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Abstract. We construct a basis in the spaces of Whitney functions E(K) for two model cases,

where K⊂IR is a sequence of closed intervals tending to a point. In the proof we use a convolution

property for the coefficients of scaling Chebyshev polynomials.

0. Introduction

The problem of the existence of bases in concrete spaces of functions is one of
the most important parts of the structure theory of Fréchet spaces. It became more
exciting after the Grothendieck problem was solved in the negative in [13], [2], [1],
[8], [11]. Still there is no example of a concrete functional nuclear F – space without a
basis. For a long time the space of C∞ – functions on a sharp cusp has been considered
as a candidate for this role ([2], see also [12]).
Here we give a construction of a basis in the space of Whitney functions E(K) for

two model cases, where the compact K⊂ IR is a sequence of intervals tending to a
point. The proof is based on a convolution property for the coefficients of scaling
Chebyshev polynomials (Sect. 3). The method can be applied for the construction of
a special basis in the space C∞[0, 1] and subsequently for the space of C∞ – functions
on a graduated sharp cusp ([5]). As a tool we use the Dynin–Mityagin criterion for
the property of being a basis in a nuclear Fréchet space (T.1.1 below).

1. Preliminaries

Let K = {0}∪⋃∞
k=1 Ik, where Ik = [ak, bk] = [xk − δk, xk + δk]. Let hk = ak − bk+1,

b1 ≤ 1. Suppose that ak ↓ 0, hk ↓ 0 and δk ↓ 0.
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The topology in the space E(K) of Whitney functions is defined by the norms

‖f‖p = |f |p + sup

{∣∣(Rp
yf)

(i)(x)
∣∣

|x− y|p−i
: x, y ∈ K, x �= y, i = 0, 1, . . . , p

}
,

p ∈ IN0, where |f |p = sup{∣∣f(i)(x)
∣∣ : x ∈ K, i ≤ p} and Rp

yf(x) = f(x) − T p
y f(x) is

the Taylor remainder. Let E0(K) denote the subspace of E(K) consisting of functions
which vanish at zero together with all their derivatives.
We will use the Chebyshev polynomials

TN(x) = cos(N · arccos x) =
N∑

s=0

A(N)
s · xs ,

where for s = N − 2j

A(N)
s = (−1)jN 2N−2j−1 (N − j − 1)!

j!(N − 2j)!
, j = 0 , 1 , . . . , [N/2]

(see for instance [14], 6.10.6) and A(N)
s = 0 if one of the numbers N, s is even and the

other one is odd.
On the other hand, cosp t =

∑p
n=0 B

(p)
n cos nt, where 0 ≤ B(p)

n ≤ 1.
For |∆| ≥ 1, and 0 < ε ≤ 1 we have that

TN (∆ + ε cos t) =
N∑

s=0

A(N)
s

s∑
p=0

(
s

p

)
∆s−pεp cosp t =

N∑
n=0

β(N)
n (∆, ε) cosnt ,

where

β(N)
n (∆, ε) =

N∑
s=n

A(N)
s

s∑
p=n

B(p)
n

(
s

p

)
∆s−pεp .

Since for x ≥ 1
N∑

s=0

∣∣A(N)
s

∣∣xs =
[N/2]∑
j=0

(2x)N−2j N

2
· (N − j − 1)!
j!(N − 2j)!

and N/2 ≤ N − j, we have
N∑

s=n

∣∣A(N)
s

∣∣xs ≤
[N/2]∑
j=0

(
N − j
j

)
(2x)N−2j ≤

N∑
i=0

(
N

i

)
(2x)N−i = (2x+ 1)N .

Therefore ∣∣β(N)
n (∆, ε)

∣∣ ≤ εn
N∑

s=n

∣∣A(N)
s

∣∣ s∑
p=0

(
s

p

)
|∆s−p| ≤ εn(2|∆|+ 3)N .(1.1)

As Mityagin proved in [7] the Chebyshev polynomials give a basis in the space
C∞[−1, 1] and this space is isomorphic to the space s of rapidly decreasing sequences.
Let Tnk denote the restriction to Ik of the scaling Chebyshev polynomial, that is

Tnk(x) = Tn

(
x−xk

δk

)
, x ∈ Ik and Tnk = 0 for x ∈ K \ Ik.
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Let ξ0k(f) = 1
π

∫ π

0
f(xk +δk cos t) dt, ξnk(f) = 2

π

∫ π

0
f(xk +δk cos t) cosnt dt, n ∈ IN.

