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This paper presents non-random algorithms for approximate computation in Bayesian
networks. They are based on the use of probability trees to represent probability
potentials, using the Kullback-Leibler cross entropy as a measure of the error of the
approximation. Different alternatives are presented and tested in several experiments
with difficult propagation problems. The results show how it is possible to find good
approximations in short time compared with Hugin algorithm. � 2000 John Wiley & Sons,
Inc.

1. INTRODUCTION

Bayesian networks are efficient representations of joint probability distribu-
tions, where the network structure encodes the independence relations among
the variables. Some different tasks can be performed over Bayesian networks.
One of the most common is the computation of posterior marginals given that
the value of some variables is known. This task is called probability propagation.

Many schemes for the exact computation of such marginals by local
computations have been proposed in the last years.1 � 5 Local computation
consists of calculating the marginals without actually computing the joint distri-
bution, and is described in terms of a message passing scheme over a structure
called join tree. However, if the model is complicated enough, these schemes

Žmay require such a big amount of resources computing time and memory
.requirements that their use becomes difficult.

This fact motivated the development of approximate propagation algo-
rithms. An important group of approximate models is based on Monte Carlo
simulation. The idea is to simulate a sample of the variables in the network that
is used to estimate the posterior marginals.6 � 12
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Also, deterministic procedures have been proposed for approximate propa-
gation. We can find three main proposals: removing low probability values and
considering them to be equal to zero, in order to reduce strong requirements,13

reducing the complexity of the model by removing weak dependencies14 and
enumerating the configurations of the variables in the model with highest
probability to obtain approximations of the marginals.15,16 A hybrid version of

� �this approach is presented in 17 .
In this paper, we present a deterministic approximate algorithm. The

algorithm performs a Shenoy-Shafer message passing over a binary join tree,3

but we introduce the use of probability trees10 to represent both the messages
and the potentials stored in the nodes of the join tree. The use of probability
trees will allow to approximate big messages by smaller ones, which makes this
algorithm able to run under limited resources or over very large networks.

The reason to use probability trees is that they provide a very general
approach to approximate probability potentials. The basic procedure will be to
reduce the size of the tree by collapsing several of its branches in only one of
them having as value the average of the removed ones. Removing weak
dependencies14 can be seen as a particular case of this operation in which the
branches to be collapsed are those coming from tree nodes containing the
variables that are not going to be considered in some given dependence
relationships. Removing configurations of very low probability13 can be seen as
transforming branches with low value into zero and then applying the basic
procedure by reducing several 0 values in only one. This approach is similar to
reduce low values to their average, however approximating by 0 should give
poorer results than approximating by the average. Finally, by using a propaga-
tion scheme we can expect to represent a much greater number of configura-
tions with high probability due to the combinatorial power of local representa-
tions with respect to global ones as those used in Ref. 17. Taking into account
these considerations, we hope to improve existing approximation algorithms by
considering a global approach to obtain good or near to optimal approximations
to probability potentials by using probability trees.

The paper is organized as follows: in Section 2, we describe construction of
binary join trees and the propagation of probabilities over them using the
Shenoy-Shafer scheme; in Section 3, we introduce the new algorithm, called
penniless propagation; Section 4 is devoted to investigate the use of probability
trees to approximate messages, and the results of some experiments carried out
over different examples are reported in Section 5; the paper ends suggesting
some future works in Section 6.

2. PROPAGATION OVER BINARY JOIN TREES

2.1. Notation

A Bayesian network is a directed acyclic graph where each node represents
a random variable, and the topology of the graph shows the independence
relations among the variables, according to the d-separation criterion.18 Given
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the independences encoded by the graph, the joint distribution is determined
giving a probability distribution for each node conditioned on its parents.

� 4Let X � X , . . . , X be the set of variables in the network. Assume each1 n
� �variable X takes values on a finite set U . For any set U, U stands for thei i

number of elements it contains. If I is a set of indices, we will write X for theI
� 4 � 4set X � i � I . N � 1, . . . , n will denote the set of indices of all the variables ini

the network; thus, X � X. We will denote by U the Cartesian product � U .N I i� I i
Given x � U and J � I, x will denote the element of U obtained from xI J J
dropping the coordinates not in J.

A potential � defined on U will be a mapping � : U � �� , where �� isI I 0 0
Žthe set of non-negative real numbers. Probabilistic information including ‘a

.priori’, conditional, and ‘a posteriori’ distributions will always be represented by
means of potentials, as in Ref. 2.

By the size of a potential, we mean the higher number of values necessary
� �to completely specify it. That is, if � is defined on U , its size will be U .I I

Ž .If � is a potential defined on U , s � will denote the set of indices of theI
Ž Ž . .variables for which � is defined i.e., s f � I .

The marginal of a potential � over a set of variables X with J � I isJ
denoted by � � J. The conditional distribution of each variable X , i � 1, . . . , n,i

Ž .given its parents in the network, X , is denoted by a potential p x � xF Ž i. i i F Ž i.
where p is defined over U .i �i4� F Ž i.

Then, the joint probability distribution for the n-dimensional random
variable X can be expressed asN

p x � p x � x � x � U 1Ž . Ž .Ž .Ł i i F Ž i. N
i�N

An obser�ation is the knowledge about the exact value X � e of a variable.i i
The set of observations will be denoted by e, and called the e�idence set. E will
be the set of indices of the observed variables.

