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Abstract Loop quantum cosmology (LQC) is the symmet-
ric sector of loop quantum gravity. In this paper, we gener-
alize the structure of loop quantum cosmology to the theo-
ries with arbitrary spacetime dimensions. The isotropic and
homogeneous cosmological model in n + 1 dimensions is
quantized by the loop quantization method. Interestingly,
we find that the underlying quantum theories are divided
into two qualitatively different sectors according to space-
time dimensions. The effective Hamiltonian and modified
dynamical equations of n+1 dimensional LQC are obtained.
Moreover, our results indicate that the classical big bang sin-
gularity is resolved in arbitrary spacetime dimensions by a
quantum bounce. We also briefly discuss the similarities and
differences between the n + 1 dimensional model and the
3 + 1 dimensional one. Our model serves as a first example
of higher dimensional loop quantum cosmology and offers
the possibility to investigate quantum gravity effects in higher
dimensional cosmology.

1 Introduction

Higher dimensional spacetime are a subject of great inter-
est as regards grand unified theories. Historically, the first
higher dimensional theories is the famous Kaluza–Klein the-
ory, trying to unify the 4 dimensional general relativity (GR)
and Maxwell theory [1]. Recent theoretical developments
reveal that higher dimensions are preferred by many theo-
ries, such as the string/M theories [2], the AdS/CFT corre-
spondence [3], the brane world scenario [4,5], and so on.
In the past decades, many aspects of these higher dimen-
sional theories have extensively been studied, particularly
on the issues related to black holes and cosmology. In fact,
higher dimensional cosmology received increasing attention,
and it has become a rather active field with fruitful results.
For instance, some of the higher dimensional cosmological
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models can naturally explain the accelerated expansions of
Universe [6,7].

Loop quantum gravity (LQG) is a quantum gravity the-
ory trying to quantize GR with nonperturbative techniques
[8–11]. Many issues of LQG have been explored in the
past 30 years. Among these issues, loop quantum cosmol-
ogy (LQC), which is the cosmological application of LQG,
has received particularly interest. Recently, LQC has become
one of the most thriving and fruitful directions of LQG [12–
16]. One of the most attractive features of this theory is that
LQC is a singularity free theory. In LQC, the cosmological
singularity, which is inevitable in classical GR is naturally
replaced by a quantum bounce [17,18]. Although LQC is a
fruitful theory, nowadays all the discussions are still limited
to 4 spacetime dimensions. Recently, LQC has been general-
ized to the 2 + 1 dimensional case [19]. Hence it is naturally
to ask if it is possible to generalize the structure of LQC to
the higher spacetime dimensions.

However, this is not an easy task, essentially because LQG
is a quantization scheme based on the connection dynam-
ics formalism. The SU (2) connection dynamics is only well
defined in 3 and 4 dimensions and thus cannot be directly
generalized to the higher dimensional gravity theories. For-
tunately, this difficulty has been overcome by Thiemann et al.
in a series of papers [20–23]. The main idea of [20] is that in
n+1 dimensional GR, in order to obtain a well-defined con-
nection dynamics, one should adopt SO(n + 1) connections
AI J
a rather than the speculated SO(n) connections. With this

higher dimensional connection dynamics in hand, Thiemann
et al. successfully generalize the LQG to arbitrary space-
time dimensions. Thus the purpose of the present paper is to
investigate the issue of the n + 1 dimensional LQC in this
generalized LQG framework. Note that the 2+1 dimensional
case is already studied in [19]. Therefore this paper will be
devoted to the LQC with n ≥ 3.

This paper is organized as follows: After a brief intro-
duction, in Sect. 2, we first review the classical connection
formalism of n + 1 dimensional LQG, and then we use it to
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derive the cosmological Hamiltonian through the symmetric
reduction procedure. In Sect. 3 we give a detailed construc-
tion of the quantum theory of n + 1 dimensional LQC and
derive the difference equation which represents the dynam-
ical evolution of the n + 1 dimensional Universe. Then we
briefly discuss the singularity resolution issue in Sect. 4. The
effective Hamiltonian and the modified effective dynamical
equations are obtained in Sects. 5 and 6, respectively. Some
conclusions are given in the last section.

2 Classical theory

To make this paper self-contained and also convenient for
the reader, we first review some basic elements of classi-
cal n + 1 dimensional gravity concerned in this paper. The
connection dynamics of n + 1 dimensional gravity with the
gauge group SO(n+ 1) or SO(1, n) is obtained in [20]. The
Ashtekar formalism of n+1 dimensional gravity constitutes
a SO(1, n)(or SO(n+1)) connection AI J

a and a group value
densitized vector πb

I J defined on an oriented n dimensional
manifold S, where a, b = 1, 2 . . . n is for the spatial indices
and I, J = 1, 2, 3 . . . n denotes SO(1, n) group indices. The
commutation relation for the canonical conjugate pairs sat-
isfies

{AaI J (x), π
bK L(y)} = 2κγ δK[I δLJ ]δbaδ(x, y) (2.1)

where κ = 8πG and γ is a nonzero real number. Here the
πbK L satisfy the “simplicity constraint” [20] and can be writ-
ten as πbK L = 2n[K Eb|L] = 2

√
hhabn[K eL]

a , where the spa-
tial metric reads hab = eiaebi , n

K is a normal which satisfies
eKa nK = 0 and nK nK = −1 for SO(1, n) (for the case
SO(n+ 1), nK nK = 1). Moreover, the densitized vector Ea