The functionals (ξnk) are, clearly, biorthogonal to (Tnk).
We will use the convention that

∑n
i=m = 0 for m > n and 00 = 1.

Since the space E(K) is nuclear, we can use the following criterion ([7], T.9 ).

Theorem 1.1. (Dynin–Mityagin.) Let E be a nuclear Fréchet space and
{en ∈ E, ηn ∈ E′, n ∈ IN} be a biorthogonal system such that the set of function-
als (ηn)∞n=1 is total over E. Let for every p there exist q and C such that for all
n

‖en‖p · |ηn|−q ≤ C .(1.2)

Then the system {en, ηn} is an absolute basis in E.

Here and subsequently, | · |−q denotes the dual norm: for η ∈ E′ let |η|−q =
sup{|η(f)|, ‖f‖q ≤ 1}.

2. Basis in the space E0(K)

This section contains a slightly modified version of the joint result [3]. For the con-
venience of the reader we repeat it here, thus making the exposition self – contained.
In an analogous way a basis was constructed in [6] for the subspace of the space of
C∞ – functions defined on a stepped sharp cusp, consisting of all the functions vanish-
ing at the cusp.
For f ∈ E(K) let fk be equal to f on Ik and zero on K \ Ik, Xk = {f ∈ E0(K) :

suppf ⊂ Ik}. Using Taylor expansion at zero of the corresponding extensions of the
functions it is easy to obtain the following characterization for elements of the subspace
E0(K).

Lemma 2.1. The function f from E(K) belongs to E0(K) iff for every r and for
every N there exists C0 such that |fk|r ≤ C0 b

N
k ‖f‖r+N for any k.

Theorem 2.2. Let K be a compact set as in the Preliminaries. If there exists M
such that hk ≥ bMk for any k, then the system {Tnk, ξnk}∞,∞

n=0, k=1 is a basis in the space
E0(K).

Proof . Clearly, the system of functionals ξnk is total; thus we only need to check
the condition (1.2). Fix p ∈ IN0. Since

∣∣∣T (j)
n (x)

∣∣∣ ≤ n2j for |x| ≤ 1, j ≤ n, it follows

that |Tnk|p ≤ (n2/δk)u, where u = min{n, p}. On the other hand, for any fk ∈ Xk we
get ‖fk‖p ≤ 4 |fk|p h−p

k , as is easy to check. Thus ‖Tnk‖p ≤ 4n2uδ−u
k h−p

k .
Let us evaluate the dual norms of the ξnk as functionals on C∞(Ik). Fix r ∈ IN0,

f ∈ C∞(Ik). If 0 < n ≤ r then using the Taylor expansion of f at xk, we get

ξnk(f) =
2
π

∫ π

0

f(n)(θ)
δnk
n!

cosn t · cosnt dt
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with θ = θ(t) ∈ Ik. Hence

|ξnk(f)| ≤ 2
δnk
n!

|f |r ≤ C ′r(δk/n)
n |f |r .

For n = 0 we replace the middle term in the last product by 1 and the bound is valid
as well.
If r < n, then we can take the polynomial Qn−1 of best approximation to f on Ik

in the norm | · |0. Then by the Jackson theorem

|ξnk(f)| ≤ 2
π

∫ π

0

|f −Qn−1| dt ≤ 2 |f −Qn−1|0 ≤ C ′′r δ
r
kn
−r |f |r

(see for instance [10], 5.1.5). Thus with Cr = max{C ′r, C ′′r }, v = min{n, r} we have

|ξnk(f)| ≤ Cr(δk/n)v |f |r .(2.1)

Let now r = 2p, q = (M + 2)p, f ∈ E0(K). By the lemma,

|ξnk(f)| = |ξnk(fk)| ≤ Cr(δk/n)vC0 b
Mp
k ‖f‖q .

Thus

|ξnk|−q ≤ CrC0(δk/n)vh
p
k

and

‖Tnk‖p |ξnk|−q ≤ 4CrC0n
2u−v ≤ 4CrC0(2p)p .

