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Abstract We explore the entropy spectrum of (1 + 1)

dimensional dilatonic stringy black holes via the adiabatic
invariant integral method known as Jiang and Han’s method
(Phys Lett B 718:584, 2012) and the Bohr–Sommerfeld quan-
tization rule. It is found that the corresponding spectrum
depends on black hole parameters like charge, ADM mass,
and, more interestingly, on the dilatonic field. We calculate
the entropy of the present black hole system via the Euclidean
treatment of quantum gravity and study the thermodynamics
of the black hole and find that the system does not undergo
any phase transition.

1 Introduction

The fundamental difficulties in merging quantum theory with
gravitation theory are well known. We know that the beauty
of black hole thermodynamics lies in the powerful way it
speaks of the unity of physics. To find answers to the diffi-
culties, plenty of studies are going on by applying the known
laws of quantum mechanics to general relativity. As a result
of these studies, it is found that it is very difficult to study the
systems in four dimensions. So extensive studies have been
performed on lower dimensional gravity theories. String the-
ory is one approach to quantum gravity. The developments
in string theory have provided a good framework to con-
sider the quantum properties of the black holes. The low
energy string theory has several black hole solutions [1–3].
The study of lower dimensional black hole systems will help
us to address many problems that arise in higher dimensional
quantum gravity models. Hence several studies have been
done in black hole thermodynamics of two dimensional grav-
ity models. In addition, from these understandings as well as
using the black hole/string correspondence principle one can
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understand the conceptual issues regarding the microscopic
origin of black hole entropy.

In recent years the dilatonic black holes have received
much attention, because it is widely believed that the inves-
tigations on this black hole solution will lead to an exact
explanation of microscopic origin of black hole entropy
(Bekenstein–Hawking entropy) [4–6]. Also there exist some
conceptual problems regarding the end point of black hole
evaporation through thermal radiation [8–10]. The two
dimensional Einstein–Hilbert action is just a Gauss–Bonnet
term, a topological invariant in the two dimensional space
time. So the two dimensional models are locally trivial.
Hence it is necessary to introduce some extra fields to this
model. The best candidate for this is the dilaton field, which
arises in the compactifications from higher dimensional mod-
els or from string theory. This theory also possesses different
black hole solutions. These solutions play an important role
in our understanding of quantum gravity. Now, as pointed
out in [11], higher dimensional black holes in string the-
ory can be related to two dimensional solutions through U-
duality. Hence the higher dimensional black holes in string
theory [2,12–15] are related to many two dimensional solu-
tions including the two dimensional charged black holes of
McGuigan et al. [3]. In the present study the two dimensional
dilatonic black hole is considered which is analogous to the
above mentioned two dimensional string black hole.

Bekenstein [16] proposed that the horizon area of a non-
extremal black hole is an adiabatic invariant, quantities which
vary very slowly compared to the variation of the external
perturbation of the system, and the horizon area of a black
hole is quantized in units of the Planck length. As a result
of this, much attention has been given to the entropy spec-
trum quantization. Many methods have been put forward to
calculate this entropy spectrum spacing. A first method in
this direction was introduced by Hod [17,18]. This method
relies on the quasinormal modes and the corresponding fre-
quency. Hod employed Bohr’s correspondence principle to
quantize the entropy and found that in the asymptotic limit,
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it is related to the real part of quasinormal frequencies. Later,
Kunstatter [19] derived an equally spaced entropy spectrum
for Schwarzschild black hole. For this derivation, the quantity
I = ∫ dE

ωR
was taken as the adiabatic invariant, where E is the

energy and ωR is the real part of the quasinormal frequency.
Maggiore in 2007 [20] refined the idea of Hod by proving
that the physical frequency of the quasinormal modes is deter-
mined by its real and imaginary parts. Recently Majhi and
Vagenas [21] proposed a new method to quantize the entropy
without using quasinormal modes. They used the idea of con-
necting an adiabatic invariant quantity to the Hamiltonian of
the black hole, and they obtained an equally spaced entropy
spectrum. Jiang and Han [22] modified this idea by pointing
out the fact that the adiabatic invariant quantity

∫
pi dqi used

in Majhi and Vagenas’s method is not canonically invariant.
Therefore they made a modification by using the adiabatic
invariant quantity of the covariant form I = ∮

pi dqi . We
adopt Jiang and Han’s method to quantize the entropy of the
two dimensional stringy black hole.

