�√−detg−(2πα′Fτσ +bτσ )2

GMN ∂αx
N gατ detg.

(10)

Using these relations it is easy to see that the bare Hamilto-
nian is equal to

HB =
∫

dσ(pM∂τ x
M + πσ ∂τ Aσ − L) =

∫
dσπσ ∂σ Aτ ,

(11)

while we have three primary constraints,

πτ ≈ 0, Hσ ≡ pM∂σ x
M ≈ 0,

Hτ ≡ 1

TD1
�MGMN�N

+ TD1

(
n2e−2� + (

πσ − nχ
)2

)
gσσ ≈ 0. (12)

Including these primary constraints in the definition of the
Hamiltonian we obtain an extended Hamiltonian in the form

H =
∫

dσ(λτHτ + λσHσ − Aτ ∂σ πσ + vτπ
τ ), (13)

where λτ , λσ , vτ are Lagrange multipliers corresponding to
the primary constraints Hτ ≈ 0 ,Hσ ≈ 0, πτ ≈ 0. Now we
have to check the stability of all constraints. The requirement
of the preservation of the primary constraint πτ ≈ 0 implies
the secondary constraint,

G = ∂σ πσ ≈ 0. (14)

In the case of the constraints Hτ ,Hσ we can easily show
in the same way as in [16] that the constraints Hτ ,Hσ are
first class constraints and hence they are preserved during the
time evolution.

An action for (m, n)-string is derived when we fix the
gauge generated by G with the gauge fixing function Aσ =
const. Then the fixing of the gauge implies that πσ = f (τ ),
but the equation of motion for πσ implies that ∂τπ

σ = 0
and hence πσ = m, where m is an integer that counts the
number of fundamental strings bound to n D1-branes. After
this partial gauge fixing the Hamiltonian density has the form

H(m,n) =
∫

dσ(λτHτ + λσHσ ). (15)

In order to find the (m, n)-string action we derive the
Lagrangian density corresponding to the Hamiltonian (15).
Explicitly, from (15) we obtain equations of motion for xM
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∂τ x
M =

{
xM , H(m,n)

}
= 2λτ

1

TD1
GMN�N + λσ ∂σ x

M

(16)

and hence

L(m,n) = pM∂τ x
M − H(m,n)

= 1

2πα′

(
1

4λτ

(gττ − 2λσ gτσ + λ2
σ gσσ )

− λτ (n
2e−2�

+(m − nχ)2)gσσ + mbτσ + ncτσ

)
. (17)

As the final step we solve the equations of motion for λτ and
λσ , which follow from (17), and we obtain

λσ = gτσ

gσσ

, λτ = 1

2gσσ

√
n2e−2� + (m − nχ)2

√−detg.

(18)

Inserting this result into the Lagrangian density (17) we
obtain the action in manifestly covariant SL(2, R) form,

S = −TD1

∫
dτdσ(

√
mTM−1m

√
−detgMN∂αxM∂βxN

+ TD1

∫
dτdσmTBMN ∂τ x

M∂σ x
N ,

(19)

where

m =
(
m
n

)
,BMN =

(
BMN

C (2)
MN

)
, (20)

and where gMN = e−�/2GMN is an Einstein-frame metric.
Since B̂ = (�T )−1B we see that m transforms as

m̂ = �m (21)

in order for the action (19) to be manifestly SL(2, R) covari-
ant. On the other hand, since m, n count the number of
fundamental strings and D1-branes and hence have to be
integers, we find that the non-perturbative duality group of
type IIB superstring theory is SL(2, Z), which will have
an important consequence for the analysis of the dynamics
of (m, n)-string in (p, q)-five-brane and (p, q)-fundamental
string background.