I
satisfies hhab = Ea

I E
bI , where h is the determinant of the

spatial metric hab. AI J
a is a SO(1, n) connection defined as

AI J
a = � I J

a + γ K I J
a , here � I J

a and K I J
a are the n dimen-

sional spin connection and extrinsic curvature, respectively.
Besides the simplicity constraint, the n+1 dimensional grav-
ity has three constraints similar to 3 + 1 dimensional general
relativity [20,22],

GI J = Daπ
aI J = ∂aπ

aI J + 2A[I
a Kπa|K |J ], (2.2)

Va = 1

2γ
FabI Jπ

bI J , (2.3)

Hgr = 1

2κ
√
h

(
FabI Jπ

aI Kπb
K
J

+ 4D̄aI J
T (F−1)aI J,bK L D̄

bK L
T

− 2(1 + γ 2)KaI KbJ E
a[I Eb|J ]) (2.4)

where FabI J ≡ 2∂[a Ab]I J + 2Aa[I |K Ab
K |J ] is the curvature

of the connection AaI J , and D̄aI J
T = γ

4 F
aI J,bK L K̄ T

bK L with
K̄ T
bK L are the transverse and traceless part of the extrinsic cur-

vature KbK L . Moreover, we have [F · F−1]aI JbK L = δab η̄
I[K η̄J

L]
with η̄I

J = δ IJ − nI nJ .
Now let us consider the n + 1 dimensional isotropic and

homogeneous k = 0 Universe. Its line element is described
by the n + 1 dimensional Friedmann–Robertson–Walker
(FRW) metric,

ds2 = −N 2dt2 + a2(t)d	2 (2.5)

where a is the scale factor and d	2 is the n dimensional
sphere. We choose a fiducial Euclidean metric oqab on the
spatial slice of the isotropic observers and introduce a pair of
fiducial orthonormal basis elements as (oeaI ,

oωI
a) such that

oqab = oωI
a
oωI

b . The physical spatial metric is related to the
fiducial one by qab = a2oqab. Then the densitized vector can

be expressed as Ea
I = pV

− n−1
n

0

√
0qoeaI . Thus the πaI J and

spin connection AI J
b , respectively, reduce to

πaI J = 2pV
− n−1

n
0

√
0qon[I oea|J ] = pV

− n−1
n

0

√
0qoπaI J ,

(2.6)

AI J
b = 2cV

− 1
n

0
on[I oωJ ]

b = cV
− 1

n
0

o	I J
b . (2.7)

In the following, for simplicity, we will fix the fiducial vol-
ume V0 = 1. By using the classical expression πaI J , AI J

b
and cosmological line elements (2.5), one can easily find

p = an−1, c = γ ȧ. (2.8)

These canonical variables satisfy the commutation relation
as follows:

{c, p} = κγ

n
. (2.9)

For our cosmological case, the Gaussian and diffeomor-
phism constraints are satisfied automatically. On the other
hand, for the Hamiltonian constraint, we first note that in
the isotropic cosmological situation, the extrinsic curvature
only has a diagonal part. Hence the transverse traceless part
of the extrinsic curvature K̄ T

bK L is identical to zero. There-
fore the second term of the Hamiltonian constraint is vanish-
ing. Moreover, the spin connection � is also zero for our
homogeneous Universe. With this fact in mind, a simple
and straightforward calculation shows the KK EE term to
be proportional to the Fππ term. Combining all the above
ingredients, the Hamiltonian constraint (2.4) reduces to

Hgr = − 1

2κγ 2 FabI J
πaI Kπb

K
J

√
h

. (2.10)

Now, as in the 3 + 1 dimensional LQC, we also consider a
minimally coupled massless scalar field φ as our matter field.
The total Hamiltonian now reads

HTotal = − 1

2κγ 2 FabI J
πaI Kπb

K
J

√
h

+ p2
φ

2
√
h

(2.11)
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where the pφ by definition is the conjugate momentum of the
massless scalar field φ. The Poisson bracket between scalar
field φ and conjugate momentum pφ reads {φ, pφ} = 1.
In the cosmological model we considered in this paper, this
Hamiltonian therefore reduces to

HTotal = −n(n − 1)

2κγ 2 c2 p
n−2
n−1 + p2

φ

2p
n

n−1
. (2.12)

At the classical level, this SO(1, n) connection dynamics
formalism is equivalent to the n + 1 dimensional Arnowitt–
Deser–Misner (ADM) formalism [20]. In the cosmological
situation, the ADM formalism will lead to the classical Fried-
mann equation. Thus as a consistent check of our symmetric
reduction procedure, we need to reproduce the n + 1 dimen-
sional Friedmann equation from our Hamiltonian (2.12) and
commutation relation (2.9). To this aim, we calculate the
equation of motion for p, which reads

ṗ = {p, HTotal} = n − 1

γ
cp

n−2
n−1 . (2.13)

By using the Hamiltonian constraint we successfully repro-
duce the classical n + 1 dimensional Friedmann equation,

H2 =
(

ṗ

(n − 1)p

)2

= 1

γ 2 p2 c
2 p

2(n−2)
n−1

= 2κ

n(n − 1)

p2
φ

2p
2n
n−1

= 2κ

n(n − 1)
ρ (2.14)

where

H = ȧ

a
,

ρ = p2
φ

2V 2 = p2
φ

2p
2n
n−1

(2.15)

are the Hubble parameter and the matter density in n +
1 dimensions, respectively. Moreover, another dynamical
equation, namely the so-called Raychaudhuri equation which
evolves with a second-order time derivative of the scale fac-
tor a can be obtained by combining the continuity equation
in n+1 dimensions, ρ̇+nH(ρ+ p) = 0, with the Friedmann
equation (2.14)

ä

a
= 2κ

n(n − 1)
ρ − κ

n − 1
(ρ + p). (2.16)