Every observation, X � e , is represented by means of a potential which isi i
Ž . Ž .a Dirac function defined on U as � x ; e � 1 if e � x , x � U , and � x ; ei i i i i i i i i i i

� 0 if e � x .i i
The goal of probability propagation is to calculate the ‘a posteriori’ probabil-

Ž � . � � 4ity function p x � e , for every x � U , where k � 1, . . . , n 	 E.k k k
It is well known that

p x� � e � p x � x � x ; e 2Ž . Ž . Ž .Ž .Ý Ł Łk i i F Ž i. i i iž /
� i e �ex �x ik k

� Ž . 4 � Ž . 4If we call H � p x � x � i � 1, . . . , n � � x ; e � e � e , andi i F Ž i. i i i i

� k
m� � � 3Ž .Łk ž /

��H

Ž .then according to equation 2 , the desired conditional probability can be
m Ž .computed by obtaining � according to equation 3 and normalizing it after-k

wards in such a way that the sum of its values is equal to 1.
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The functions in H can be simplified taking into account the observations
in e. If each � � H such that � is not an observation, it is transformed into a

Ž .function � defined on s � 	 E and given by:e

� x � � y , where y � x , and y � e , � i � E 4Ž . Ž . Ž .e sŽ� .	E i i

That is, for every function F we remove variables in E by fixing them to
the observed values. If H is the set obtained from H by changing everye
non-delta potential � to � , then we still continue having an equation similar toe

Ž .equation 3 :

� k
m� � � 5Ž .Łk ž /

��He

In this paper, we will use these reduced potentials. The advantage is that
they are more simple than initial potentials in H. The disadvantage is that all
posterior computations will depend on the observations and therefore they
cannot be reused if the set of observations changes.

The computation of � m is usually organized in a join tree. A join tree is ak
tree where each node V is a subset of X , and such that if a variable is in twoN
distinct nodes, V and V , then it is also in every node in the path between V1 2 1
and V . This property is known as junction property.19 A join tree is called binary2
if every node has no more than three neighbors.

Ž .Every potential, � � H is assigned to a node V such that s � � V . In thise j j
way, attached to every node V there will be a potential � defined over the seti i
of variables V and that is equal to the product of all the potentials assignedi
to it.

By means of a propagation algorithm in a join tree � m can be calculated.k
After it, � m can be obtained from any node V containing variable X .k j k

2.2. Constructing a Binary Join Tree

The process of constructing a join tree from a Bayesian network can be
divided into two stages: first, determine which variable will form each node in
the tree, and second, arrange the nodes in such a way that the junction property
is verified.

The first task is usually performed by triangulating the undirected graph
Žassociated to the set of potentials H two variables are joined if and only ife

Ž ..there is a potential � � H such that both variables are in s � , and thene
obtaining clusters of variable which are pairwise connected of the triangulated
graph.19 The groups are not necessarily cliques, i.e., maximal completely con-
nected clusters, but all the cliques should be considered. At the end, each
cluster corresponds to a node in the join tree. The triangulation of the graph can
be carried out by removing the nodes in sequence, and each time a node is
deleted, a cluster is formed by all the nodes that are neighbors of the one being
removed.
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Different deletion sequences result in different sets of clusters, and we will
prefer those sets whose clusters are of smaller size, or, more precisely, those
whose corresponding potentials are of smaller size. Finding the optimal deletion
sequence is not a trivial task, and several heuristics have been proposed.20,21

One of the most popular heuristics is the minimum size criterium, which consists
of selecting, at each step, the variable producing the smallest cluster. Here we
adopt a variation over it: we first remove variables which are not observed and
whose descendants are not observations either, starting from leaves upward.
This will have implications in the resulting propagation algorithms: upward
messages from the clusters produced when deleting these variables will be the

Ž .result of marginalizing a conditional probability p x � x by adding on x . Thei i F Ž i. i
result will be a potential which is identically equal to 1, and then easily
representable by probability trees with only one value. Doing this, we can obtain
some clusters larger than in the usual criterium, but some of the messages will
be extremely simple. It is necessary to arrange the clusters in the tree in an
order opposite to that produced by the elimination sequence, that is, the last
cluster produced will be the first inserted to the tree and so on.

A detailed algorithm to compute a join tree from a Bayesian network can
be as follows:

Ž .ALGORITHM JoinTree BB

INPUT: An undirected graph BB.
OUTPUT: JJ, a join tree obtained from network BB.

1. Select a deletion sequence according to the modified minimum size
criterium.

� 42. Let LL � C , . . . , C be the list of clusters corresponding to the elimina-1 m
tion sequence.

3. Extract cluster C from LL .m
4. Let JJ be a join tree whose only node is C .m
5. FOR i � m 	 1 TO 1

� Extract cluster C from LL .i
� Let V be the set of variables in C that are also contained in any nodei

in the join tree.
� Connect cluster C to a node in JJ that contains V. If no node in JJi

contains V, leave C unconnected.i
6. RETURN JJ.

Example 1. Consider the undirected graph in Figure 1, and assume all the
variables are binary. A possible deletion sequence according to the modified
minimum size criterium is X , X , X , X , X . The clusters resulting from this5 4 3 2 1

� 4 � 4 � 4 � 4elimination sequence are X , X , X , X , X , X , X , X , X , X , X . To5 4 3 4 3 2 3 2 1 2 1
� 4construct the join tree, we select the last cluster obtained: X , X , resulting in2 1

� Ž .�a join tree with a single node containing variables X and X see Fig. 2 a .2 1
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Figure 1. An undirected graph.

� 4Now we select the next cluster, X , X , X . The intersection of its variables3 2 1
� 4with the variables already contained in the join tree is X , X . Thus, we must2 1

� Ž .�connect this cluster to a node containing variables X and X Fig. 2 b . In the2 1
� 4 � 4next step, we choose X , X , X . In this case, the intersection is X , X ,4 3 2 3 2

Ž .which implies that the cluster has to be connected as in Figure 2 c . Finally, we
� 4 Ž .insert cluster X , X , X , obtaining the join tree in Figure 2 d .5 4 3

Observe that the join tree provided by the algorithm above is not always
binary. When applying the Shafer and Shenoy 4 propagation scheme, the use of
binary trees is very suitable.3 The reason is that they store intermediate results
so that they do not have to be recalculated when used in different computations.
Furthermore, it is straightforward to convert a joint tree into a binary one
applying the following algorithm.