3 (m, n)-string in the background of ( p, q)-five brane

We would like to analyze the dynamics of the (m, n)-string
in the background of a (p, q)-five brane that has the form [8]

ds2
E = (1 + Q(p,q)

r2 )−1/4ημνdxμdxν

+(1 + Q(p,q)

r2 )3/4dxmdxm ,

λ = χ + ie−�

= χ0�(p,q)A(p,q)+ pqe−�0 (A(p,q)−1)+i�(p,q)A
1/2
(p,q)e

−�0

p2e−�0 +A(p,q)e�0 (χ0 p + q)2 ,

H = dB = 2p(2πα′)2ε3,

F = dC2 = 2q(2πα′)2ε3, (22)

where

Q(p,q) = √�(p,q)2πα′ =
√

e−�0 p2+(q+ pχ0)2e�0 2πα′,
(23)

and where ε3 is the volume form of the three sphere when we
express the line element of the transverse space dxmdxm as
dxmdxm = dr2 + r2d�3. Note also that xμ,μ = 0, . . . , 5
labels the directions along the world-volume of the (p, q)-
five brane. Further A(p,q) is defined as

A(p,q) =
(

1 + Q(p,q)

r2

)−1

, (24)

and ds2
E means that this line element is expressed in an

Einstein-frame metric. Let us now consider the probe (m, n)-
string action (19) in a given background. The analysis of
this problem simplifies considerably when we realize how
the solution (22) was determined. Following [8] and [7] we
introduce the SL(2, R) matrix

� = �−1/2
(p,q)

(
e−�0 p+χ0e�0(q+ pχ0) −(q+ pχ0)+χ0 p

e�0(q + pχ0) p

)
,

(25)

where

�(p,q) = e−�0 p2 + (q + pχ0)
2e�0 , (26)

and where χ0 and �0 are asymptotic values of the fields �

and χ . Note that the inverse matrix has the form

�−1 = �−1/2
(p,q)

(
p q

−e�0 (q + pχ0) e−�0 p + χ0e�0 (q + pχ0)

)
.

(27)

Now with the help of this matrix we can write M as [8]

M = �(p, q)

(√
A(p,q) 0
0 1√

A(p,q)

)
�T (p, q), (28)
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so that

mTM−1m = m′2 1√
A(p,q)

+ n′2√A(p,q) , (29)

where

m′ =
(
m′
n′

)
= �−1(p, q)

m = �−1/2
(p,q)

(
pm + qn

e�0(q + pχ0)(−m + nχ0) + e−�0 pn

)
.

(30)

It is interesting that, for the special values of m, n equal to

m = −q, n = p, (31)

we obtain

m′ = �−1/2
(

0
e�0(q + pχ0)

2 + e−�0 p2

)
=

(
0

�1/2
(p,q)

)
.

(32)

Sincem′ = 0 we can interpret this configuration as a pure D1-
brane which, however, does not have integer charge. We also
see from (30) that in order to find a configuration with n′ = 0
we have to require that �0 = 0 = χ0 and set m = p, n = q,

m′ = �−1/2
(
p2 + q2

0

)
=

(√
p2 + q2

0

)
. (33)

Generally we see that the action for the probe (m, n)-string in
a (p, q)-five-brane background is equivalent to the action of
(m′, n′)-string in an NS5-brane background with the impor-
tant exception that the harmonic function has the factor
Q(p,q) (23) instead of the standard one, which corresponds
to the number of NS5-branes. Note also that m′, n′ depend
on m, n, p, q and the moduli �0 and χ0 as follows from
(30). The crucial point, however, is that m′, n′ are not inte-
gers, which suggests inconsistency with the (p, q)-five-brane
background. We come to this important observation later.

Let us now return to the analysis of the dynamics of the
probe (m, n)-string in this background. It is convenient to
impose the static gauge

x0 = τ, x1 = σ (34)

and introduce spherical coordinates in the transverse space
R4

x1 = r cos ψ, x1 = r sin ψ cos θ,

x3 = r sin ψ sin θ cos φ, x4 = r sin ψ sin θ sin φ, (35)

so that the volume element of �3 is equal to

d�3 = sin2 ψ sin θdψ ∧ dθ ∧ dφ. (36)

Using these equations we see that we have the following
components of the RR and NSNS two-forms:

Bψφ = 2p(2πα′)2 sin2 φ cos θ,

C (2)
ψφ = 2q(2πα′)2 sin2 ψ cos θ.