The organization of this paper is as follows. In Sect. 2,
we introduce the two dimensional charged dilatonic black
hole solution and discuss the thermodynamics of the corre-
sponding black hole. In Sect. 3, we obtain the entropy of the
black hole via a Euclidean treatment of quantum gravity and
also the entropy spectrum and the corresponding spacing is
studied. Our paper concludes with a short discussion of the
results in Sect. 4.

2 Two dimensional stringy black hole
and its thermodynamics

The action corresponding to Maxwell gravity coupled to a
dilatonic field (�) can be described by [3]

S= 1

2π

∫
d2x

√−ge−2�

(

R + 4(∇�)2 − λ − 1

4
FμνF

μν

)

,

(1)

in which R is the Ricci scalar, λ is the effective central charge,
and Fμν is the electromagnetic field tensor. The equations of
motion corresponding to the metric, gauge, and dilaton fields
are, respectively, given by

Rμν − 2∇μ∇ν� − 1

2
Fμσ F

σ
ν = 0,

∇ν(e
−2�Fμν) = 0,

R − 4∇μ∇μ� + 4∇μ�∇μ� − λ − 1

4
FμνF

μν = 0. (2)

The solution to the equation of motion leads to the two dimen-
sional dilatonic black hole, whose metric is given by

ds2 = − f (r)dt2 + dr2

f (r)
, (3)

with the metric function

f (r) = 1 − 2me−Qr + q2e−2Qr , (4)

the dilaton field

� = �0 − Q

2
r, (5)

and the electromagnetic field tensor

Ftr = √
2Qqe−Qr . (6)

The condition of asymptotic flatness for the spacetime
requires λ = −Q2. In these equations m and Q are propor-
tional to black hole mass and black hole charge, respectively.
Then the horizons are located at

r± = 1

Q
ln

(

m ±
√
m2 − q2

)

. (7)

From the above expression it is evident that, in order to have
an event horizon at r±, the condition m2 − q2 ≥ 0 has to be
satisfied. The solution given by (4) is analogous to the string
theoretic black hole [1–3]. So we call this particular black
hole solution a two dimensional charged “stringy” black hole.

Now we will investigate the thermodynamic aspects of a
charged stringy black hole. From (4), and using the condition
f (r) = 0, at the horizon, we can deduce the mass of the black
hole:

m = eQr + q2e−Qr

2
. (8)

The temperature of the two dimensional charged dilatonic
black hole or stringy black hole can be derived using the
relation

TH = κ

2π
, (9)

where the surface gravity κ is defined by

κ = 1

2

∂ f (r)

∂r r=r+
. (10)

This yields the Hawking temperature

TH = λ
√
m2 − q2

π(m + √
m2 − q2)

, (11)

and when the charge of the string becomes zero, the temper-
ature will reduce to

T = λ

2π
. (12)
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Fig. 1 Variation of temperature of the black hole with respect to the
mass of the black hole in Planck units
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Fig. 2 Variation of the specific heat of the black hole with respect to
the mass of the black hole in Planck units

The variation of the Hawking temperature with respect to the
mass of the black hole is depicted in Fig. 1. From the ther-
modynamic relation C = ∂m

∂T , one can arrive at the specific
heat of the black hole:

C = 2π(m
√
m2 − q2 + m2 − q2)

Q(m − √
m2 − q2)

, (13)

and the corresponding variation with respect to mass of the
black hole is plotted in Fig. 2. From these two figures it is
evident that the two dimensional dilatonic stringy black hole
does not undergo any kind of phase transition. Ising solved
the 1D Ising model in 1925 and found that there is no phase
transition in 1D systems. We can see that these results match
with the (1 + 1) dimensional dilatonic stringy black hole
system. This system also shows no phase transition. So this
black hole behaves like a 1D Ising model system as far as
thermodynamic behaviors are considered.