3 Quantum theory

Now we come to the issue of quantizing the cosmological
model, we first need to construct the quantum kinematical
Hilbert space of n + 1 dimensional cosmology by mimick-
ing the 3 + 1 dimensional loop quantum cosmology. These
quantum kinematical Hilbert spaces are constituted by the
so-called polymer-like quantization for the geometric part,

while the Schrödinger representation is adopted for the mass-
less scalar field part. The resulting kinematical Hilbert space
for the geometry part reads Hgr

kin ≡ L2(RBohr, dμH ), where
RBohr and dμH are, respectively, the Bohr compactifica-
tion of the real line R and the corresponding Haar measure
on it [12]. On the other hand, following the standard treat-
ment of LQC, we choose the Schrödinger representation for
the massless scalar field [15]. Thus the kinematical Hilbert
space for the matter field part is defined in the usual way:
Hsc

kin ≡ L2(R, dμ). Hence the whole Hilbert space of n + 1
dimensional loop quantum cosmology takes the form of a
direct product, Hkin := Hgr

kin ⊗ Hsc
kin. Now let |μ〉 be the

eigenstates of p̂ in the kinematical Hilbert space Hgr
kin such

that p̂|μ〉 = 4πGγ h̄μ
n |μ〉 = h̄κγ

2n μ|μ〉. These eigenstates |μi 〉
obey the orthonormal condition 〈μi |μ j 〉 = δμi ,μ j with δμi ,μ j

being the Kronecker delta function rather than the Dirac delta
function. In n + 1 dimensional quantum gravity, the n − 1
dimensional area operator is quantized just like their coun-
terparts in 3 + 1 dimensions, the discrete spectrum of this
n − 1 dimensional operator reads [22]


n = κ h̄γ
∑
I

√
I (I + n − 1)

= 8πγ (�p)
n−1

∑
I

√
I (I + n − 1) (3.1)

where I is an integer and �p = n−1
√
Gh̄ is the Planck length.

The interpretation of I is that for every edge, we can associate
a simple representation of SO(n+1), which is labeled by its
corresponding highest weight � = (I, 0, 0, . . .) with I being
an integer. This equation tells us the existence of minimal area
gap, which is given by


n = √
nkh̄γ ≡ 8

√
nπγ (�p)

n−1. (3.2)

Note that the quantization of area refers to physical geome-
tries in 3 + 1 dimensional LQC [17], and we generalize this
argument to our n + 1 dimensional LQC. We take the n − 1
dimensional cube, every vertex of the cube has n − 1 edges,
and the holonomy loop �i j is constituted by its arbitrary two
edges from one vertex. Now we should shrink the holonomy
loop �i j till the n− 1 dimensional area of the cube, which is
measured by the physical metric qab, reaches the value of a
minimal n−1 dimensional area 
n . Since the physical n−1
dimensional area of the elementary cell is |p| and each side
of �i j is λ times the edge of the elementary cell, in order
to compare with 3 + 1 dimensions, we also use a specific
function μ̄(p) to denote λ, and similar to that in [17], we
have

μ̄n−1(p)|p| = 
n ≡ 8
√
nπγ (�p)

n−1. (3.3)

It is easy to see that, when n = 3, the above formulation
goes back to the famous μ̄ scheme in 3 + 1 dimensions. For
convenience of studying the quantum dynamics, we define
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the following new variables:

v := 2(n − 1)
n

h̄κγ
μ̄−n, b := μ̄c,

where μ̄ = (
n|p| )
1

n−1 with 
n being a minimum nonzero
eigenvalue of the n dimensional area operator [14]. It is easy
to verify that these new variables satisfy the commutation
relation {b, v} = 2

h̄ . It turns out that the eigenstates of v̂ also
constitute an orthonormal basis in the kinematical Hilbert
space Hgr

kin. We denote |φ, v〉 as the generalized orthonor-
mal basis for the whole kinematical Hilbert space Hkin. For
simplicity, in the following, |φ, v〉 will be abbreviated as |v〉.

The action of volume operator V̂ on this basis |v〉 reads

V̂ |v〉 = h̄κγ (
n)
1

n−1

2(n − 1)
|v||v〉 = (
n)

n
n−1

4(n − 1)
√

3
|v||v〉

= 4πγ (
n)
1

n−1

(n − 1)
|v|�n−1

p |v〉. (3.4)

The Hamiltonian constraint needs to be reformulated in
terms of these (b, v) variables as

HT = −n(n − 1)

2κγ 2 c2 p
n−2
n−1 + p2

φ

2p
n

n−1

= − nh̄

4γ (
n)
1

n−1

b2|v| +
(

2(n − 1)

h̄κγ (
n)
1

n−1

)
p2
φ

2|v| . (3.5)

Note that we adapt the polymer representation for geo-
metric part. In the quantum theory, the connection should be
replaced by a well-defined holonomy operator. For a given
edge e with length μ̄, the holonomy is defined as [22]

hμ̄
e (A) := P exp

(∫

e
AI J
a τI J ė

a
)

(3.6)

where ėa is the tangent of the edge e. In our cosmological
setting, we take the edge ėa = oėaK L such that oėaK L

o	I J
a =

δ I[K δ JL]. Recall that in our cosmological case, we have AI J
a =

co	I J
b ; the holonomy then reads

hμ̄
I J = exp(μ̄cτI J ) = cos

(
μ̄c

2

)
+ 2τI J sin

(
μ̄c

2

)
(3.7)

where τI J = − i
4 [γI , γJ ] with γI being the gamma matrices

constitutes a representation of SO(1, n) [22]. On the other
hand, similarly to the case in 3 + 1 dimensions, in order
to express the curvature, we first note that he(A) = I +
εėa AI J

a τI J +O(ε2) [22]. For a given loop with area Ar� →
0, the curvature can be expressed through the holonomy as