(37)

Now we would like to derive the components of the stress
energy tensor Tαβ for the gauge fixed theory. To do this we
temporarily replace the fixed two dimensional metric ηαβ

with two dimensional metric γαβ and write the gauge fixed
action in the form

Sfixed = −TD1

∫
dτdσ(

√
mTM−1mA1/4

(p,q)

√−detAαβ

+SW Z , (38)

where

Aαβ = γαβ + 1

A(p,q)

δmn∂αx
m∂βx

n + δαβ∂αx
α∂βx

β, (39)

where xα, α = 1, . . . , 5 labels the coordinates along the
world-volume of the (p, q)-five brane. Then we define the
components of the two dimensional stress energy tensor as

Tαβ = − 2√−detγ

δSfixed

δγ αβ

= − TD1√−detγ
γαγ (A−1)γ δγδβ

√−detA
√
mTM−1mA1/4

(p,q).

(40)

Now we return back to the flat metric γαβ → ηαβ and con-
sider pure time-dependent ansatz. As a result we obtain the
following components of the world-sheet stress energy ten-
sor:

Tττ = TD1
√
mTM−1mA1/4

(p,q)√
1 − 1

A(p,q)
∂τ xm∂τ xm − ∂τ xα∂τ xα

, Tτσ = 0,

Tσσ = −TD1

√
mTM−1mA1/4

(p,q)

×
√

1 − 1

A(p,q)

∂τ xm∂τ xm − ∂τ xα∂τ xα, (41)

which are a generalization of the components of the stress
energy tensor of a Dp-brane moving in an NS5-brane back-
ground as found in [14].

3.1 Gauge fixing in Hamiltonian formalism

Now we proceed to the analysis of dynamics of the probe
(m, n)-string in (p, q)-five-brane background. It turns out
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that it is useful to perform this analysis in the canonical
approach when we impose the static gauge using the two
gauge fixing functions

Gτ = x0 − τ ≈ 0, Gσ = x1 − σ ≈ 0. (42)

These constraints have non-zero Poisson brackets withHτ ≈
0,Hσ ≈ 0 so that they are the second class constraints.
As a result Hτ ,Hσ vanish strongly and can be solved for
p0 and p1, respectively, where we can relate −p0 with the
Hamiltonian density of gauge fixed theory Hfix. To see this
note that the action has the form

S =
∫

dτdσ(pM∂τ x
M − H) =

∫
dτdσ(pi∂τ x

i + p0)

=
∫

dτdσ(pi∂τ x
i − Hfix). (43)

Now from Hσ = 0 we obtain p1 = −(pi∂σ xi ) and from Hτ

we find

Hfix =
√

−g00
(
�1g11�1 + �i gi j� j + T 2

D1(m
′2e� + n′2e−�)(g11 + gi j∂σ xi∂σ x j )

) − 1

2πα′m
′TB0M∂σ x

M , (44)

where i, j = 2, . . . , 9. The analysis simplifies further when
we presume that the embedding modes depend on τ only so
that the Hamiltonian density (44) reduces to

H2
fix = A1/4

(p,q)

(
pα pαA

−1/4
(p,q) + A3/4

(p,q)

(
p2
r + 1

r2 p
2
ψ

+ 1

r2 sin2 ψ
p2
θ + 1

r2 sin2 ψ sin2 θ
p2
φ

)

+T 2
D1(m

′2 + n′2A(p,q))A
−1/4
(p,q)

)
≡ K, (45)

where pα, α = 2, 3, 4, 5 denotes the momenta along the
world-volume of the (p, q)-five branes. Since they are con-
served we restrict ourselves to the case when pα = 0. At the
same time we find that pφ is conserved as well and we denote
this constant as pφ = L . On the other hand the equations of
motion for θ, pθ have the form

