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Convergence Results for 3D Sparse Grid Approaches 
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The convergence behaviour of solution algorithms is investigated for the anisotropic Poisson problem on 
partially ordered, sparse families of regular grids in 3D. In order to study multilevel techniques on sparse 
families of grids, first we consider the convergence of a two-level algorithm that applies semi-coarsening 
successively in each of the coordinate directions. This algorithm shows good convergence, but recursive 
application of the successive semi-coarsening is not sufficiently efficient. Therefore we introduce another 
algorithm, which uses collective 3D semi-coarsened coarse grid corrections. The convergence behaviour of 
this collective version is worse, due to the Jack of correspondence between the solutions on the different 
grids. By solving for the trivial solution we demonstrate that a good convergence behaviour of the collective 
version of the algorithm can be retained when the different solutions are sufficiently coherent. In order 
to solve also non-trivial problems, we develop a defect correction process. This algorithm makes use of 
hierarchical smoothing in order to deal with the problems related to the Jack of coherence between the 
solutions on the different grids. Now good convergence rates are obtained also for non-trivial solutions. 
All convergence results are obtained for two-level processes. The results show convergence rates which are 
bounded, independent of the discretisation level and of the anisotropy in the problem. © 1998 John Wiley 
& Sons, Ltd. 
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1. Introduction 

Classical multigrid (MG) uses sequentially nested families of grids. In the regular, d­
dimensional case every coarse grid-cell is formed by combination of 2d finer grid cells. 
For more dimensions, as d becomes larger, this implies that many frequencies that can 
be represented on a fine grid cannot be seen on the next coarser one. Since the two ba­
sic mechanisms in an MG method are smoothing and coarse-grid correction, this means 
that, for higher dimensions (e.g., d = 3), very strong relaxation techniques are required 
to obtain good convergence results. A way to simplify this heavy requirement is to use 
semi-coarsening, i.e., a coarser grid is created by only combining a pair of grid cells to a 
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coarser grid cell. Obviously, this process of semi-coarsening can be applied in each of the d 

co-ordinate directions. Subsequent application of this process in all co-ordinate directions 
makes a partially ordered set of grids rather than a sequentially ordered one. All grids that 
can be seen as the (semi-) coarsenings of one particular grid are called a full family of grids. 
Semi-coarsening has been earlier described ford= 2 in [16,17] and ford = 3 in [1-3, 
11-15]. 

It is an additional disadvantage of regular refinement in each direction, especially for 
higher dimensions, that the number of the degrees of freedom increases very fast when 
more levels of refinement are introduced. In the battle against the increasing number of 
degrees of freedom, a promising development is the sparse grid approach of Zenger [ 1-
l l, 13-15, 18, l 9 ,21]. Sparse grids are formed by taking a subset from the partially ordered 
family of semi-refined grids. This subset, the sparse family of grids, is formed by taking 
all grids for which the cells exceed a certain specified volume. For sufficiently smooth 
functions it can be shown that the representation of a function on a sparse grid can be much 
more efficient than on a regular full grid [13,21]. Results on which this statement is based 
are summarized in Section 2. 

The problem with a representation on a sparse family of grids is that there is no unique 
finest grid. There is a whole set of finest grids and the question arises of how to represent a 
final solution. Basically there are two ways to answer the question. The first is to introduce 
hierarchical basis functions instead of standard basis functions [1-3,12,21]. In this way 
one has to add the contributions (the hierarchical surplus) from all grids in the sparse 
family to form the final solution. The second method is based on extrapolation. Then a 
linear combination of the approximations on the finest grids is formed. This is called the 
combination technique [6,7,11]. 

An advantage of the hierarchical basis (HB) technique is the existence of a straightforward 
and unique representation of an approximation, and the possibility to write down the Finite 
Element (FE) discretization for a differential equation. It is a disadvantage that the FE 
discrete operator is not sparse and that-for variable coefficient equations-no efficient 
method is available for its evaluation without serious modification of the FE method. 