FabI J = −2 lim
Ar�→0

Tr

(
(hμ̄

�)K L ,MN − 1

μ̄2

)
o	K L

a
o	MN

b τI J

= 2
sin2 (μ̄c)

μ̄2
o	

[I
aK

o	
K |J ]
b (3.8)

where we consider a square � and

(hμ̄

�)I J,K L = hI J hK Lh
−1
I J h

−1
K L (3.9)

denotes the holonomy along a closed loop �. Every edge

of the square has length λ(V0)
1
n with respect to the fiducial

metric and Ar� denotes the area of the square.
Now our task is to implement the Hamiltonian constraint

at the quantum level. With this purpose, we first need to
rewrite the Hamiltonian constraint in a suitable manner. This
is inevitable because the expression of the classical Hamilto-
nian constraint involves the inverse of the determinate of the
n-metric and thus cannot be promoted as a well-defined oper-
ator on the kinematical Hilbert space. In 3 + 1 dimensional
case, this difficulty can be overcome by using the well-known

classical identity 1
2εi jk

εabc Eb
j E

c
k√

q = 1
κγ

{Ai
a, V } [9]. General-

ization of this expression to n + 1 dimensions is highly non-
trivial. The most interesting point is that the treatment of the

quantity
π [a|I Kπ

b]J
K√

h
can be divided into two different sectors

according to spacetime dimensions, namely, an even dimen-
sional sector and an odd dimensional sector [22]. First we
note that

πaI J (x) := − n − 1

2κγ
√
h

{AaI J , V (x)}; (3.10)

now the quantity
π [a|I Kπ

b]J
K√

h
appearing in the Hamiltonian con-

straint can be constructed with these basic building blocks.

3.1 Even dimensional sector

For the case of the spacetime dimensions n + 1 being even,
we let s = (n−1)

2 , and we note that we have the following
classical identity [22]:

π [a|I Kπ
b]J
K√

h
= 1

4(n − 2)!ε
abca1b1...as−1bs−1ε I J K L I1 J1...Is−1 Js−1

= πcK Lπa1 I1K1π
K1
b1 J1

· · ·πas−1 Is−1Ks−1π
Ks−1
bs−1 Js−1

√
h
n−2

.

(3.11)

Since in the quantum theory, the connection should be
replaced by the well-defined holonomy operator, we can
rewrite the Hamiltonian constraint as follows:

Hgr = − 1

2κγ 2

∫
d�FabI J

π [a|I Kπ
b]J
K√

h

= − 1

8(n − 2)!κn−1γ n

× εabca1b1···as−1bs−1ε I J K L I1 J1···Is−1 Js−1(n − 1)n−2

× 1

2n−2

∫
d�

(
FabI J {AcK L , V }{Aa1 I1K1 , V }

× {AK1
b1 J1

, V } · · · {Aas−1 Is−1Ks−1 , V }{AKs−1
bs−1 Js−1

, V }
)

.

(3.12)
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At the quantum level, the connection is not a well-defined
operator, thus we replace it by the holonomy. To this aim,
first we observe that {AI J

a , V }τI J = {cτI J , V }o	I J
a =

− 1
μ̄
hI J {h−1

I J , V }o	I J
a . Moreover, since we have the follow-

ing identity:

√
0q = det(o	I J

a ) = 1

2n!ε
abca1b1...as−1bs−1ε I J K L I1 J1...Is−1 Js−1

×
(
o	aI M

o	M
bJ

o	cK L
o	a1 I1K1

×o	
K1
b1 J1

. . . o	as−1 Is−1Ks−1
o	

Ks−1
bs−1 Js−1

)
(3.13)

according our convention, the spatial integral of the above
equation gives

∫
d�

√
0q = V0 = 1. Combining these facts

with Eq. (3.8) and using the commutator to replace the Pois-
son bracket, we obtain the exact expression of the Hamilto-
nian constraint:

Ĥgr = (−1)n−2n(n − 1)n−1

2(i h̄)n−2κn−1γ nμ̄n
sin2(μ̄c)

×
(

sin

(
μ̄c

2

)
V̂ cos

(
μ̄c

2

)

− cos

(
μ̄c

2

)
V̂ sin

(
μ̄c

2

))n−2

= sin(μ̄c)F̂ sin(μ̄c) (3.14)

where the action of F̂ on a quantum state �(v) is defined by

F̂�(v) = − nh̄

2nγ (
n)
1

n−1

|v| (|v − 1| − |v + 1|)n−2 �(v)

≡ F(v)�(v). (3.15)

Interestingly, when n = 3, the above Hamiltonian operator
reads

Ĥgr = 6i

h̄κ2γ 3μ̄3 sin2(μ̄c)

(
sin

(
μ̄c

2

)
V̂ cos

(
μ̄c

2

)

− cos

(
μ̄c

2

)
V̂ sin

(
μ̄c

2

))
, (3.16)

which has exactly the same form as the 3 + 1 dimensional
LQC Hamiltonian operator [17]. The action of the Hamilto-
nian operator Ĥgr on a quantum state �(v) ∈ Hkin led to a
similar difference equation as that in the case of the 3 + 1
dimensional LQC,

Ĥgr�(v) = f+(v)�(v + 4) + f0(v)�(v)

+ f−(v)�(v − 4) (3.17)

where

f+(v) = −1

4
F(v + 2)

= nh̄

2n+2γ (
n)
1

n−1

(|v + 2|) (|v + 1| − |v + 3|)n−2

f−(v) = −1

4
F(v − 2)

f0(v) = 1

4
F(v + 2) + 1

4
F(v − 2). (3.18)

Now we turn to the inverse volume operator which appears
in the matter field part. As such, we first define the quantity
|p|−1/2 in the following way:

|p|−1/2 = sgn(p)
4

κγ μ̄
Tr

(∑
I J

τ I J h I J

{
h−1
I J , V

n−1
2n

})
.