This proves the theorem. ✷

Corollary 2.3. E0(K) =
( ⊕

Xk

)
s
.

Here and in the sequel X =
( ⊕

Xk

)
s
means that every f ∈ X has a unique

representation f =
∑∞

k=1 fk with fk ∈ Xk and moreover for any p ∈ IN the sequence
(‖fk‖p)∞k=1 is rapidly decreasing.

Proof . For any p, Q ∈ IN let N =M(Q+ p), q = p+N. As before,

‖fk‖p ≤ 4 |fk|p h−p
k ≤ Cq ‖f‖q b

N
k h
−p
k ≤ Cq ‖f‖q h

Q
k .

Since hk ↓ and
∑
hk < ∞, there exists a constant C such that hk ≤ Ck−1. Thus

‖fk‖p ≤ CqC
Q ‖f‖qk

−Q and (‖fk‖p) ∈ s. ✷

3. Convolution property and a new biorthogonal system

Fix in an arbitrary way three (maybe overlapping) finite intervals I1, I2, I3 ⊂ IR.
Let T̃ni, i = 1, 2, 3, n ∈ IN0, be the corresponding scaling Chebyshev polynomials
considered on IR, p, r ∈ IN0, p ≤ r. Then

r∑
q=p

ξp3

(
T̃q2

)
ξq2

(
T̃r1

)
= ξp3

(
T̃r1

)
.
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This property is a corollary of the following fact from elementary linear algebra.

Lemma 3.1. Let (ei1)ni=1, (ei2)ni=1, (ei3)
n
i=1 be bases in an n – dimensional vector

space, αik(ejl) be the i – th coefficient in the expansion of ejl in the k – th basis. Then

n∑
q=1

αp3(eq2)αq2(er1) = αp3(er1) .

Proof . The numbers αj3(eq2) form the transition matrix M3←2 from the second
basis to the third. Here j is the index of the row, q is the index of the column.
Analogously, M2←1 = [αi2(er1)]

n, n
i, r=1. Thus in the sum above we see a product of the

p – th row of M3←2 with the r – th column of M2←1, that is the (p, r) – th element of
M3←2M2←1 =M3←1. ✷

Now if we apply this lemma to the Chebyshev bases (or arbitrary other scaling
polynomials of increasing degree), then the terms with q < p and q > r vanish due to
the orthogonality of ξqk to all polynomials of degree less than q.
Fix a compact set K as in the Preliminaries. For n ∈ IN0 and k ∈ IN we will

denote by Pnk the function equal to T̃nk on [0, bk] ∩K and zero otherwise on K. Let
l : IN → IN0 be a nondecreasing function. The concrete form of this function will
depend on the compact set K considered. We introduce a new biorthogonal system
which will be a basis in E(K) for two model cases.
Fix a natural number k. If n ≥ l(k), then let enk = Tnk, ηnk = ξnk; for n < l(k) let

enk = Pnk,

ηnk = ξnk −
l(k−1)−1∑

i=n

ξnk(Pi k−1) ξi k−1 .(3.1)

Lemma 3.2. The system of functionals (ηnk)
∞,∞
n=0, k=1 is total on E(K) and biorthog-

onal to (enk)
∞,∞
n=0, k=1.

Proof . Biorthogonality of {e, η} can be easily checked from that of {T, ξ} and from
the convolution property.
Suppose that for some f ∈ E(K) we have ηnk(f) = 0 for all n, k. Since ηnk(f) =

ξnk(f) = ξnk(fk) = 0 for n ≥ l(k), we see that fk is a polynomial on Ik of degree
at most l(k). Now let us take k0 = min{k : l(k) > 0}. Then ηnk0 = ξnk0 and
fk0 ≡ 0. Next for k = k0 + 1, n < l(k) we obtain ξnk(fk) = ηnk(f) = 0. Thus fk ≡ 0.
Continuing in this way we see that fk ≡ 0 for any k and f ≡ 0. ✷

4. Estimation of norms

Let us first deduce some bounds for the norms of the elements and of the biorthogonal
functionals for an arbitrary compact set K of the above –mentioned type (we can omit
here the condition of monotonicity of (hk), (δk)).
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Lemma 4.1. Let d equal bk−1 −xk for n < q < l(k) and d = δk−1 for q ≤ n < l(k).
Then for n < l(k)

|ηnk|−q ≤ 4

δqk + dq

l(k−1)−1∑
i=n

|ξnk(Pi k−1)|
 .