θ̇ = {θ, Hfix} = A(p,q) pθ

r2 sin2 ψ
√K ,

ṗθ = {pθ , Hfix} = A(p,q) sin θ cos θ

r2 sin2 ψ sin3 θ
√K p2

ψ. (46)

We see that this equation has a solution when θ = π
2 and

pθ = 0. In the same way we find that pψ = 0, ψ = π
2 solve

the equations of motion. Finally we proceed to the analysis
of the time evolution of r . The equation of motion for r gives

ṙ = {r, Hfix} = A(p,q) pr√K . (47)

To proceed, we use the fact that the Hamiltonian density Hfix

is conserved and we denote its constant value by E . Then we
can solve Hfix = E for pr as

pr =

√√√√ E2 − A(p,q)L2

r2 − T 2
D1(m

′2 + n′2A(p,q))

A(p,q)

, (48)

so that from (47) we obtain

ṙ2 = A(p,q) − A2
(p,q)

E2

(
L2

r2 + T 2
D1n

′2
)

− A(p,q)T 2
D1

E2 m′2.

(49)

As a check note that the first two terms on the right side in
(49) coincide with the expression that governs the dynamic
of the Dp-brane in an NS5-brane background [14] while the
last one, which is proportional to m′2, corresponds to the

dynamics of the fundamental string in this background. For
the next purposes we also determine the equation of motion
for φ

φ̇ = {φ, Hfix} = A(p,q)L

r2E
. (50)

3.2 The Case L = 0

We first of all consider the case of the vanishing angular
momentum pθ = L = 0. Then Eq. (50) implies that φ is a
constant while Eq. (49) has the form

ṙ2 = A(p,q) − A2
(p,q)T

2
D1

E2 n′2 − A(p,q)T 2
D1

E2 m′2. (51)

Now we will analyze this expression in more detail. First
of all the solution of this equation is restricted to the region
where the right side is non-negative. Since

A(p,q) =
(

1 + Q(p,q)

r2

)−1

, (52)

we obtain

Q(p,q)

r2 >
T 2
D1n

′2

E2(1 − T 2
D1
E2 m′2)

− 1. (53)
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Note that for m′ = 0 this result agrees with the result derived
in [14]. We see that this condition is empty when

E2 > T 2
D1(n

′2 + m′2), (54)

which has a clear physical meaning. It corresponds to the
situation when the total energy is greater than the asymptotic
tension of the (m′, n′) string and the given string can escape
to infinity. Note that for E2 < T 2

D1(n
′2 + m′2) the (m′, n′)

string cannot escape from the attraction from the five brane.
We also determine the components of the stress energy

tensor (41) for this configuration. Using (51) we easily find

Tττ =
TD1

√
m′2 + n′2A(p,q)√
1 − 1

A(p,q)
ṙ2

= E, Tτσ = 0,

Tσσ = −TD1

√
m′2 + n′2A(p,q)

√
1 − 1

A(p,q)

ṙ2

= −T 2
D1

E
(m′2 + n′2A(p,q)) . (55)

From Tσσ = P we see that the contribution from the D1-
brane to the pressure goes to zero when we approach the
core of the five-brane background, while the string like con-
tribution is constant. This is an analog of the well-known fact
that the fundamental string can make the bound state with the
NS5-brane.

Let us now consider such an energy interval when the
entire trajectory is in the region when Q(p,q) 
 r2. Then the
equation for ṙ has the form

ṙ2 = r2

Q(p,q)

(
1 − T 2

D1m
′2

E2

)
− r4

Q2
(p,q)

T 2
D1

E2 n′2,

(56)

which has the solution

r = 1

n′

√
Q(p,q)