Notice that the solution of a sparse grid problem on an HB is much different from the usual 
full grid problem on an HB, where a sequential ordering of grids is used as discussed, e.g., 
in [20]. In the sparse grid case there exists a partial ordering between the approximations 
on the different grids, but the approximations do not form a lattice (i.e., no finest grid is 
available), and no simple transformation to a standard basis exists. 

It should be mentioned, however, that the standard hierarchical basis functions method 
can be implemented by means of a simple transformation from the standard hierarchical 
to the standard basis functions [11]. In this way the residuals can be computed from the 
sparse standard discretization matrix. On the other hand, the preconditioner can be based on 
the hierarchical basis functions matrix. Furthermore, the p-version of the hierarchical basis 
functions allows arbitrary high orders of approximation and, consequently, if the solution 
is sufficiently smooth, very sparse grids can be used compared with the use of piecewise 
linear approximations. 

In contrast to the hierarchical basis technique, the combination technique makes use 
of standard basis FE solutions on the finest grids. This has the advantage that existing 
techniques can be applied for the solution process on these grids. 

The above arguments are the motivation to develop methods which use 3D MG semi­
coarsening techniques together with a sparse family of grids. The combination should also 
combine the advantages of both approaches, i.e., MG convergence rates should be obtained 
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without the requirement of strong relaxation techniques, and the solution of the problem 
can be represented with sufficient accuracy by a relatively small number of degrees of 

freedom. An additional advantage can be that the method is insensitive for anisotropies in 
the problem. 

Before we study the solution of discrete equations in Sections 3-5, we first give a summary 
of approximation results to show the advantage of sparse grid over regular grid approxima­
tion. 

2. Approximation on sparse grids 

The advantage of sparse grids in general is the efficient representation of functions, i.e., the 
possibility to obtain a high accuracy for a relatively small number of coefficients (degrees of 

freedom). Although sparse grids can also be applied with piecewise polynomials of higher 

degree [ 4 ], we restrict ourselves here to piecewise d-linear approximations because solution 

methods for these simpler methods will lead the way to preconditioning of the more accurate 
ones. 

Of course, the ability to accurately approximate functions with a limited number of de­
grees of freedom, depends highly on the smoothness of the functions approximated. Whereas 
in the classical approximations methods usually cn(Q) or Hn(Q) functions are studied, 

where all derivatives up to an order n are equally involved, for sparse grid approximations 
this is not the case. Here, mixed derivatives play a special role. Therefore special norms are 

introduced for the derivation of error bounds. 
To illustrate the use of sparse grids in function approximation we introduce some special 

(semi-)norrns and with these norms in the upper bounds we express the main approximation 

properties. Many results of this type can be found in the literature on sparse grids (loc. cit.), 

but they are dispersed and generally their formulation is not quite accessible. Therefore, for 
reference, we summarize here some results for which the proofs can be found in in [13]. 

For comparison we also give results for regular grids. 

2.1. Notation 

To precise! y formulate the approximation results, we first have to summarize some necessary 

notation. 

• Domain Q c (Rd, with co-ordinates Xj, j = 1, · · · , d. 
e Multi-integer: m = (m1, m2, · · · .md), 

0=(0,0,···,0), 1=(1,1,···,l), 

lml = L,j=I mj, [ml = maxj=l,-··,d mj, 

llmll = /L.1=1 mJ, lllmlll = n1=1 mj. 

• Dyadic grid Qn, grid with dyadic mesh width hk, 

Mesh width: h E !Rd; h = (h1, h2, · · ·, hd), 

Mesh size: llhll = /L.f=1 hf, 
Mesh volume: lllhlll = flf=1 hi, 

Dyadic mesh width: hk = (hk1 , hk2 , • • ·, hkd) with hk; = 2-k;. 
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. . m nd ami • Denvatives: D = j=l axi . 