Proof . Let us remark that

ηnk(f) =
2
π

∫ π

0

[
f(xk + δk cos t) cosnt − f(xk−1 + δk−1 cos t)

l−1∑
i=n

ξ(P ) cos it

]
dt .

Here and in the sequel we use the notation
l−1∑
i=n

ξ(P ) :=
l(k−1)−1∑

i=n

ξnk(Pi k−1) .

Suppose that 0 < n < q < l(k). The case n = 0 can be considered in the same
manner with a change of the coefficient before the integral. Expanding both functions
at xk up to the q – th degree, we represent the expression in the square brackets in the
following form

[· · ·] =
q−1∑
j=0

1
j!
f(j)(xk)δ

j
k cos

j t cosnt

−
q−1∑
j=0

1
j!
f(j)(xk)(xk−1 − xk + δk−1 cos t)j

l−1∑
i=n

ξ(P ) cos it+ Remainder ,

which is equal to
1
q!
f(q)(θ) δqk cos

q t cosnt− [
1/q! f(q)(xk)(xk−1 − xk + δk−1 cos t)q

+ Rq
xk
f(xk−1 + δk−1 cos t)

] l−1∑
i=n

ξ(P ) cos it

with θ ∈ Ik .
Let us show that the main part of the expansion will vanish after integration. By

orthogonality we only need to consider the case j ≥ n. We will compare the coefficients
of f(j)(xk)/j! in both sums after integration. Since

2
π

∫ π

0

cosj t cos nt dt = B(j)
n ,

the coefficient in the first sum equals δjk B
(j)
n .

For the second sum, due to the orthogonality, the corresponding coefficient is
j∑

m=n

(
j

m

)
(xk−1 − xk)j−mδmk−1

[
cosm t

m∑
i=n

ξ(P ) cos it

]
.

The expression in the square brackets after integration gives
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m∑
i=n

ξ(P )B(m)
i .(4.1)

Thus it remains to prove that

δjk B
(j)
n =

j∑
m=n

(
j

m

)
(xk−1 − xk)j−mδmk−1

m∑
i=n

ξ(P )B(m)
i .(4.2)

Let us consider the sum (4.1) separately. Clearly,

ξnk(Pi k−1) = β(i)
n (∆, ε) =

i∑
s=n

A(i)
s

s∑
p=n

B(p)
n

(
s

p

)
∆s−pεp

with ∆ = xk−xk−1
δk−1

, ε = δk

δk−1
. Changing the order of summation, we represent (4.1) as

m∑
s=n

s∑
p=n

B(p)
n

(
s

p

)
∆s−pεp

m∑
i=s

B
(m)
i A(i)

s .

But the last sum here is the coefficient of coss t in the expansion of cosm t in powers
of cos t, that is

∑m
i=sB

(m)
i A

(i)
s = 1 if s = m and it is zero for s < m.

Hence
m∑

i=n

ξ(P )B(m)
i =

m∑
p=n

B(p)
n

(
m

p

)
∆m−pεp .

Therefore the right – hand side of (4.2) can be written as

j∑
m=n

(
j

m

)
(−∆δk−1)j−mδmk−1

m∑
p=n

B(p)
n

(
m

p

)
∆m−pεp

=
j∑

p=n

B(p)
n εpδjk−1∆

j−p

j∑
m=p

(
j

m

)(
m

p

)
(−1)j−m .

Since
(

j
m

)(
m
p

)
=

(
j
p

)(
j−p
m−p

)
the last sum here is

(
j

p

) j∑
m=p

(
j − p
m− p

)
(−1)j−m1m−p = 0

for p < j. Thus we have only the case p = j and the total sum is

B(j)
n εjδjk−1 = B(j)

n δjk

and (4.2) is proved. Therefore,

|ηnk(f)| ≤ 2
π

∫ π

0

|Remainder| dt

≤ 2
q!

|f |qδqk + (bk−1 − xk)q
(
2
q!

|f |q + 2‖f‖q

) l−1∑
i=n

|ξ(P )| .