(3.19)

Note that under the replacement {, } → 1
i h̄ [, ], we have

Tr

(∑
I J

τ I J h I J

[
h−1
I J , V

n−1
2n

])

= n

2

(
sin

(
μ̄c

2

)
V

n−1
2n cos

(
μ̄c

2

)

− cos

(
μ̄c

2

)
V

n−1
2n sin

(
μ̄c

2

))
. (3.20)

Since in the classical level we have V−1 = |p|− n
n−1 , thus

the action of the inverse volume operator on a quantum state
�(v) is just a suitable power of Eq. (3.19), as follows:

̂V−1�(v) =
(

2n

κγ h̄(
n)
1

n−1

) 2n
n−1

(
κγ h̄(
n)

1
n−1

2(n − 1)

) n+1
n−1

v
2

n−1

×
∣∣∣|v + 1| n−1

2n − |v − 1| n−1
2n

∣∣∣
2n
n−1

�(v)

= 2(n − 1)

κγ h̄(
n)
1

n−1

(
n

n − 1

) 2n
n−1

v
2

n−1

×
∣∣∣|v + 1| n−1

2n − |v − 1| n−1
2n

∣∣∣
2n
n−1

�(v)

:= B(v)�(v). (3.21)

In the semiclassical region, namely in the large v region, the

eigenvalue of the inverse volume operator ̂V−1 approaches
its classical value and turns out to be(

2(n − 1)

κγ h̄(
n)
1

n−1

)
1

|v| . (3.22)

Collecting all the above ingredients, and noting that
p̂φ�(v, φ) = −i h̄ ∂�(v,φ)

∂φ
, we finally obtain the full quantum

Hamiltonian constraint

h̄2 B(v)

2

∂2�(v, φ)

∂2φ
= Ĥgr�(v). (3.23)

3.2 Odd dimensional sector

For the case of the spacetime dimensions n+1 being odd, we
let s = (n−2)

2 , and note that we have the following classical
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identity [22]:

π [a|I Kπ
b]J
K√

h
= 1

2(n − 2)!ε
aba1b1...asbs ε I J K I1 J1···Is Js

= nKπa1 I1K1π
K1
b1 J1

· · · πas Is Ksπ
Ks
bs Js

√
h
n−2

(3.24)

where the nI can be written in terms of πaI J as

nI = 1

n!ε
a1b1...as+1bs+1ε I I1 J1...Is+1 Js+1

= πa1 I1K1π
K1
b1 J1

. . . πas+1 Is+1Ks+1π
Ks+1
bs+1 Js+1

√
h
n−1

.

(3.25)

Thus we can rewrite the Hamiltonian constraint as follows:

Hgr = − 1

2κγ 2

∫
d�FabI J

π [a|I Kπ
b]J
K√

h

= − 1

4(n − 2)!κn−1γ n

× εaba1b1···asbs ε I J K I1 J1···Is Js (n − 1)n−2 1

2n−2

×
∫

d�
(
FabI J nK {Aa1 I1K1 , V }

× {AK1
b1 J1

, V } · · · {Aas Is Ks , V }{AKs
bs Js

, V }
)

. (3.26)

Following the recipe prescribed in the last subsection, by
replacing the connection by a holonomy and the Poisson
bracket by the commutator we obtain the quantum Hamil-
tonian constraint operator,

Ĥgr = n(n − 1)4n−322n−3

(2n − 3)2n−2(i h̄)2n−2κ2n−1γ 2nμ̄2n sin2(μ̄c)

×
(

sin

(
μ̄c

2

)
V

2n−3
2n−2 cos

(
μ̄c

2

)

− cos

(
μ̄c

2

)
V

2n−3
2n−2 sin

(
μ̄c

2

))2n−2

= sin(μ̄c)F̂ sin(μ̄c) (3.27)

where the action of F̂ on a quantum state �(v) is defined by

F̂�(v) = − nh̄(n − 1)2n−2

4(2n − 3)2n−2γ (
n)
1

n−1

|v|2

×
(
|v − 1| 2n−3

2n−2 − |v + 1| 2n−3
2n−2

)2n−2
�(v)

≡ F(v)�(v). (3.28)

This operator acts on a quantum state �(v) ∈ Hkin, giving a
difference equation

Ĥgr�(v) = f+(v)�(v + 4) + f0(v)�(v)

+ f−(v)�(v − 4) (3.29)

where

f+(v) = −1

4
F(v + 2)

= nh̄(n − 1)2n−2

16(2n − 3)2n−2γ (
n)
1

n−1

|v + 2|2

×
(
|v + 1| 2n−3

2n−2 − |v + 3| 2n−3
2n−2

)2n−2

f−(v) = −1

4
F(v − 2)

f0(v) = 1

4
F(v + 2) + 1

4
F(v − 2). (3.30)

The action of the inverse volume operator keeps the same
form as in the even dimensional case. Therefore, the full
quantum Hamiltonian constraint also turns out to be the fol-
lowing:

h̄2 B(v)

2

∂2�(v, φ)

∂2φ
= Ĥgr�(v). (3.31)

4 Singularity resolution

Now we come to deal with the issue of the singularity resolu-
tion. In order to proceed, we take the same strategy as adopted
in [18]. To be more specific, we first make some reasonable
simplifications on our quantum Hamiltonian constraint equa-
tion such that the whole dynamical system becomes simpler
and exactly solvable. Then the discussion of the issue of sin-
gularity resolution will be made within this exactly solvable
formalism [18]. We make the following replacements as in
[18]:

B(v) 
−→
(

2(n − 1)

κγ h̄(
n)
1

n−1

)
1

|v|
and

F(v) 
−→ − nh̄

4γ (
n)
1

n−1

|v|.