• Hat function: <p(x) = max(O, 1 - lxl). 
• Basis functions: 'Poj (x) = n1=1 <p(Xi I hki - ji). 
• Space of piecewise d-linear functions on Dn: Yn =span {'Pnj I 0 :5 j :5 2n }. 
• Space of hierarchical surpluses on r2n: Wn = span { <Pnj I 0 :5 j ::::: 2n, llljJllodd}. 
• Norms on the function spaces , p =:: 1, 0 :5 l ::::: d, 

llulloo = llulli00 = supessxenlu(x)I, 

llullp = llullLp =Un lu(x)IP dr2} 11P, 

llullwn,e = (z= 1mi=e 11vn+mu11:dn)
11

P, 
P 0 <m<l 

llullw1 = llull o~.iheusualfirstorderSobolevnorm. 
P wP 

2.2. Errors on regular grids 

Let Un be the pointwise projection at Uk:-;:nDk = nn of a function with finite norm 
llD1 +mullp. with p = 2, oo, and 0 ::::: m ::::: 1, on Vn = ffik:-;:n Wk. Error bounds for 
the approximation on regular grids are (13, Theokrem 3.3]: 

• llu - Unll2 :5 2-d3-3lml/2 Lf=l h~~+m;) llD1 +mull2. 

• llu - Unlloo::::: 6-lml Z:::f=l h~~+m;) llDl+mulloo· 

It follows that for square grids, for which llhn·l 11 2 = Ef=1 {2-n)2 = dr2n, we have: 

• llu - Un·l 112 ::::: 3-2d llhn·l 11 2 II v 2·1 u112. 
• llu - Un.1 lloo::::: 6-d llhn.1112 llD2·1 ulloo· 

By simple counting it is seen that for this approximation the number of degrees of freedom 
is 0(2lnl), and therefore for a square grid 0(2nd). 

2.3. Errors on sparse grids 

Let Un be the pointwise projection at Ulkl:-::nnk Qn of a function with finite norm 
llD1 +mullp. with p = 2, oo, and 0 :5 m ::::: 1, on the sparse grid space Vn = ffilkl:-sn Wk. 
Error bounds for approximations on these sparse grids [13, Theorem 3.6] are given by: 

• llu - unllp::::: Clllhlf logd- 1 lllhlll- 1 11v2·1u11p. 
• llu -unllp::::: Clllhlll logd-1-lml lllhlll-1 llD1+mullp. 
• llu -unllp::::: Clllhlll 1H/d logd-l lllhlll-1 llullwt,e. 

p 

where l is any integer, 0 ::::: l :5 d. Bounds for the errors on sparse grids in energy norm are 
[13, Theorem 3.7]: 

• llu-unllw1 ::::Clllhlll logd-llllhlll-1 llullw1.1. 
p p 

• llu - unllwi ::::: Clllhlll llD2·1 ullp· 
p 

Notice that here lllhlll = 2-lkl is the volume of the finest cells in the sparse grid. 
For this approximation, by counting, we see that the number of degrees of freedom for the 

sparse grid approximation is 0(2nnd-1). This number is significantly less than the 0(2nd) 
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for the regular grid. Therefore, in the remainder of this paper, we study the possibility of 

finding a solution method to solve a PDE on a sparse grid with an amount of computational 
operations of 0(2nnd-1 ). 

3. The equation 

In the remainder of this paper we study the 3D anisotropic Poisson equation with homoge­
neous boundary conditions: 

- \l. (a\lu) = f on Q = [O, 1]3 (3.1) 

where a = diag(a11, a22, a33) is a constant diagonal tensor. First, we discretize the equation 

by the usual finite element (FE) technique on the regular grid nk. A standard FE method 

on grid Qk is obtained by selecting trial and test functions in Bk = {</lnj I 0 ::: j :::; 2k}. This 

yields the discrete equations Lj a(<pkj, </lki)Ukj = f (rpki), which are also denoted in matrix 
form by 

AkkUk = A (3.2) 

Let Ae be the block diagonal matrix composed by all stiffness matrices on level e, 

and let fe, ue be the concatenation of right-hand side vectors A and solution vectors Uk 

respectively. Then the collection of all discretizations on the grids Qk with [kl = e can be 

written as 
(3.3) 

In this paper we study iteration methods for the solution of (3.3). In (3.3) possibly the 

FE method can be replaced by another discretization technique. Although we are essen­

tially interested in MG methods, for simplicity in this paper we restrict ourselves to the 

corresponding two-grid methods. 