E2

T 2
D1

− m′2 1

cosh

√(
1 − T 2

D1
E2 m′2

)
1

Q(p,q)
t

,

(57)

where we chosen the initial condition that for t = 0 the
(m′, n′)-string is at the point of the maximal value corre-
sponding to ṙ = 0. From the previous expression we see that
this result is valid in the case of m′ = 0. On the other hand
the case n′ = 0 has to be analyzed separately in Eq. (56) and
we obtain the result

r = r0e
±

√
1

Q(p,q)
(1− T 2

D1
E2 m′2)t

, (58)

where the − sign corresponds to the m′-string moving
towards to the world-volume of the five brane, while + cor-
responds to the situation when the m′-string leaves it. Again,
this result is the manifestation of the fact that the fundamen-
tal string can form a marginal bound state with NS5-brane.
However, in our case this situation is not so clear due to the
fact that m′ is not an integer and depends on the asymp-
totic values of �0 and χ0. On the other hand it is clear that
the equation of motion (51) possesses the constant solution
r = const in the case when n′ = 0 on condition that

E2 = T 2
D1m

′2 = T 2
D1(p

2 + q2). (59)

This is a rather puzzling result that shows the difficulty with
the background solution (22). To see this in more detail
let us imagine that we have a configuration of the back-
ground NS5-brane and a probe fundamental string. Under
a SL(2, Z) transformation these two objects transform dif-
ferently. Explicitly, since the NS5-brane is a magnetically
charged object with respect to the NSNS two-form it trans-
forms in the same way as in (4). Then the (p, q)-five brane
arises from the NS5-brane through the following SL(2, Z)

transformation:

(
Q̂N S5

Q̂D5

)
=

(
p −c
q a

)(
1
0

)
, (60)

so that

� =
(
a −q
c p

)
. (61)

On the other hand we know that the fundamental string trans-
forms under the SL(2, Z) transformation as in (21). Then
we find that for � given in (61) we obtain an (a, c)-string
where (ap + qc = 1). Since NS5-brane and fundamental
string form a marginal bound state the previous arguments
suggest that such a bound state exists also for the (p, q)-
five brane and the (a, c)-fundamental string. Then the con-
dition given in (59) is not in agreement with this claim. In
other words the condition (59) says that there should exist a
marginal bound state between (p, q)-five brane and (p, q)-
fundamental string, which is not consistent with the SL(2, Z)

duality of the type IIB string theory as was argued above.
This is fact suggests that the (p, q)-five-brane background
is not consistent from the probe point of view. Stated differ-
ently, the method of the constructions of (p, q)-five-brane
and fundamental string backgrounds that was used in [7,8]
in fact does not lead to the correct form of the background
from the string probe point of view. We mean that the res-
olution of this paradox can be found when we construct the
background (p, q)-five-brane solution with the help of an
SL(2, Z) transformation rather than the procedure used in
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[8], which was based on the SL(2, R) transformation. This
question is now under active investigation and we hope to
report our results soon.

3.3 The case L �= 0

Let us now consider the case of non-zero angular momentum
L . Following [14] we rewrite the equation of motion for (49)
in the form

ṙ2 + A2
(p,q)

E2

(
L2

r2 + T 2
D1n

′2
)

+ A(p,q)

T 2
D1

E2 m′2 − A(p,q) = 0,

(62)

which can be interpreted as the equation of conserved energy
for a particle with mass m = 2 that moves in the effective
potential Veff(r),

Veff = A2
(p,q)

E2

(
L2

r2 + T 2
D1n

′2
)

+ A(p,q)

T 2
D1

E2 m′2 − A(p,q)

(63)

with zero energy. Now following [14] we will analyze the
behavior of this potential for different values of r . For small
r we obtain

Veff = r2

Q(p,q)

(
L2

Q(p,q)E2 + T 2
D1

Q(p,q)E2 m
′2 − 1

)
. (64)

On the other hand for large r we have

Veff = T 2
D1

E2 n′2 − 1. (65)

Now we see that for E < TD1n′ the potential Veff approaches
a positive value for r → ∞ and since the particle has zero
energy we find that it cannot escape to infinity. Further, in
order to have trajectories with non-zero r we have to require
that the potential approaches zero from below, which implies

L2

Q(p,q)

< E2 − T 2
D1m

′2

Q(p,q)

. (66)

In fact, if this condition were not satisfied then the only solu-
tion would be r = 0.