Figure 2. Construction of a join tree.
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Ž .ALGORITHM Binary JJ

INPUT: A join tree JJ.
OUTPUT: The input join tree JJ in binary format.

1. WHILE there is a node V in JJ with more than three neighbors,
� Let V , V be two neighbors of V.1 2
� Ž .Create a new node V � V � V 
 V.3 1 2
� Connect V to V.3
� Disconnect V and V from V and connect them to V .1 2 3

2. RETURN JJ.

� 4 � 4Example 2. Figure 3 illustrates this algorithm. Nodes X , X and X , X are1 3 1 4
� 4 � 4disconnected from X , X and connected to a new node X . This new node is1 2 1
� 4then connected to X , X .1 2

Now that we have a binary join tree, the next step is to initialize the
probabilistic information it must contain. To this end, each probability potential
present in the original Bayesian network must be included in at least one
cluster. The other clusters will contain a unit potential, i.e., a potential that is
constantly equal to 1.

2.3. Shenoy-Shafer Propagation over Join Trees

In this scheme, two mailboxes are placed on each edge of the join tree.
Given an edge connecting nodes V and V , one mailbox is for messagesi j
V -outgoing and V -incoming, and the other mailbox is for the reverse. Thei j
messages allocated in both mailboxes will be probability potentials defined on
V 
 V . Initially, all mailboxes are empty, and once a message has been placedi j
on one of them, it is said to be full.

Figure 3. Making a join tree be binary.
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A node V in a join tree is allowed to send a message to its neighbor node Vi j
if and only if all V -incoming mailboxes are full except the one from V to V .i j i
Thus, initially only nodes corresponding to leaves can send messages. The
message V -outgoing and V -incoming is computed asi j

� V 
Vi j

� � � � � 6Ž .ŁV � V i V � Vi j k iž /½ 5Ž .V �ne V 	Vk i j

where � is the initial probability potential on V , � are the messages ini i V � Vk i
Ž .the mailboxes V -outgoing and V -incoming and ne V are the neighbor nodes ofk i i

V . Note that one message contains the information coming from one side of thei
tree and is sent to the other side of the tree. It can be shown4 that there is
always at least one node allowed to send a message until all mailboxes are full,
and when the message passing ends, for every node V in the joint tree it holdsi
that

� m � � � � 7Ž .ŁV i V � Vž /i k i
Ž .V �ne Vk i

m Ž .� Viwhere � � Ł � is proportional to the conditional distribution of theV � � Hi e

variables in V given observation e. The desired conditional probability fori
variable X and � m can be calculated by marginalizing � m over this variablek k Vi

and normalizing the result.
The propagation can be organized in two stages. In the first one, messages

are sent from leaves to a previously selected root node, and in the second stage,
messages are sent from the root to the leaves. The following algorithm imple-
ments this propagation scheme:

Ž .ALGORITHM Shenoy-Shafer JJ

INPUT: A join tree JJ.
OUTPUT: Join tree JJ after propagation.

1. Select a root node R.
Ž .2. FOR each V � Ne R ,

� Ž .NavigateUp R, V
Ž .3. FOR each V � ne R ,

� Compute message

� R
V

� � � � � .ŁR � V R V � Rž /k½ 5
Ž .V �ne R 	Vk

� Ž .NavigateDown R, V
4. RETURN JJ.
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where NavigateUp is a procedure that sends messages from leaves to root and
NavigateDown sends messages from root to leaves. Both procedures are detailed
below.

Ž .NavigateUp V , V1 2

Ž .1. FOR each V � ne V � V ,2 1
� Ž .NavigateUp V , V2

2. Compute message

� V 
V1 2

� � � � � .ŁV � V 2 V � Vž /2 1 k 2½ 5
Ž .V �ne V 	Vk 2 1

Ž .NavigateDown V , V1 2

Ž .1. FOR each V � ne V 	 V ,2 1
� Compute message

� V
V2

� � � � � .ŁV � V 2 V � Vž /2 k 2½ 5
Ž .V �ne V 	Vk 2 1

� Ž .NavigateDown V , V2

The sequence of message passing is illustrated in Figure 4.

Figure 4. Message passing in the Shenoy-Shafer propagation.
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3. PENNILESS PROPAGATION

The Shenoy-Shafer algorithm can be used to obtain the posterior marginal
distribution for all the variables in the network. However, it may be infeasible to
obtain those marginals in a reasonable time. For instance, assume we have to
compute a message defined over 14 variables, each of them taking three possible
values, and that we use probability tables to handle the probabilistic information
about the variables; in this case, to specify the corresponding probability
potential implies to compute and store 314 values, which using 8 bytes real
numbers requires more than 36 MBytes of memory, and this is just for one
among the hundreds of messages that may appear when propagating over a
large network.

Besides, even if the network is not that large, in some cases we have to
Žperform the propagation over a computer with limited resources small amount

.of RAM, slow CPU . In this situation, we will be forced to use approximate
methods which, in exchange of losing the precision in the computations, provide
results in more reasonable time.

Our proposal in this work consists of a propagation algorithm, based on
Shenoy-Shafer’s, but able to provide results under limited resources. To achieve
this, we will assume that messages are represented by means of probability
trees.2 This tool provides an approximate representation of potentials within a
given maximum number of values.23 � 25,10

The consequence is that the messages that are sent during the propagation
will be approximated if their size is greater than a given threshold. This
threshold will depend on the available resources. In Section 4 we discuss how
this approximation is carried out and how the operations over probability trees
are performed.

Another difference with respect to Shenoy-Shafer’s algorithm is the number
of stages of the propagation. In the exact algorithm, there are two stages: in the
first one, messages are sent from leaves to the root and in the second one, in the
opposite direction.