4. A successive correction method 

In this section we consider a method for which each cycle consists of three stages, one 

for each co-ordinate direction i = 1, 2, 3. In each stage it uses the one-dimensional (semi­

coarsened) full approximation scheme (FAS) in direction i. We call the method SCM (suc­

cessive correction method). This method is similar to the one proposed by Pflaum [19] 

in the sense that each time the coarse-grid correction is obtained only from coarsening in 

the ith direction. For grids that have no coarser grid in the ith direction we perform only 

relaxations, in order to have a constant number of relaxations for all the grids on the fine 

level. For relaxation on the fine level we use Jacobi relaxation with a damping factor w = i. 
We apply one pre- (v1 = 1) and one post-relaxation (v2 = 1) for every cycle. 

For convergence measurement we solve the equation (3.1) with homogeneous right hand 

side, f = 0. The trivial solution has the advantage of a possible lasting monitoring of the 

convergence. As an initial guess we use uo = x(l - x)y(l - y)z(l - z). After every SCM 

cycle we calculate the residual on each grid of the fine level e. In Figure 3 we see the 
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convergence history of the SCM cycling. We repeat the experiment for different (plane and 
line) anisotropies, viz. au = 1.0, 0.01 and 100.0. In all cases a22 = a33 = l. 

We make the following observations. During convergence we can distinguish two phases: 
an initial and an asymptotic phase. The asymptotic convergence rate begins after 10 or 20 
iterations and appears to be p ~ 0.35, independent of the grid and independent of the level. 
Also for the different anisotropies the convergence rates tend towards the same constant 
value for all grids, independent of the level. In contrast to the asymptotic rates, the initial 
convergence rates show large differences for the different grids on a level. 

Despite the good and level-independent convergence rates of the SCM process, this is not 
an efficient method for the recursive application in a multi-level algorithm, because recursive 
application requires a number of arithmetic operations that is more than proportional to the 
number of the degrees of freedom. Therefore, in the next section we study an algorithm 
with a better order of complexity. 

5. Collective correction methods 

5.1. The plain collective correction method (PCCM) 

In this section we consider methods that solve only a single linear system for each coarse 
grid on level l - 1 (instead of three). The one solution is used to compute a correction for 
multiple fine grids. This is implemented in its simplest form in the plain collective correction 
method (PCCM, see Figure 1). In this algorithm we see several calls for auxiliary rouiines. 
The relaxation is damped Jacobi as in Section 4. Because of our interest in a TGM, the coarse 
grid equations on level l - 1 are solved by a conjugate gradient method. The prolongation 
of the corrections is done in the routine P3D. This interpolation is directly based on the 
hierarchical representation on the levels f, - 1, f, - 2 and l - 3, which representation is 
obtained by restriction from level l - 1 by the scheme given in Figure 2. 

We again study equation (3.1) with homogeneous right-hand side, f = 0, and initial 
guess uo = x(l - x)y(l - y)z(l - z). After every cycle with PCCM we calculate the 
residual and the results are shown in Figure 4. In contrast to the SCM algorithm we see that 
the convergence behaviour of this algorithm collapses. This is due to non-coherent residuals 
(or solutions) on the different grids of the finest level, i.e., the residuals on the different 
grids do not correspond because each grid has its own discretization error. One can even 
observe that residuals on different grids are equally large, but have opposite signs. Hence 
the effect of their restriction to the coarse grid is cancelled. This results in a bad convergence 
behaviour. In the initial phase some grids are converging faster, but the convergence of these 
particular grids is hampered as they feel the presence of the slowly converging grids. This 
is also the reason why the residual is not monotonically decreasing for all grids. 