Let us now explicitly find the solution of the equation of
motion in the throat region when A(p,q) = r2

Q(p,q)
. Then Eq.

(49) has the form

ṙ2 = r2

Q(p,q)

(
1 − T 2

D1
E2 m′2 − L2

Q(p,q)E2

)
− r4

Q2
(p,q)

E2
T 2
D1n

′2,

(67)

which has the solution

r = Q(p,q)E

TD1

√
1 − m′2 T

2
D1

E2 − L2

Q(p,q)E2

× 1

cosh

√
1 − T 2

D1
E2 m′2 − L2

Q(p,q)E2 t

. (68)

We see that the non-zero angular momentum slows down the
decrease of r . Further, the equation of motion for φ implies

φ = L

EQ(p,q)

t. (69)

In other words, the previous solution describes an (m′, n′)-
string that moves towards to the world-volume of the back-
ground five brane which, however, also circles around them.

As the next example we consider the situation when n′ =
0. In this case we find the potential to be of the form

Veff = A2
(p,q)

E2

L2

r2 + A(p,q)

T 2
D1

E2 m′2 − A(p,q), (70)

which in the throat region simplifies as

Veff = A(p,q)

(
L2

Q(p,q)E2 + T 2
D1

E2 m′2 − 1

)
(71)

and it vanishes identically when

E2 = L2

Q(p,q)

+ T 2
D1m

′2. (72)

In other words it is possible to find a string that rotates around
the five brane for any values of r .

The situation is different when E > TD1n′, which means
that the potential is negative for r → ∞. Further, if we
again have (66) we see that we approach the point r = 0
from below and hence there is no potential barrier. In this
case we have a possibility of a particle that starts at r = 0 for
t = −∞ and escapes to infinity in a time reverse process. On
the other hand the situation is different when the bound (66)
is not satisfied. Let us imagine that we have an (m, n)-string
initially at a large distance from the (p, q)-five brane. The
probe moves towards the (p, q)-five brane until it reaches
the point when the effective potential vanishes, that is, at

r2
min = L2 − E2Q(p,q) − T 2

D1m
′2Q(p,q)

E2 − T 2
D1m

′2 − T 2
D1n

′2 . (73)

Following [14] we can interpret this process as a scattering
of the (m, n)-string from the collection of (p, q)-five branes.
Since the analysis is completely the same as in [14] we will
not repeat it here.
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4 (m, n)-String in ( p, q)-string background

In this section we consider the dynamics of an (m, n)-string
in the macroscopic (p, q)-string background [7],

ds2
E = H−3/4

pq [−dt2 + dy2] + H1/4
pq dxmdxm,

Hpq = 1 + (2π)6α′3�1/2
(p,q)

r6�7
≡ 1 + α

r6 ,

B = (�−1
p,q)

T
(

(H−1
pq − 1)

0

)
,

� = �−1/2
(p,q)

(
p −e−�0q + χ0e�0(p − qχ0)

q e�0(p − qχ0)

)
,

M = �

(
H1/2

pq 0

0 H−1/2
pq

)
�T ,

�(p,q) = e−�0q2 + (p − qχ0)
2e�0 . (74)

The Hamiltonian density for the time-dependent world-sheet
modes has the form

Hfix =
√

�m�mH−1
pq + H−2

pq T 2
D1(m

′2 + n′2Hpq)

−TD1m
′(H−1

pq − 1), (75)

where m′ is equal to

m′ =
(
m′
n′

)
= �−1/2

(p,q)

(
e�0 (p − qχ0)(m − χ0n) + e−�0qn

−qm + pn

)
.

(76)

Clearly for m = p and n = q we obtain

m′ = �−1/2
(p,q)

(
e�0(p − qχ0)

2 + e−�0qn
0

)
=

(
�1/2

(p,q)

0

)
,

(77)

with the following physical interpretation. As we know the
(p, q)-string solution was derived through an SL(2, R) trans-
formation from the fundamental string background. Then
clearly a fundamental string in a macroscopic string back-
ground maps to the same object under an SL(2, Z) trans-
formation. On the other hand from (77) we see that this is
not exactly true, since the probe string does not carry inte-
ger charge. We again leave the resolution of this paradox for
future research.