Here we add the possibility of performing more than two stages. The goal is
to improve the approximate messages at each stage, by taking into account
messages coming from other parts of the join tree. More precisely, when a
message is sent throw an edge, it is approximated conditional on the message
contained in the same edge but in the opposite direction. The idea of condi-
tional approximation of potentials was proposed in 23, 26. The reason is the
following: when we are going to approximate a message, for example � , theV � Vi j

first idea is to try to find a potential � 0 such that the distanceV � Vi j
Ž 0 .D � , � is minimum. The distance commonly used is the Kullback-V � V V � Vi j i j

Leibler cross entropy 27 between the normalized potentials. But our final objec-
tive is not to compute messages but to compute marginal probabilities. After
propagation, the marginal probability for variables in V 
 V will be propor-i j
tional to � � � . So we should carry out the approximation of aV � V V � Vi j j i

2 Initially if no message has been sent this message is the potential equal to 1 for all
the configurations.
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message trying to minimize the value of conditional information, given by:

D � , � 0 � � � D � � � , � 0 � � 8Ž .ž / ž /V � V V � V V � V V � V V � V V � V V � Vi j i j j i i j j i i j j i

This conditioning will equalize the distance between � and � 0 toV � V V � Vi j i j

give more importance to the differences between the message and its approxi-
mation in those cases in which � is high. In an extreme situation, imagineV � Vj i

that � is 0 for all the elements of A � U , then the differencesV � V V 
 Vj i j i

between � and its approximation in set A will not be relevant: we canV � Vi j

change the values of � on A having always the same distance. This hasV � Vi j

perfect sense if we take into account that the result of the conditional probabil-
ity will be 0 in this set whatever the value of � is.V � Vi j

The problem is that when we send a message � , usually we do notV � Vi j

have the opposite message, � , but an approximation2 of it, � 0 , andV � V V � Vj i j i

the distance has to be conditioned to this approximation. When we first
computed � 0 , � 0 was not available. Once we have it, we can use it toV � V V � Vj i i j

compute a better approximation of � : the message �1 such thatV � V V � Vj i j i
Ž 1 0 .D � , � � � is minimum. But now that we have a better approxi-V � V V � V V � Vj i j i i j

Ž .mation of � , we could use it as the conditioning part in formula 8 toV � Vj i

obtain a better approximation of � . This process can continue until noV � Vi j

further change is obtained in the messages. No theoretical result is available at
this moment about the convergence of this procedure, but in Refs. 23, 26 there

Ž .are some experiments in which the convergence is very fast a few iterations .
If in a given moment some message, say � , is exact, then there is noV � Vi j

need to try to improve it by iterating as described above. We have organized our
Žalgorithm so that it carries out several iterations, but only two of them first and

.last are necessary in all the messages, the rest will be carried out only through
approximate messages. With this aim, we distinguish three different types of
stages: the first stage, the intermediate ones and the last stage.

The goal of the first stage is to collect information from the entire join tree
in the root node, in order to distribute it to the rest of the graph in a posterior
stage. Messages are sent from leaves to the root, approximating those whose size
is too big. We keep a flag in every message indicating whether its computation
was exact or approximate. This information will be used in the intermediate
stages.

In the intermediate stages, we try to improve the messages stored in each
edge, performing several runs over the join tree and updating the approximate
messages according to the information coming from other parts of the tree. To
achieve this, messages are sent in both directions: first, from the root towards
the leaves and second, from the leaves upwards. When a message is going to be
sent through an edge, we check the flag of the message in the opposite direction;
if that message is labeled as exact, we do not continue updating the messages in
the subtree determined by that edge. The reason to do this is that sending
messages through that edge will not help to better approximate the messages in
the opposite directions, since those messages are already exact, so we do not
need to update them.

In the last stage the propagation is completed sending messages from the
root to the leaves. In this case, messages are sent downward even if the message
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stored in the opposite direction is exact. This is done to assure that at the end of
the propagation all the clusters in the join tree have received the corresponding
messages.

In the next we describe the detailed algorithm, called PENNILESS PROPAGA-
TION, emphasizing the fact that it performs a propagation even in absence of a
big amount of resources.

Ž .ALGORITHM PENNILESS PROPAGATION JJ, stages

INPUT: A join tree JJ and the number of propagation stages.
OUTPUT: Join tree JJ after propagation.

1. Select a root node R.
Ž .2. NavigateUp R

3. stages � stages 	 1
4. WHILE stages � 2

Ž .NavigateDownUp R
stages � stages 	 2

Ž .5. IF stages �� 1
Ž .NavigateDown R

ELSE
Ž .NavigateDownUpForcingDown R

The first stage is carried out by calling procedure NavigateUp. This proce-
dure requests a message from each one of its neighbors, which recursively do
the same to all its neighbors downwards until the leaves are reached. In this
moment, messages are sent upwards until the root is reached. This task is
implemented by the following two procedures.

Ž .NavigateUp R

Ž .1. FOR each V � ne R ,
Ž .NavigateUp R, V

Ž .NavigateUp S, T

Ž . � 41. FOR each V � ne T 	 S ,
� Ž .NavigateUp T , V

Ž .2. SendApprMessage T , S

Once the root node has received messages from all its neighbors, the
intermediate stages begin. This is carried out by the next two procedures.
Observe that exact messages are not updated.

Ž .NavigateDownUp R
Ž .1. FOR each V � ne R

IF � is not exactV � R
IF � is not exactR � V

Ž .SendApprMessage R, V
Ž .NavigateDownUp R, V
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Ž .NavigateDownUp S, T

Ž . � 41. FOR each V � ne T 	 S
IF � is not exactV � T

IF � is not exactT � V
Ž .SendApprMessage T , V

Ž .NavigateDownUp T , V

2. IF � is not exactT � S
Ž .SendApprMessage T , S

Finally, the last step is carried out by calling the procedures described next.
After this, the posterior marginal for any variable in the network can be
computed by selecting any node containing that variable and marginalizing its
corresponding potential. Observe that after the intermediate stages, if the total
number of stages is odd, we still have to perform two traversals, one downwards
and one upwards. The difference with respect to the intermediate steps is that in
this case, messages are sent downwards even if they are marked as exact, in
order to assure that the posterior marginals can be obtained in any node.