3 Entropy and entropy spectrum

As we mentioned in the introduction, the best way to study
the thermodynamics of gravitational field is via the Euclidean

treatment of quantum gravity. The partition function that
explains the black hole thermodynamics is evaluated as the
Euclidean path integral over the space of all field configura-
tions with the saddle point approximation around the black
hole solution [23]. It is found that the entropy of the black hole
under consideration originates from the above mentioned
Euclidean path integral calculations. By following similar
arguments, one can perform an analysis to obtain the entropy
of a two dimensional dilatonic stringy black hole. This anal-
ysis can begin by writing the partition function as

Z = eIE = eβF , (14)

where I is the action evaluated for the Euclideanized grav-
itational field, β is the inverse temperature, and F is the
Helmholtz free energy, F = M − T S. So this equation
implies that the Euclidean action evaluated on the black hole
system can be identified as the inverse temperature times the
free energy of the system. Here the Euclidean action is given
by

IE = βM − S

κB
+ β

∑

i

μi Qi , (15)

where μi ’s are the chemical potentials which correspond to
Qi ’s, which are the charges. From the Wick-rotated form of
(1), the Euclidean minisuperspace action can be constructed.
From this construction the corresponding black hole entropy
can be calculated by comparing it with the partition function
and it is given by

S = 4πe−2�0(m +
√
m2 − q2). (16)

Now it might also be possible to write down the ADM mass
of the black hole as described in [1]; thus

M = 2mQe−2�0 . (17)

This mass relation can also be derived by adopting the deriva-
tion of Arnowitt et al. [24]. It is also found that this ADM
mass agrees with the thermodynamic evolution of energy.
Now one arrives at an expression, where S is a function of
the ADM mass (M) and the electric charge (Qel) as follows:

S = 2π

Q

(

M +
√
M2 − 2Q2

el

)

, (18)

where the electric charge is given by

Qel = √
2qQe−2�0 = q√

2m
M. (19)

Obviously one can expect a matching between this result and
that of near extremal AdS2 type black holes as considered in
[3]. The AdS2 type black hole solution is given by

g(r) = 1 − (m/λ)e−2λr + (q2/4λ2)e−4λr . (20)

Now let us consider the near horizon limit of extremal black
holes in the above equation using the condition m = q. In
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this case we can find the black hole entropy:

S =
√

2πq

λ
. (21)

Now it can be shown from (18) that the entropy of the flat
dilatonic black hole agrees with the entropy (21) of the near
extremal limit of AdS2 type black hole solution [3,6,7].

Now we will quantize the entropy of the two dimensional
dilatonic stringy black hole via the adiabatic invariance and
Bohr–Sommerfeld quantization rule. According to the tun-
neling picture, when a particle tunnels in or out, the black
hole horizon will oscillate due to the gain or loss of the black
hole mass [25]. Such an oscillating horizon can be studied
using the adiabatic invariant quantity,

I =
∮

pi dqi =
∫ qout

i

q in
i

pout
i dqi +

∫ q in
i

qout
i

pin
i dqi , (22)

where pin
i or pout

i is the conjugate momentum corresponding
to the coordinate q in

i or qout
i , respectively, and i = 0, 1, 2.

For the horizon of a black hole q in
1 = r in

h (qout
1 = rout

h ) and
q in

0 (qout
0 ) = τ , where τ is the Euclidean time and rh is the

horizon radius. By implementing the Hamilton equation q̇i =
dH
dpi

, where H is the Hamilton of the system, the integral can
be rewritten

∫ q in
i

qout
i

pin
i dqi =

∫ τin

τout

∫ H

0
dH ′ dτ +

∫ r in
h

rout
h

∫ H

0

dH ′

ṙh
drh

= 2
∫ r in

h

rout
h

∫ H

0

dH ′

ṙh
drh, (23)

where ṙh = drh
dτ

is the oscillating velocity of the black hole
horizon. We know that the tunneling and oscillation take
place at the same time. Hence we can write the relation
connecting the black hole horizon oscillating velocity and
velocity of the tunneling particle as [26]