It is also useful to find the components of the stress energy
tensor for the (m, n)-string in static gauge. As in the previous
section we temporarily replace the fixed two dimensional
metric ηαβ with the two dimensional metric γαβ and write
the gauge fixed action in the form

Sfixed = −TD1

∫
dτdσ

(√
mTM−1mH−3/4

pq
√−detA

−√−γ (�−1
pqm)T

(
1

Hpq
− 1

0

))
, (78)

where

Aαβ = γαβ + Hpqδmn∂αx
m∂βx

n . (79)

Then the components of two dimensional stress energy tensor
have the form

Tαβ = − 2√−γ

δSfixed

δγ αβ
=

= − TD1√−γ
γαγ (A−1)γ δγδβ

√−detA
√
mTM−1mH−3/4

pq

+γαβ(�−1
pqm)T

(
1

Hpq
− 1

0

)
. (80)

Finally we return to the flat metric γαβ → ηαβ and consider
a pure time-dependent ansatz. Then we obtain

Tττ =
TD1

√
m′2 + n′2Hpq

Hpq

√
1 − Hpq(ṙ2 + r2φ̇2)

+ m′TD1(1 − 1

Hpq
) ,

Tτσ = 0,

Tσσ = −TD1

√
m′2 + n′2Hpq

1

Hpq

√
1 − Hpq(ṙ2 + r2φ̇2)

−m′TD1

(
1 − 1

Hpq

)
, (81)

where we also introduced spherical coordinates in the trans-
verse R8 space and considered the dynamics of the probe in
a two dimensional plane with radial variable r and angular
variable φ. As a result the Hamiltonian density (75) simplifies
considerably:

Hfix = 1

Hpq

(√
Hpq(p2

r + 1

r2 p
2
φ + T 2

D1n
′2) + T 2

D1m
′2

+ TD1m
′(Hpq − 1)

)
. (82)

Note also that the equation of motion for φ has the form

φ̇ = {φ, Hfix} = L

r2(Hpq E − TD1m′(Hpq − 1))
, (83)

where we used the fact that pφ = L and Hfix = E are con-
served. With the help of these results we obtain the following
components of the stress energy tensor (81):
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Tττ = E,

Tσσ = P = − T 2
D1(m

′2 + n′2Hpq)

Hpq(E − TD1m′) + TD1m′

− TD1m
′
(

1 − 1

Hpq

)
, (84)

where P is the pressure on the world-volume of the (m, n)-
string.

Let us now proceed to the analysis of dynamics of this
probe string. From Hfix we derive the equation of motion,

ṙ = {r, Hfix} = pr√
Hpq1(p2

r + 1
r2 L2 + T 2

D1n
′2) + T 2

D1m
′2

.

(85)

On the other hand from the fact that the energy density E is
conserved we can express pr as

p2
r = 1

Hpq

(
(Hpq(E − TD1m

′) + m′TD1)
2 − T 2

D1m
′2)

− L2

r2 − T 2
D1n

′2, (86)

so that (85) has the form

ṙ2 = 1

Hpq

⎛
⎝1 − (T 2

D1n
′2 + L2

r2 )Hpq + T 2
D1m

′2

(Hpq(E − TD1m′) + TD1m′)2

⎞
⎠ .

(87)

We can again rewrite this equation into the more suggestive
form

ṙ2 + Veff = 0, (88)

where

Veff = 1

Hpq

⎛
⎝ (T 2

D1n
′2 + L2

r2 )Hpq + T 2
D1m

′2

(Hpq(E − TD1m′) + TD1m′)2 − 1

⎞
⎠ . (89)

We see that the equation above corresponds to the massive
particle with mass m = 2 moving in the potential Veff with
zero energy so that much interesting information as regards
the particle’s trajectory follows from the properties of the
given potential. As in the previous section we start with the
case of the zero angular momentum.