Ž .NavigateDownUpForcingDown R

Ž .1. FOR each V � ne R
IF � is not exactV � R

IF � is not exactR � V
Ž .SendApprMessage R, V

Ž .NavigateDownUpForcingDown R, V
ELSE

IF � is not exactR � V
Ž .SendApprMessage R, V

Ž .NavigateDown R, V

Ž .NavigateDownUpForcingDown S, T

Ž . � 41. FOR each V � ne T 	 S
IF � is not exactV � T

IF � is not exactT � V
Ž .SendApprMessage T , V

Ž .NavigateDownUpForcingDown T , V
ELSE

IF � is not exactT � V
Ž .SendApprMessage T , V

Ž .NavigateDown T , V
Ž .2. SendApprMessage T , S

However, if the total number of stages is even, in the final stage we just
have to send messages downwards, which is implemented by the next proce-
dures.



´CANO, MORAL, AND SALMERON1040

Ž .NavigateDown R

Ž .1. FOR each V � ne R
Ž .SendApprMessage R, V

Ž .NavigateDown R, V

Ž .NavigateDown S, T

Ž . � 41. FOR each V � ne T 	 S
Ž .SendApprMessage T , V

Ž .NavigateDown T , V

Now we show the details of procedure SendApprMessage, used in the
algorithms above. A message � is computed by combining all the incomingS � T
messages of S except that one coming from T with the potential in S, and then,
the resulting potential is approximated, if necessary, according to the message
coming from T to S, � .T � S

Ž .SendApprMessage S, T

1. Compute

� S

� � �Ł V � Sž /
Ž . � 4V�ne S 	 T

2. IF at least one of the messages � is not exact, mark � as approx-V � S
imate.

3. Compute � � � � � .S � T S
4. IF the size of � is too bigS � T

Ž .a Approximate � conditional on � .S � T T � S
Ž .b Mark � as approximate.S � T

4. PROBABILITY TREES

A probability tree22,25,10 is a directed labeled tree, where each internal node
represents a variable and each leaf node represents a probability value. Each
internal node will have as many outgoing arcs as possible values the variable it
represents has. Each leaf of the tree contains a real number. We define the size
of the tree as the number of leaves it has.

A probability tree TT on variables X represents potential � : U � � if forI I
Ž .each x � U the value � x is the number stored in the leaf node that isI I I

obtained starting in the root node and selecting for each inner node labeled with
X the child corresponding to coordinate x . The potential represented by tree TTi i

Ž .will be denoted by � x .TT I
Probability trees are appropriate tools for representing regularities in

potentials.
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Figure 5. A potential and a probability tree representing it.

Example 3. Figure 5 displays a potential � and a probability tree representing
it. The tree contains the same information as the table, but using five values
instead of eight.

Each node of the tree and in particular its leaves is characterized by a
configuration of values X � x , where J � I. The variables in X are theJ J J
variables in the path from the root to the node and the values of the variables
correspond to the branches we have to follow to arrive at the node.

In the next section we briefly describe the construction of probability trees
from a specified potential and the basic operations over them. For a more
detailed exposition, see Ref. 10. We will also describe how the approximations
used in the PENNILESS PROPAGATION algorithm can be carried out.

4.1. Constructing a Probability Tree

Constructing a tree TT representing a potential � for a set of variables XI
without any other additional restriction is rather straightforward: the tree will
contain one branch for every configuration of X , and one leaf for every valueI
Ž .� x with x � U . However, this procedure can lead to unnecessarily big trees.I I I

Ž .For example, consider the trees in Figure 6. Assume tree a is the result of the
procedure above. Changing the positions of variables X and X we obtain tree1 2
Ž .b . Now, we can realize that the value of X is irrelevant given the value of X .1 2

Ž . Ž .Thus, we can construct tree c which represents the same potential as a and
Ž .b but with lower size.

An efficient method for constructing a probability tree from a given
potential is described in Ref. 10. It is built in an incremental way, by selecting
the most informative variable as label for each interior node. The information is
measured as the different in Kullback�Leibler distance of the partial tree
before and after branching to the complete potential.
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Figure 6. Three equivalent trees.

4.2. Operations Over Probability Trees

Propagation algorithms require two basic operations over potentials: combi-
Ž . Ž .nation product and marginalization projection . In this section we briefly

describe algorithms to perform these operations.25,10

A third operation, restriction, is also necessary to specify the algorithms in
this section: given a tree TT, a set of variables X , and x � U , TT RŽ X J�x J .

J J J

denotes the restriction of TT to the values x of the variables in X , that is, theJ J

tree obtained by substituting in TT every node corresponding to variables X ,k

k � J by the subtrees TT children of X corresponding to X � x . Thisk k k k

operation is illustrated in Figure 7.
We proceed to describe the other two operations, combination and

marginalization.
Given two trees TT and TT representing potentials � and � respectively,1 2 1 2

the following algorithm computes a tree representing potentials � � � � �1 2
Ž .combination .

Figure 7. The restriction operation.
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Ž .COMBINE TT , TT1 2

1. Create a tree node TT initially with no label.r
2. Let L and L be the labels of the root nodes of TT and TT respectively.1 2 1 2
3. IF L and L are numbers, THEN make L � L be the label of TT .1 2 1 2 r
4. IF L is a number but L is a variable, THEN1 2

Ž .a Make L be the label of TT .2 r
Ž .b FOR every tree TT child of the root node of TT ,2

Ž .make TT � COMBINE TT , TT be a child of TT .h 1 r
5. If L is a variable, assume that X is that variable.1 k

Ž .a Make X be the label of TT .k r
Ž .b FOR each x � U ,k k

�
RŽ Xk�x k . RŽ Xk�x k .Ž .Make TT � COMBINE TT , TT be a child of TT .h 1 2 r

6. RETURN TT .r

We will denote the combination of trees by symbol �. With this notation,
the algorithm above returns a tree TT � TT � TT .r 1 2