This establishes the formula for the first case.
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Let now q ≤ n < l(k). Then expanding up to degree q the first function at xk and
the second at xk−1, we immediately have

ηnk(f) =
2
π

∫ π

0

f(q)(θ0)δ
q
k cos

q t cosnt dt−
l−1∑
i=n

ξ(P ) · 2
π

∫ π

0

f(q)(θ1)δ
q
k−1 cos

q t cos it dt

with θj ∈ Ik−j, j = 0, 1. This proves the lemma. ✷

We now turn to the elements Pnk. To simplify notation we write R(f, p) instead of

sup
{∣∣(Rp

yf)
(i)(x)

∣∣ · |x− y|i−p, i ≤ p, x, y ∈ K, x �= y
}
.

Let as before denote u = min{n, p}.

Lemma 4.2. The following estimates hold

|Pnk|p ≤ 2n−1 n!
(n − u)! δ

−n
k bn−u

k , R(Pnk, p) ≤ e · h−p
k−1 |Pnk|u .

Proof . Let us write the function Pnk in the form

Pnk(x) = 2n−1δ−n
k

n∏
i=1

(x− θi) ,

where θi ∈ Ik, x ∈ [0, bk] ∩ K. For j ≤ n the j – th derivative of
∏n

i=1(x − θi) is a
sum of n!

(n−j)! terms of the type (x − θi1) · · · (x− θin−j ). Since |x − θi| < bk for all i,
we obtain the first bound of the lemma. Now if x, y ∈ [0, bk] ∩ K and p < n, then
R(Pnk, p) ≤ 2 |Pnk|p by the Lagrangian form for Taylor’s remainder. If p ≥ n, then it
is zero. Suppose that x and y lie on different sides of the hole hk−1. Let for instance
y ≤ bk. Then |x− y| ≥ hk−1 and

R(Pnk, p) ≤ sup
i

u∑
j=i

1
(j − i)! h

j−p
k−1 sup

y

∣∣P (j)
nk (y)

∣∣
and the second bound of the lemma is clear. ✷

5. Basis in E(K) for E(K) �� s

Here we consider a concrete compact set K. Let ϕ : IR+ → IR+ be an arbitrary
increasing function such that ϕ(t) ≥ t, let δk+1 = 1/ϕ

(
δ−1
k

)
and Ik = [(b−2) ·δk, b ·δk].

If tN/ϕ(t) → 0 for all N as t→ ∞, then the spaces E(K) and s are not isomorphic
(see T.3 in [4]). Moreover, one can easily construct a family, having the cardinality of
the continuum, of pairwise nonisomorphic spaces E(Kα) by choosing suitable scales of
functions ϕα (see [4], T.1 for more details).
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Theorem 5.1. Suppose b ≥ 6. Let the sequence (δk) ↓ 0 be such that bδ1 ≤ 1,
3δk+1 ≤ δk for all k, and K = {0} ∪ ⋃∞

k=1[(b − 2)δk, bδk]. Then the system
{enk, ηnk}∞,∞

n=0, k=1 is a basis in the space E(K).

Proof . Here hk = (b−2)δk − bδk+1.We check at once that hk ≥ hk+1 and therefore
the compact set K satisfies the conditions of the Preliminaries. Moreover,

hk ≥ 2δk , hk ≥ bk+1

and we can apply [4] for the isomorphic classification of the space E(K).
Let us fix l = l(k) such that

(2b+ 1)l(k) · δk−1 ≤ 1 .(5.1)

In order to get this, one can take l = [(k − 2)ν ] with ν = ln 3
ln(2b+1)

, because

(2b+ 1)lδk−1 ≤ (2b+ 1)ν(k−2)3−k+2δ1 = δ1 < 1 .