4.1 The case L = 0

We see that for r → ∞ we have Hpq → 1 and hence

Veff → T 2
D1m

′2 + T 2
D1n

′2

E2 − 1, (90)

while for small r we obtain

Veff = r6

α

(
n′2T 2

D1r
6

α(E − TD1m′)2 − 1

)
, (91)

so that Veff approaches the point r = 0 from below. As a
result we have two qualitative different behaviors of the probe
(m′, n′) string in this background. It follows from (90) that
for E2 < T 2

D1(m
′2 +n′2) Veff approaches a positive constant

for large r . Then the probe string cannot escape to infinity
and it moves in the bounded region around the (p, q)-string
background. On the other hand for E2 > T 2

D1(m
′2 + n2)

the potential is negative for all values and hence the probe
string can move to infinity. Let us first consider the case when
n′ = 0. This case corresponds to the situation of the motion
of fundamental string in the background of a collection of
fundamental strings. We can expect that it is possible to form
a marginal bound state of N+m′ fundamental strings. In fact,
for E − TD1m′ = ε  1 we find that the effective potential
has the form

Veff = −2
ε

TD1m′ (92)

and we see that it is flat. As a result we find a time dependence
r ∼ ±εt , which means a very slow movement of the probe
string. This is a confirmation of the claim that the probe string
can form marginal bound state with N fundamental strings.
Note that this approximation is valid on condition that

Hpqε

TD1m′  1, (93)

which implies r6 
 αε
TD1m′ , which can be obeyed in the whole

region in the limit ε → 0. Finally note also that the pressure
is equal to

P = −2TD1m
′ + Hpqε + TD1

Hpq
m′, (94)

which has the following physical explanation. Consider the
initial configuration when the m′-string is sitting at infinity
when Hpq = 1 and consequently P = −TD1m′ + ε =
E − 2TD1m′. The string moves slowly to the horizon when
Hpq → ∞ and hence the pressure approaches the value
P → −m′TD1 at the horizon in the limit ε → 0.

To see this more clearly let us consider the case of the
near horizon limit when Hpqε 
 TD1m′ when ε is small but
finite. In this case we find that the leading order behavior of
the effective potential is

Veff = −r6

α
(95)
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and hence we have the differential equation

dr

dt
= ± r3

√
α

. (96)

The + sign corresponds to the string moving from the horizon
when the approximation we use quickly breaks. The sign −
corresponds to the string moving to the horizon and for this
possibility we find the solution

r = r0√
1 + 2r2

0√
α
t

, r6
0  α. (97)

We see that the probe string approaches horizon at asymptotic
time t → ∞. Observe that this behavior does not depend on
the value of the energy of the string probe.

4.2 The case L �= 0

Now we would like to analyze the behavior of the potential
in the case n′ = 0 and L �= 0 and in the limit E − TD1m′ =
ε  1. In this case we find the effective potential in the form

Veff = −2
ε

TD1m′ + L2

r2T 2
D1m

′2 (1 − 2ε

TD1m′ ) − 2α

r8

L2ε

T 3
D1m

′3 .

(98)

From this form of the effective potential we can deduce the
existence of the potential barrier, since there are two points
where Veff vanishes. We find these points as follows. We
presume that the first root corresponds to the root when
we neglect the term proportional to r−8. Then we solve the
quadratic equation with the solution

r+ = L√
2TD1m′ε

. (99)

We see that it has a very large value, which justifies our
assumption. The second root corresponds to the situation
when we neglect the constant term in (98) and we obtain

r− =
(

2αε

TD1m′

)1/6

, (100)

which is much smaller than r+ again in agreement with our
assumptions. The physical picture is the following. If we have
a probe m′-string with E − TD1m′  1 far away from the
background (p, q)-string then it moves towards it, however,
it cannot cross the horizon. Rather it approaches the distance
given by r+ and then it is deflected. On the other hand the
m′-string that is initially in the region below r− will spirally
move towards the the horizon. This situation is similar to
the case of the (m, 1)-string studied in [15] and we will not
repeat it here.
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