The validity of the first replacement amounts to assuming
O( 1

|v| ) � 1, which also in turn implies the second replace-
ment.

In the corresponding quantum theory, the Hamiltonian
constraint equation now reduces to

∂2�(v)

∂φ2 = −�̂�(v)

= nκ

4(n − 1)
v sin(b)v sin(b)�(v)

= nκ

16(n − 1)
v [(v + 2)�(v + 4) − 2v�(v)

+ (v − 2)�(v − 4)] (4.1)
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where we denote quantum state �(v) ≡ �(v, φ) for short.
Equation (4.1) gives rise to a Klein–Gordon type equation.
The physical state for the quantum dynamics of the n + 1
dimensional LQC thus is given by the “positive frequency”
square root of Eq. (4.1) as

∂�(v)

∂φ
= i

√
��(v). (4.2)

Note that here exists a superselection ambiguity, namely, for
any real number ε ∈ [0, 4) the states �(v) supported on
points v = 4k + ε with k being an integer lead to the same
dynamics. Thus as in [19] we just fix ε = 0. Moreover, note
that because the state |0〉 has zero norm, it is excluded out
of the physical Hilbert space. The physical inner product
between the two states reads

〈�1, �2〉phy := 1

π

∑
v=4k

1

|v| �̄1(v)�2(v). (4.3)

Note that (b, v) forms a canonical conjugate pair, thus the
Fourier transform �(b) has a support on the interval (0, π).
Therefore the Fourier transformation and its corresponding
inverse transformation are defined, respectively, as

�(b) :=
∑
v=4k

e
i
2 vb�(v),

�(v) = 1

π

∫ π

0
e− i

2 vb�(b)db. (4.4)

Now we set χ(v) = 1
πv

�(v), then the constraint equation
(4.1) becomes a second-order differential equation

∂2χ(b)

∂2φ
= nκ

n − 1
sin2(b)

∂2χ(b)

∂2b
(4.5)

We define the following new variable x to make this equation
simpler,

x =
√
n − 1

nκ
ln

(
tan

(
b

2

))
(4.6)

Then the constraint equation (4.5) becomes the standard
Klein–Gordon type equation,

∂2χ(b)

∂2φ
= ∂2χ(b)

∂2x
. (4.7)

The physical Hilbert space is the span of positive frequency
solutions to Eq. (4.7). This equation can be further simpli-
fied if we decompose the solution into left and right moving
sectors as

χ(x) = χL(x+) + χR(x−), (4.8)

here x± = φ ± x . In addition, χ(x) has the following sym-
metry:

χ(−x) = −χ(x). (4.9)

This feature enables us to make a further decomposition

χ(x) = 1√
2

(F(x+) − F(x−)) , (4.10)

where F(x∓) by definition are negative/positive frequency
solutions to Eq. (4.7). The physical inner product (4.3) now
reads

〈χ1, χ2〉phy := i
∫ ∞

−∞
dx

[(
∂ F̄1(x+)

∂x

)
F2(x+)

−
(

∂ F̄1(x−)

∂x

)
F2(x−)

]
. (4.11)

Now the expectation value of the volume operator can be
calculated as follows:

〈V̂ 〉|φ = (χ, V̂ |φχ)phy = h̄κγ (
n)
1

n−1

2(n − 1)
(χ,

∣∣v̂∣∣χ)phy

= i
h̄κγ (
n)

1
n−1

2(n − 1)

∫ ∞

−∞
dx

[(
∂ F̄(x+)

∂x

)
(v̂F(x+))

−
(

∂ F̄(x−)

∂x

)
(−v̂F(x−))

]

= h̄κγ (
n)
1

n−1

(n − 1)
√

β

∫ ∞

−∞
dx

∣∣∣∣
∂F

∂x

∣∣∣∣
2

cosh(
√

β(x − φ))

= V+e
√

βφ + V−e−√
βφ (4.12)

where β = nκ
n−1 and

V± = h̄κγ (
n)
1

n−1

(n − 1)
√

β

∫ ∞

−∞

∣∣∣∣
∂F

∂x

∣∣∣∣
2

e∓√
βxdx . (4.13)

From Eq. (4.12), it is clear that the expectation value of V̂
admits a nonzero minimum Vmin = 2

√
V+V−. This implies

that all states undergo a big bounce rather than experience a
singularity which has zero expectation of the volume opera-
tor. To justify this conclusion, let us turn to the matter density
ρ = 〈ρ|φ0〉. If our picture is right, this important physical
observable should have an upper bound. The classical defi-

nition of the matter density reads ρ = p2
φ

2V 2 and we can see
that the matter density will to infinity at the singularity point
as the volume will go to zero. Thus as a comparison we cal-
culate the expectation value of ρ, if the singularity is really
resolved, the expectation value of matter density must have
an upper bound. To this aim, we first need to know the matrix
elements of the observable p̂φ , which read

1

h̄
〈F1, p̂φF2〉phy =

∫ ∞

−∞

(
∂ F̄1(x)

∂x

)
∂F2(x)

∂x
dx . (4.14)

Now we use a fixed state χ(x) = 1√
2
(F(x+)−F(x−)) to cal-

culate the expectation value of matter density at the moment
of φ0,
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〈ρ|φ0〉 = (〈 p̂φ〉)2

2(〈V̂ 〉)2

= (n − 1)2βh̄2

2h̄2κ2γ 2(
n)
2

n−1

[∫ ∞
−∞ dx

∣∣ ∂F
∂x

∣∣2
]2

[∫ ∞
−∞ dx

∣∣ ∂F
∂x

∣∣2
cosh(

√
βx)

]2

≤ n(n − 1)

2κγ 2(
n)
2

n−1

= ρc (4.15)

where we use the fact cosh(
√

βx) ≥ 1 in the second line.
An interesting fact is that in Sect. 5 we will find that this
upper bound of the expectation value of matter density coin-
cides with the critical matter density which comes from the
effective Friedmann equation.