In addition for this l we can take k0 such that

l(k) ≤ δ−1
k−1 , k > k0 .(5.2)

Since ξnk(Pi k−1) = β
(i)
n (∆, ε) with |∆| =

∣∣∣xk−xk−1
δk−1

∣∣∣ < b− 1, ε = δk

δk−1
we conclude

from (1.1) and (5.1) that

l−1∑
i=n

|ξ(P )| ≤
l(k−1)−1∑

i=n

εn(2b+ 1)i ≤ εn(2b+ 1)l(k) ≤ δnk δ
−n−1
k−1 .(5.3)

Fix p ∈ IN, q = 3p+2 and kq with kq ≥ k0, l(kq) ≥ q. Let C0 = max ‖enk‖p · |ηnk|−q

for 0 ≤ n ≤ q, 1 ≤ k ≤ kq.
If k ≤ kq, n > q or k > kq and n ≥ l(k), then enk = Tnk, ηnk = ξnk due to the

choice of l(k) and kq. As in Theorem 2.2 we have the bound

|Tnk|p ≤ n2p · δ−p
k .

Arguing as in Lemma 4.2, we get for y ∈ Ik, x ∈ K \ Ik
p∑

j=i

1
(j − i)!

∣∣T (j)
nk (y)

∣∣ |x− y|j−p ≤
p∑

j=i

1
(j − i)! n

2jδ−j
k hj−p

k ≤ e · n2pδ−p
k ,

as δk ≤ hk. Thus ‖Tnk‖p ≤ 4 · n2pδ−p
k .

For biorthogonal functionals it is enough in this case to use (2.1) with q instead of r

|ξnk|−q ≤ Cq(δk/n)q ,

as n ≥ q. Therefore, ‖Tnk‖p · |ξnk|−q ≤ 4Cq.
It remains to analyze the case k > kq, 0 ≤ n < l(k). Here enk = Pnk, ηnk is defined

by (3.1). Fix k.
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If 0 ≤ n < p, then by Lemma 4.2

‖Pnk‖p ≤ C ′1δ
−n
k δ−p

k−1 ,

where C ′1 does not depend on k and n.
On the other hand, by Lemma 4.1 and (5.3)

|ηnk|−q ≤ 4
[
δqk + (b · δk−1)q · δnk δ−n−1

k−1

]
.

Therefore,

‖Pnk‖p |ηnk|−q ≤ 4C ′1
[
δq−n
k δ−p

k−1 + b
q · δq−n−p−1

k−1

] ≤ 4C ′1(1 + b
q) = C1 .

If p ≤ n < q, then with the same bound for |ηnk|−q we have by Lemma 4.2

|Pnk|p ≤ 2n−1npδ−n
k (bδk)n−p , R(Pnk, p) ≤ e(2δk−1)−p |Pnk|p .

Thus ‖Pnk‖p ≤ C ′2 · δ−p
k δ−p

k−1 and

‖Pnk‖p |ηnk|−q ≤ 4C ′2
[
δq−p
k δ−p

k−1 + b
q(δk/δk−1)n−pδq−2p−1

k−1

] ≤ 4C ′2(1 + b
q) = C2 .

Suppose q ≤ n < l(k). Then

|Pnk|p ≤ 1
2
(2b)nnpδ−p

k , R(Pnk, p) ≤ e(2δk−1)−p |Pnk|p .

Therefore,
‖Pnk‖p ≤ 2(2b)llpδ−p

k δ−p
k−1 ≤ 2δ−p

k δ−2p−1
k−1 ,

by (5.1) and (5.2). Also, by Lemma 4.1 and (5.3)

|ηnk|−q ≤ 4
[
δqk + δqk−1 · δnk δ−n−1

k−1

]
and

‖Pnk‖p |ηnk|−q ≤ 8
[
δq−p
k δ−2p−1

k−1 + (δk/δk−1)n−pδq−3p−2
k−1

] ≤ 8 = C3 ,

due to the choice of q. The constant C = maxi≤3Ci does not depend on n, k, hence
the theorem follows from Theorem 1.1 and Lemma 3.2. ✷

Now let us introduce the projections

Sk =
k−1∑
j=1

l(j)−1∑
n=0

ηnj( · )Pnj , Qk =
∞∑

n=0

ηnk( · )enk

in the space E(K). Clearly, Qk(f) = f −Sk(f) on Ik, Qk(f) is a polynomial of degree
l(k) − 1 on [0, bk+1] ∩K and Qk(f) = 0 otherwise on K. Let Xk = Qk(E(K)).