The combination process is illustrated in Figure 8. Given a tree TT repre-
senting a potential � defined over a set of variables X , the following algorithmI
computes a tree representing potential � � Ž I	�i4., with i � I. That is, it removes
variable X from TT.i

Figure 8. Combination of two trees.
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Ž .MARGINALIZE TT, Xi

1. Let L be the label of the root node of TT.
� �2. If L is a number, create a node TT with label L � U .r i

3. Otherwise, let X be the variable corresponding to label L.k
Ž .a IF X � X , THENk i

i. Let TT , . . . , TT be the children of the root node of TT.1 s
ii. TT � TT .r 1

Ž .iii. For i � 2 to s, TT � ADD TT , TT .r r i
Ž .b ELSE

i. Create a node TT with label X .r k
ii. FOR each x � Uk k

Ž RŽ Xk�x k . .A. Make TT � MARGINALIZE TT , X be the next childh i
of TT .r

4. RETURN TT .r

Ž .This algorithm uses procedure ADD TT , TT which computes the addition of TT1 2 1
and TT . The procedure is as follows:2

Ž .ADD TT , TT1 2

1. Create a tree node TT initially with no label.r
2. Let L and L be the labels of the root nodes of TT and TT respectively.1 2 1 2
3. IF L and L are numbers, THEN make L � L be the label of TT .1 2 1 2 r
4. IF L is a number but L is a variable, THEN1 2

Ž .a Make L be the label of TT .2 r
Ž . Ž .b For every child TT of the root node of TT , make TT � ADD TT , TT be2 h 1

a child of TT .r
5. IF L is a variable, assume that X is that variable.1 k

Ž .a Make X be the label of TT .k r
Ž .b FOR each x � U ,k k

�
RŽ Xk�x k . RŽ Xk�x k .Ž .Make TT � ADD TT , TT be a child of TT .h 1 2 r

6. RETURN TT .r

The addition of two trees is illustrated in Figure 9, where symbol �
represents the addition operation.

4.3. Approximate Probability Trees

Now consider that we use probability trees to implement the PENNILESS

PROPAGATION algorithm. According to procedure SendApprMessage, when a
message is sent from a node V to another node V , all the messages that comei j
to V except � are combined, collecting all the information from that parti V � Vj i

Ž .of the join tree that is relevant to the variables in V see Fig. 10 . After thej
combination of the messages and the marginalization on variables of V 
 V ,i j

Žthe tree representing potential � may be too big i.e., it may require a bigV � Vi j

.amount of numbers to be represented .
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Figure 9. Addition of two trees.

Figure 10. Messages throw an edge.

In this situation, we will have to reduce the size of the probability tree,
removing some nodes from it and obtaining thus, an approximate probability
tree, in the sense that it represents a potential that is not exactly � , but anV � Vi j

approximation.
In general, our problem will be the following: to approximate a potential �

represented by a tree TT, by another potential �� represented by another tree TT
�

of smaller size, conditional on another potential � . All the potentials will be
assumed to be defined on frame U . For a potential �, let us consider theI
following notation:

� Ž . Ž .sum �, A �Ý � x , where A � U .x� A I
� Ž . Ž . Ž .sum � � sum �, U �Ý � xI x�UI �
� Ž . Ž .If sum � � 0, then N � � sum �Ž .
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We will measure the distance between two potentials � and �� conditional
on � by the Kullback-Leibler cross entropy between the normalized potentials:

� x sum ��
� �Ž . Ž .

�D � , � � � � N � x � � x log 9Ž . Ž . Ž . Ž .Ž .Ý �ž /� x sum � � �Ž . Ž .x�UI

Ž � .Since there is no difference between the distances D �, � � � and
Ž � . Ž � . Ž � .D �, � � � if N � � N � , i.e., the distance is independent of the normal-

ization factor, then �� will be determined up to a normalization value. In this
� Ž �.paper we shall consider that the approximations � of � are such that sum �

Ž .� sum � , i.e., the normalization value of the approximation will be the same as
the one of the exact potential.

As it has been reported in Refs. 22, 25, the difficulty of the approximation
lies in finding the structure of the tree, i.e. the same tree without numbers on
the leaves. Given a structure SS we can build an approximate tree denoted by TTSS

of � by assigning to each leave characterized by configuration X � x theJ J
average of potential � in the points y � U such that they coincide with x inI J
the values of variables X : y � x . In this way, we also have the sameJ J J
normalization values for the original and the approximate trees.

As finding an optimal tree structure is a NP-hard problem, most of the
procedures modify a given structure in an incremental way following some
heuristics. If we have a structure SS

�, we have two basic modifications:

� Branching�If we have a leave node characterized by configuration X � x , weJ J
Ž .can assign a variable X to it k � J and add a set of children to this node equalk

to the number of values of X .k
� Pruning�It is the inverse of branching. It consists in taking a node such that its

children are leaves and removing the leaves and the variable assigned to it.

If SS
� is the structure obtained by any of these basic steps and �� and ��

are the potentials associated to trees TT � and TT � respectively, then branchingSS SS

Ž � � .is carried out trying to maximize D � , � � � and pruning by trying to minimize
Ž � � .D � , � � � . In both cases, it involves the computation of the Kullback-Leibler

distance of a potential 	 to another potential 	� given a third potential � . The
�Ž . Ž .value 	 x is equal to 	 x in all the points of U , except for a subset A � U inI I

�Ž . Ž . � � � �which 	 x � sum 	, A  A , where A is the cardinal of A. In this case, the
set A corresponds to all the values x � U such that following the pathI I
associated to it we arrive to the node before branching or after pruning,
depending of the concrete operation we are carrying out. Making some easy

Ž � .calculations, this distance, D 	, 	 � � , can be calculated according to the
following formula:

� �Ý 	 x � x log 	 x 	 sum 	 � � � A log sum 	 , A  AŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž .Ž .x � A

sum 	 � �Ž .
� �sum 	 � � 	 sum 	 � � � A � sum 	 � A sum � � A  AŽ . Ž . Ž . Ž .Ž .