5 Effective Hamiltonian

One of the most delicate and valuable issues is the effec-
tive description of LQC, since it predicts the possible quan-
tum gravity effects to low-energy physics. Both the canoni-
cal [24–27] and the path integral perspective [28–34] of the
effective Hamiltonian of LQC has been studied.

With the Hamiltonian constraint equation (4.1) in hand,
we now derive the effective Hamiltonian within the n + 1
dimensional timeless path integral formalism. In the timeless
path integral formalism, the dynamics is encoded into the
transition amplitude, which equals the physical inner product
[28–31], i.e.,

A(v f , φ f ; vi , φi ) = 〈v f , φ f |vi , φi 〉phy

= lim
αo→∞

∫ αo

−αo

dα〈v f , φ f |eiαĈ |vi , φi 〉, (5.1)

where the subscripts i and f represent the initial and final
states, and Ĉ ≡ �̂+ p̂2

φ/h̄2. As shown in [31,32], by inserting
some suitable complete basis and do multiple group averag-
ing, Eq. (5.1) is equivalent to the calculation of

〈v f , φ f |e
i

I∑
m=1

εαmĈ |vi , φi 〉
=

∑
vI−1,...v1

∫
dφI−1 · · · dφ1

×
I∏

m=1

〈φm |〈vm |eiεαmĈ |vm−1〉|φm−1〉. (5.2)

Note that the action of the constraint equation is of the Klein–
Gordon type, and thus its action on the gravitational part and
the scalar field part can be calculated separately. So we first
calculate the matter part and get

〈φm |eiεαm
p̂2
φ

h̄2 |φm−1〉

=
∫

dpφm 〈φm |pφm 〉〈pφm |eiεαm
p̂2
φ

h̄2 |φm−1〉

= 1

2π h̄

∫
dpφm e

iε(
pφm
h̄

φm−ϕm−1
ε

+αm
p2
φm
h̄2 )

. (5.3)

For the gravity part, we expand the exponential and neglect
the higher-order terms thus getting
∫

dφm〈φm |〈vm |e−iεαm�̂|vm−1〉|φm−1〉 = δvm ,vm−1

−iεαm

∫
dφm〈φm |〈vm |�̂|vm−1〉|φm−1〉 + O(ε2). (5.4)

By using Eq. (4.1), the matrix elements of 〈φm |〈vm |�̂|vm−1〉
|φm−1〉 can be evaluated as follows:

2π h̄
∫

dφm〈φm |〈vm |�̂|vm−1〉|φm−1〉

=
∫

dφmdpφm e
iε(

pφm
h̄

φm−φm−1
ε

) nκ

16(n − 1)
vn−1

×vm + vm−1

2
(δvm ,vm−1+4 − 2δvmn,vm−1 + δvm ,vm−1−4).

By using the following identity:

δvm ,vm−1+4 − 2δvm ,vm−1 + δvm ,vm−1−4

= 4

π

∫ π

0
dbme

−ibm (vm−vm−1)/2 sin2(bm),

Eq. (5.4) can be rewritten in a compact form,

2π h̄
∫

dφm〈φm |〈vm |e−iεαm�̂|vm−1〉|φm−1〉

=
∫

dφmdpφm e
iε(

pφm
h̄

φm−φm−1
ε

) 1

π

∫ π

0
dbne

−ibm (vm−vm−1)/2

×
[

1 − iαmε
nκ

16(n − 1)
vm−1

vm + vm−1

2
4 sin2 bm

]
.

Combining all the above ingredients, the physical transition
amplitude can be written as follows:

A(v f , φ f ; vi , φi )

= lim
I→∞ lim

αI o,...,α1o→∞

(
ε

I∏
m=2

1

2αmo

)∫ αI o

−αI o

dαI · · ·
∫ α1o

−α1o

dα1

×
∫ ∞

−∞
dφI−1 · · · dφ1

(
1

2π h̄

)I ∫ ∞

−∞
dpφI · · · dpφ1

×
∑

vI−1,...,v1

(
1

π

)I ∫ π

0
dbI · · · db1

×
I∏

m=1

exp iε

[
pφm

h̄

φm − φm−1

ε
− bm

2

vm − vm−1

ε

+ αm

(
p2
φm

h̄2 − nκ

16(n − 1)
vm−1

vm + vm−1

2
4 sin2 bm

)]
.
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In the ‘continuum limit’, the final result of the transition
amplitude reads

A(v f , φ f ; vi , φi )

= c
∫

Dα

∫
Dφ

∫
Dpφ

∫
Dv

∫
Db

× exp

(
i

h̄

∫ 1

0
dτ

[
pφφ̇ − h̄b

2
v̇

+ h̄α

(
p2
φ

h̄2 − nκ

4(n − 1)
v2 sin2 b

)])
,

where c is an overall constant which does not affect the
dynamics. Hence, the effective Hamiltonian constraint in our
n + 1 dimensional LQC model can be simply read off as