ṙh = −ṙ . (24)

The metric given by (3) is Euclideanized by introducing
the transformation t → −iτ . Let a photon travel across the
black hole horizon, then the radial geodesic is given by

ṙ = dr

dτ
= ±i f (r), (25)

where the + and − signs correspond to the outgoing and
ingoing paths, respectively. Now the action given in (22) can
be written

∮
pi dqi = −4i

∫ r in

rout

∫ H

0

dH ′

f (r)
dr. (26)

Using the near horizon approximation, f (r) can be Taylor
expanded as

f (r) = f (r) rh + (r − rh)
d f (r)

dr
rh + · · ·. (27)

We also know that at the horizon r = rh there is a pole. To
avoid this we consider a contour integral in such a way that the
half loop is going above the pole from right to left. Evaluating
the adiabatic invariant integral (26), using the Cauchy integral
theorem, we arrive at

∮
pi dqi = 4π

∫ H

0

dH ′

κ
= 2h̄

∫ H

0

dH ′

T
, (28)

where κ is the surface gravity of the black hole; it is related
to the Hawking temperature by T = h̄κ

2π
.

We can write the Smarr formula of the two dimensional
dilatonic stringy black hole as

dM = dH = T dS − φ dQ, (29)

where φ is the electrostatic potential. Then (28) becomes

∮
pi dqi = 2h̄

(

S − 2πm

Q
(1 − cosα)

)

, (30)

where α = sin−1(q/m). The Bohr–Sommerfeld quantiza-
tion rule is given by

∮
pi dqi = 2πnh̄, n = 1, 2, 3, . . . . (31)

Comparing the above two Eqs. (30) and (31), one can write
the entropy spectrum

S = nπ + 2πm

Q
(1 − cosα). (32)

Using (17), we can rewrite the entropy spectrum in terms of
the ADM mass of the black hole

S = nπ + π

Q2 Me2�0(1 − cosα). (33)

It is interesting to note that the entropy of the two dimensional
dilatonic stringy black holes is quantized. From the above
relation (33), it is evident that the entropy spectrum depends
on the value of the dilatonic field at the horizon, as S ∝ e2�0 .
Hence we may conclude that there is a background entropy
due to this dilatonic field.
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4 Results and discussion

In this work we have calculated the entropy of a (1 + 1)

dimensional dilatonic stringy black hole via the Euclidean
treatment of quantum gravity. We have studied the thermo-
dynamics of the black hole. By calculating the temperature
and heat capacity of the black hole we conclude that the
present black hole system does not undergo any kind of phase
transition. This behavior matches with the one dimensional
Ising model system in statistical studies [27]. We have inves-
tigated the quantization of the entropy of (1+1) dimensional
dilatonic stringy black holes via an adiabatic invariant inte-
gral method put forward by Majhi and Vagenas, as well as
the Bohr–Sommerfeld quantization rule. We have found that
the entropy spectrum is quantized and also that the entropy
spectrum depends on the black hole parameters: the elec-
tric charge, the ADM mass, and the dilatonic field. This is
supported by the area law in higher dimensional gravity the-
ory. By considering the two dimensional dilaton theory as
the dimensional reduction from higher dimensional theories,
one can conclude that the dilaton field is associated with the
radius of the compactified coordinates. At this point, it is
interesting enough to recall the ideas of inflationary cosmol-
ogy [28–30], which imply the presence of a scalar field that
drives the inflation. Here we can match this scalar field with
the dilaton field. The dependence of the entropy spectrum
on dilatonic field points toward the microscopic origin of the
black hole entropy and hence toward quantum gravity. This
dilatonic field can also be considered as the source which
drives the inflation in the context of inflationary cosmology.
So further studies on these black hole solutions can unfold
the mysteries regarding the inflationary stage of the universe
and also the microscopic origin of the Bekenstein–Hawking
entropy.
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