� log ž /sum 	 � �Ž .
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We have used this expression to implement two procedures to simplify a
tree TT representing potential � conditional on the potential represented by
probability tree TT .c

� Ž .SortAndBound TT, TT , Size, Exact �This procedure returns an approximation treec
TT to the potential � represented by TT conditional on TT , starting with an emptya c
tree and branching in each moment by the node given rise to a tree with greater
distance to the current tree. The tree is built until a total of Size nodes is
reached. There is a boolean variable Exact that is set to true when we have been
able to build an exact representation of �. It will be used to control the iterative
improvements of messages by using more than two propagation stages in the
junction tree as was indicated earlier.

� Ž .Prune TT, TT , 
 , 
 , Exact �This procedure returns an approximation of the po-c 1 2
tential represented by TT conditional on TT starting with the structure of TT andc
then carrying out several prunings of this structure. The condition for pruning the
children of a node is that the distance to the resulting tree is less than 
 . We1
have another value 
 that should be much lower than 
 . If all the approxima-2 1
tions have had a distance lower than 
 , the boolean variable Exact is set to true.2
This variable is used similarly to the above one. The idea is that very small

Ž .approximations with a distance lower than 
 are not improved through succes-2
sive iterations.

With respect to the complexity of these procedures, Prune is more efficient,
since it uses the structure of tree TT. To calculate all the elements necessary for
the conditional information, the algorithms needed to compute TT � TT , that inc
the worst case has a complexity of the product of the sizes of the trees, but
usually it is lower. Apart from this computation, Prune is linear in the size of TT.

Ž Ž .If the tree is not balanced SortAndBound has a complexity of O log Size � Size �
. Ž .N , where N is the number of nodes of TT. The complexity expression, log Size ,

comes from a priority queue that is maintained to select in each case the node
with maximum distance. If TT is balanced then this complexity is reduced to
Ž 2Ž . .O log Size � N .

The approximations can be used in an isolated way or in combination. In
that case SortAndBound is previous to Prune. If we set Size to a very high value,
then SortAndBound builds a new structure for the tree but without actually
doing an approximation. In that case, we will obtain an approximation by
applying Prune afterwards.

5. EXPERIMENTS

To study the performance of penniless algorithm, we have carried out some
experiments using three networks. The first one is a large network with 441

Ž . 28variables pedigree4 . This network is a subset of a pedigree one. Each node
except the roots has two parents and a maximum of 43 children. The set of
possible cases for each node is 3. The second and the third ones are random

Ž .networks with 60 and 100 variables respectively random60 and random100 .
The number of cases for each node is 2. The structure is quite complex and it is
determined in the following way: each node has a number of parents determined
by a Poisson distribution of � � 2 and with a minimum of 1. The parents of a
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node are randomly selected among the predecessors under a given ordering of
nodes. This gives rise to a complex structure. The probabilities are determined
in the following way: two random uniform numbers, x and y, are chosen from

� �the interval 0, 1 ; then the probabilities of both values of a variable are
determined by normalizing x 5 and y5. The result is that all the probabilities are
very extreme: close to 0 or 1. This makes the propagation problem specially
difficult for approximate algorithms.

We have done a number of experiments with these networks. We have
considered the cases of observed and non-observed variables. When considering
evidence, we have set 166 variables for pedigree4, 6 for random60 and 10 for
random100. In the random networks the observations are selected according to
a uniform distribution. Also, we have carried out propagations with and without

Ž .SortAndBound Section 4.3 . In both cases we use the procedure Prune de-
scribed in Section 4.3. The trials have been carried out using different values of

 for procedure Prune and different number of stages. We always have used1

 � 0.0, i.e., the computations are considered exactly only in the case in which2
no approximation is carried out: the cross entropy is 0.

The results of penniless algorithm have been compared with exact results
using the following measure of error 29 for each not observed variable X :l

21 p a � e 	 p a � eŽ . Ž .Ž .ˆ
G X � 10Ž . Ž .Ýl ) � �U p a � e 1 	 p a � eŽ . Ž .Ž .l a�Ul

Ž . Ž .where p a � e is the exact posterior probability, p a � e is the estimated value andˆ
� �U is the number of cases of variable X . For a set of variables X , the error is:l l I

2G X � G X 11Ž . Ž . Ž .ÝI i(
i�I

ŽFor each trial we have calculated the computing time and G-error equa-
Ž ..tion 11 . Penniless algorithm has been implemented in the Java language.

Ž .Trials have been run on an Intel Pentium II 400 MHz computer with 384MB
of RAM and operating system Linux RedHat with kernel 2.0.36. The java virtual
machine used is jdk version 1.2. In Table I we can see the computing time spent

Ž � �.by an exact algorithm HUGIN 13 with these three networks. This algorithm
has been also implemented in Java. In random100 the Hugin algorithm was not

Ž .possible to run out of memory error and then exact values were computed by

Ž .Table I. Time in seconds for pedigree4, random60 and
random100 with Hugin algorithm.

Without evidence With evidence

pedigree4 2212.8 2339.7
random60 1167.4 1223.2
random100 ???? ????
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repeating a deletion algorithm for each variable. The time was much higher, but
we could use a reduced network for each variable so that the computations were
possible.