Ceff = p2
φ

h̄2 − nκ

4(n − 1)
v2 sin2 b

= p2
φ

h̄2 − n(n − 1)
2
n

h̄2κγ 2μ̄2n
sin2(μ̄c). (5.5)

When we take the large scale limit which by definition is
sin b → b (or sin(μ̄c) → μ̄c in (c,p) representation), we
observed that the classical Hamiltonian constraint (3.5) is
recovered from Eq. (5.5) up to a inverse volume factor 1

|V | .
The reason for this is simply that the Hamiltonian constraint
in the previous sections describes the evolution in the proper
time of isotropic observers. To consider this point, the factor

1
|V | has to be multiplied byCeff to obtain the correct result. As
a consequence, we finally find the physical effective Hamil-
tonian,

HF = 1

|v|Ceff = − nh̄

4γ (
n)
1

n−1

|v| sin2 b

+ h̄κγ (
n)
1

n−1

2(n − 1)
|v|ρ, (5.6)

where the n + 1 dimensional matter density by definition is

ρ = 2(n−1)2 p2
φ

v2h̄2κ2γ 2(
n)
2

n−1
.

6 Effective equation

Now we are ready to derive the physical evolution equation
of the n + 1 dimensional Universe, and most important is
of course the modified Friedmann equation. To this aim, we
combine the effective Hamiltonian constraint HF (5.6) with
the symplectic structure of n + 1 dimensional loop quantum
cosmology. One can easily obtain the equations of motion
for the volume v and the scalar field φ, respectively:

v̇ = {v, HF } = n

γ (
n)
1

n−1

|v| sin(b) cos(b), (6.1)

φ̇ = {φ, HF } = 4(n − 1)pφ

h̄κγ (
n)
1

n−1 |v|
. (6.2)

By using Eq. (6.1), it is easy to see that

H2 =
(
ȧ

a

)2

=
(

v̇

nv

)2

= 1

γ 2(
n)
2

n−1

sin2(b) cos2(b).

(6.3)

On the other hand, the effective Hamiltonian constraint HF =
0 can be rewritten in the following compact form:

sin2 b = 2κγ 2(
n)
2

n−1 ρ

n(n − 1)
= ρ

ρc
. (6.4)

Here we define ρc = n(n−1)

2κγ 2(
n)
2

n−1
as the n + 1 dimensional

critical matter density. As shown in Sect. 4, this ρc in fact is
the upper bound of the matter density. With the help of this
equation, the modified Friedmann equation reads

H2 =
(
ȧ

a

)2

= 2κ

n(n − 1)
ρ

(
1 − ρ

ρc

)
(6.5)

From Eq. (6.5), it is easy to see that when ρ = ρc, we have
v̇ = 0, which implies the existence of a quantum bounce at
that point. To justify this, we calculate the second derivative
of v at the point of ρ = ρc,

v̈|ρ=ρc = {v̇, HF }|ρ=ρc = n2

γ 2(
n)
2

n−1

|v| �= 0. (6.6)

Obviously, this implies a quantum bounce occurs at that
point. Moreover, we combine the continuity equation (which
is nothing but the equation of motion for scalar field φ) in
n + 1 dimensions,

ρ̇ + nH(ρ + p) = 0, (6.7)

with Eq. (6.5), we can easily obtain another dynamical equa-
tion of the n+1 dimensional Universe which is the so-called
Raychaudhuri equation with loop quantum correction,

ä

a
= 2κ

n(n − 1)
ρ

(
1 − ρ

ρc

)
− κ

n − 1
(ρ + p)

(
1 − 2ρ

ρc

)
.

(6.8)

7 Conclusion

In this paper, a detailed construction of the n+1 dimensional
LQC is presented. We start from the classical connection
dynamics of n + 1 dimensional general relativity together
with symmetry reduction procedures, and then, using the
nonperturbative loop quantization method, we find that the
dynamical evolution of the n + 1 dimensional Universe is
fully determined by a difference equation. Interestingly, in
the quantum theory, the even dimensional sector and the
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odd dimensional sector exhibit qualitative different features.
In order to obtain the effective equations of n + 1 dimen-
sional LQC which contain quantum corrections to the clas-
sical equations, we then generalize the timeless path integral
formalism of LQC to the n + 1 dimensional case and use it
to derive the modified effective Hamiltonian of n+1 dimen-
sional LQC. Based on this effective Hamiltonian, the Fried-
mann equation as well as the Raychaudhuri equation with
loop quantum corrections are obtained. Our results indicate
that the classical singularity is resolved by a quantum bounce
in arbitrary spacetime dimensions. In addition, we find that

the heuristic replacement c → sin(μ̄c)
μ̄

with μ̄ = (
n
p )

1
n−1

works not only for the 3 + 1 dimensional case, but also for
the more general dimensional case.

Our work offers possibilities to explore the issues of LQC
with a number spacetime dimensions higher than 4. In partic-
ular, nowadays, higher dimensional cosmology has become
a rather popular and active field. For example, by using
the dimensional reduction method, the cosmic acceleration
can be naturally explained by some 5 dimensional models
[7]. Hence it is also very interesting to study these issues
within our higher dimensional LQC formalism. Moreover,
the results we developed in this paper lay a foundation for
future phenomenological investigations of possible quantum
gravity effects in higher dimensional quantum cosmology.

Another interesting topic is to derive the LQC directly
from the LQG. In the 3 + 1 dimensional case, some interest-
ing efforts have been made toward this important direction
[35–37]. It is quite interesting to discuss this topic in our n+1
dimensional LQC setting, and we leave all these interesting
and delicate topics for future study.
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