Corollary 5.2. E(K) =
( ⊕

Xk

)
s
.
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Proof . In fact, it is enough to show that for all p and for all M there exist q and C
such that

∞∑
k=1

‖Qk(f)‖p · kM ≤ C ‖f‖q .

We can repeat all the arguments of the theorem with q = 3(p+1)+M and show in
this way that the double series

∞∑
k=1

∞∑
n=0

|ηnk(f)| · ‖enk‖pk
M

is convergent. ✷

6. Basis in E(K) for E(K) � s

Let now bk = 2−k+1 = 2bk+1, δk = 2−k−2 = 2δk+1 for k ∈ IN. Clearly, ak =
6δk, hk = 2δk. From [9] and [4] it follows that the spaces E(K) and s are isomor-
phic. Let us give an explicit form of the basis in E(K) which can be applied for the
construction of a special basis in the space C∞[0, 1].

Theorem 6.1. Let K = {0} ∪ ⋃∞
k=1

[
3 · 2−k−1, 2−k+1

]
. Then the system

{enk, ηnk}∞,∞
n=0, k=1 is a basis in the space E(K).

Proof . Let us take l(k) = [k/4]. Since for our case ∆ = −7/2, ε < 1, we replace
(5.3) by

l−1∑
i=n

|ξ(P )| ≤
l(k−1)−1∑

i=n

10i < 10l(k−1) < δ−1
k .(6.1)

Fix p ∈ IN, take q = 3p+ 2 and kq = 4q.
Let C0 be the same as in Theorem 5.1. The estimates of ‖enk‖p · |ηnk|−q for n ≥ l(k)

or n < l(k), k ≤ kq are the same as above. Similarly, for fixed k > kq if n < p then

|Pnk|p ≤ 2n−1n! δ−n
k , R(Pnk, p) ≤ e · (4δk)−p |Pnk|n .

Therefore
‖Pnk‖p ≤ p! δ−2p

k .

By Lemma 4.1 and (6.1)

|ηnk|−q ≤ 4
[
δqk + (bk−1 − xk)q · δ−1

k

]
.

Here bk−1 − xk = 8δk−1 − 7δk = 9δk. Hence, |ηnk|−q ≤ Cδq−1
k , where C does not

depend on n, k, and the product ‖Pnk‖p · |ηnk|−q is uniformly bounded.
If p ≤ n < q, then ‖Pnk‖p ≤ 24qqpδ−2p

k , as is easy to check. For |ηnk|−q we use the
previous bound and obtain the desired conclusion.
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Suppose now that q ≤ n. Then by Lemma 4.2

|Pnk|p ≤ 2n−1npδ−n
k (8δk)n−p

and

‖Pnk‖p ≤ (1 + e)(4δk)−p |Pnk|p ≤ 24n+1npδ−2p
k .

Since n < l(k) ≤ k/4 and k < δ−1
k , we have

24n+1np ≤ 2 · 2kkp < δ−p−1
k .

Thus ‖Pnk‖p ≤ δ−3p−1
k .

From Lemma 4.1 with δk−1 = 2δk and (6.1) it follws that

|ηnk|−q ≤ 4
[
δqk + (2δk)q · δ−1

k

] ≤ 2q+3δq−1
k .

Therefore ‖Pnk‖p · |ηnk|−q ≤ 2q+3 due to the choice of q.
Thus for the system {enk, ηnk}∞,∞

n=0, k=1 we have the Dynin–Mityagin estimate (1.2)
and in view of Lemma 3.2 the proof is complete. ✷

In the same manner as above we can obtain the following

Corollary 6.2. E(K) =
( ⊕

Xk

)
s
.

Remark 6.3. The basis in E(K) cannot be constructed as an extension of the basis
in the subspace of the functions vanishing at zero. In fact, E0(K) is not complemented
in E(K) because the quotient space E(K)/E0(K) is isomorphic to the space ω = IRIN

and does not have a continuous norm.
In turn if we take the basis projection

Q0 =
∞∑

k=1

∞∑
n=l(k)

ξnk( · )Tnk ,

on the “vanishing part” X0 = Q0(E(K)) of the space E(K) with X1 = (I−Q0)(E(K)),
then X0 ⊂ E0(K) as a proper subspace and the exact sequence

0 −→ X0 −→ E(K) −→ X1 −→ 0

splits.
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