In Tables II to IV we can see the error and computing time for each
Žnetwork and each trial with and without SortAndBound SaB or No SaB in

.table and with different number of stages and 
 .1

5.1. Results Discussion

The first conclusion is that very good approximations are possible in a very
short time. For example, in the pedigree network with observations, in a few

Žseconds we can have very good approximations in the best experiments, these
errors imply that approximate probabilities are really close to exact probabili-
ties, being the maximum absolute difference between exact and approximate
probabilities of 0.0006, and in most of the cases the exact probability value is

.found up to the 7th decimal digit . The time of our exact algorithm was more
than half an hour. In the random networks the approximations are also very
good when SortAndBound is not applied and with the smallest value of 
 , but1
we have to spend more time. In the case of observations, we obtain absolute
differences always lower than 0.0005 in random60 and lower than 0.0006
random100. In the pedigree example, good approximations are obtained also
for small values of 
 which imply less time. Anyway, we have to take into1
account that the random problems are artificially difficult and that, in any case,
the times are quite low compared with exact algorithms.

The second conclusion is that the application of SortAndBound is not
reasonable. We never have obtained a smaller error in a time equal or lower
than without applying it. It is even the case than using the same parameters
Ž .number of runs and 
 applying SortAndBound we have obtained a greater1

Ž .error see Figures 13 to 18 . This can be seen as counterintuitive as this is a
technique commonly used to approximate decision trees. Our reason for this
fact is the following: in general we have a potential � which is represented by a
tree TT and we look for an optimal approximation TT

�. With SortAndBound we
forget the structure of TT, and very often the number of values of TT is very small
compared with the number of values necessary to completely represent � by
means of a table. As the procedure used in SortAndBound is only an heuristics
and not a globally optimal procedure, it is possible that we obtain a worst
representation than the one provided by TT, which already was very good.
However, we do not feel that we could extrapolate this conclusion to every
possible situation. There can be cases in which rebuilding a tree can be a good

Ž .idea. For example, in the pedigree example without evidence see Fig. 13 ,
experiments without SortandBound are better than those with it. Probably, the
best solution would not be in the application of SortAndBound, but in some
other intermediate procedures trying to find good structures for tree construc-
tion. For example, now in the implementation of combination and addition of
trees, the structure of one tree is taken as basis and the other is built on top of it
by branching in its leaves. The algorithms could mix the structures of both trees
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Ž .Figure 11. G-error for each 
 log scale in random60 with evidence without SortAnd-1
Bound.

ŽFigure 12. G-error for each 
 in pedigree4 with evidence with SortandBound Tree1
.size: 50 .
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Figure 13. G-error in pedigree4 without evidence.

if the selection of the root of the result is not always chosen from one of them
Žin our case, if the first tree has a variable on its root then this will be the root of

.the result . An heuristics could be used to select informative roots from the
roots of the operators. This could be a possible alternative to improve the
representation of potentials without a big additional cost on time.

In general, decreasing the value of 
 decreases the value of the error,1
except for very small values when applying SortAndBound. Figures 11 and 12

Figure 14. G-error in pedigree4 with evidence.
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Figure 15. G-error in random60 without evidence.

represent typical cases of these situations. The explanation of the increasing of
Ž .the error with SortAndBound see Fig. 12 is that doing less approximations with

Prune makes more difficult finding a new structure for the approximate tree,
and the fact that the initial tree is more exact does not compensate for the
increasing in the complexity of the problem to solve.

Figure 16. G-error in random60 with evidence.
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Figure 17. G-error in random100 without evidence.

Another important fact is that, in most of the cases, carrying out more runs
decrease the error. There are cases in which this is not the case, and in fact we
do expect that it could be proved that in the limit we should always obtain a
better approximation. What really happens is that the error is stabilized in a few
runs and we feel that a theoretical result in this direction could be proved. A

Figure 18. G-error in random100 with evidence.
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typical situation is shown in Figure 11. Another comment relative to the use of
multiple runs, is that the time spent is not proportional to the number of runs.
This fact is due to our implementation in which no additional runs are carried
out when one of the messages is exact. This fact is more evident when there are
no observations. As our triangulation is carried out in such a way that non-
observed leaves in the original Bayesian network are deleted first, this gives rise
to upward messages such that most of them are equal to 1, and then they can be
approximate without problems. This fact is not fully exploited in our implemen-
tation as making approximations before the calculation of this message may give
rise to messages that are not 1. In the following section we will give some idea of
how to do it in the future. Though making 4 runs does not imply the double of
time than 2 runs, in general without applying SortAndBound the decreasing in
the error does not compensate for the increment of time. Our opinion however
is that it is a good idea to carry out more than 2 runs: to continue until the
results are stable. We think that this will be a security for difficult odd situations
and the payment in time is not great. We could even reduce the extra time by
considering higher values for 
 , with which computations are only repeated in2
some parts of the network.

Another fact to take into account is that the use of conditional information
Žis limited if we keep fix the structures of the approximation trees without

.SortAndBound but it could be more important in the future if we incorporate
the conditional information to mix the structures of the trees when we are
performing operations over them. Another point to consider is the possibility of
using different values of 
 for different runs: for example we could consider1
bigger errors in the first runs used to guide the last ones, which are carried out
with smaller values of 
 .1

6. FUTURE WORK

In this paper we have presented an approximation scheme for probability
propagation in Bayesian networks. Though the results are quite good, we think
that this is only one step and there is room for further improvements on the
algorithms. Some of them have been pointed out in the discussion section. One
of the most promising possibilities from our point of view is the use of the lazy
propagation technique.30,5 This is important because it will decrease the number
of operations and approximations to be carried out. In a binary join tree there
are additional cluster nodes which do not involve marginalizations to compute
the messages. With lazy propagation these messages can be computed by
copying references to potential instead of deep copies which are more expensive
on time. We could keep original conditional probabilities as potentials such that
when adding on one of its variables the result is the potential identically equal
to 1 without making any computation, thus the computation of easy messages
Ž .almost half of them in the case of no observations is extremely fast.

Another feature of these algorithms is the possibility of computing an
interval for the final probabilities. Each time we make an approximation of a set
of leaves by a node we can compute the maximum and minimum values of the
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leaves, which can be used to compute intervals for the conditional probability
Žvalues as in Ref. 16. If the aim is to optimize intervals produce intervals as

.small as possible then the measure of information could be different. This fact
will be investigated in the future.
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