5.2. The Simple Collective Correction Method (SCCM) 

In order to avoid the problem with the non-coherent solutions, as described in Section 
5.1, we simply force the solution to be coherent. This is done in two steps, first changing 
the function from its redundant representation on level l to a hierarchical representation. 
Second, we transfer the hierarchical representation back to the redundant representation. 
During the sweep from redundant representation on level f, to the hierarchical representation, 
we have to calculate, for the common points on the fine grid, an approximation on the coarse 
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routine PCCM(ue, fe, v1, v2); 

integer v1, v2, k, j; 

for j = l, v1 do 
Relax(Aeue = fe) 

end do; 
re= fe - Aeue; 
for ('v'Jkl = £ - l) do 
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Uk= !CRk,k+e1 uk+e1 + Rk,k+e2 uk+e2 + Rk,k+e3 uk+e3); 

uf,_'d =Uk; 

fk = Akk(uk) + !<Rk,k+e/k+e1 + Rk,k+e2 rk+e2 + Rk,k+e3rt+e3 ); 

end do; 
Solve(Ae-1ue-1 = h-1) 
for ('v'Jkl = £ - 1) do 

Ck= Uk - U~ld 
end do; 
P3D(ce-1, ce); 
ue = ue + ce; 
for j = 1 , v2 do 

Relax(Aeue = Jc) 
end do; 

end 

Figure 1. The algorithm PCCM 

Figure 2. Restrictions of the corrections in P3D 
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Figure 3. Convergence of SCM for l = 6 (left) and l = 7 (right) for different values of a1 1. The 
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g (e = k1 + k1 + k3) 
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Figure 6. Convergence for the isotropic equation (3.1), for the trivial solution obtained with 
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grid. This is done by averaging the three values of the common points on the fine level. 
This process we call hierarchical smoothing, and in SCCM it is applied after every call for 
PCCM. 

Figure 6 shows the convergence for the isotropic equation (3.1) for various levels. We 
see that the rate of convergence depends slightly on the level, but the convergence rate is 
bounded above by a reasonable (constant) value. In Figure 7 we see the convergence results 
for the anisotropic equation. Again this convergence is independent of the anisotropy. 

In our present case, with the trivial solution, we can simply apply hierarchical smoothing 
to the solution. However, in general, the discrete solutions differ on the different grids, and 
the hierarchical smoothing is not sufficient. This is due to the fact that the solutions on the 
different grids all have their own discretization error, so that the discrete solutions do not 
completely correspond. Hence, when we force the solutions to correspond by hierarchical 
smoothing we will not obtain a converging solution. Therefore, in the next section we 
develop a method which is also able to handle non-trivial solutions. 

5.3. The Collective Correction Method (CCM) 

In the previous section we could not expect good convergence rates by SCCM because the 
solutions on all fine levels differ by their own specific truncation errors. Hence, to obtain 
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Figure 7. Convergence obtained with SCCM, for the anisotropic equation, a11 = 0.001 (left) and 
a11 = 100 (right), for the trivial solution 

corresponding solutions we have to adjust the right-hand side of equation (3.2) for this 
effect. This leads to the following defect correction equation on each grid Qk: 

Akkuk = Akkuk - Rke ( Aeile - je) = 8k (5.1) 

Here Ae is some (hierarchical basis) discretization matrix, and ile is the coherent represen­
tation of the solution, obtained after a sweep of hierarchical smoothing from the redundant 
representation. The algorithm CCM is obtained from PCCM by replacing the right hand side 
fk in (3.2) by the adapted right hand side 8k· As in SCCM we apply hierarchical smoothing 
to the solution. 

As we want to obtain good convergence for an arbitrary right-hand side, we consider 
the non-homogeneous equation (3.1), e.g., with f = 100. Figure 5 shows the convergence 
results for the isotropic equation, on levels .e. = 5 and .f. = 6. We see that the convergence 
rate changes somewhat, due to the adjustment of the right hand side. Figure 8 shows the 
convergence of the anisotropic equation for the levels e = 5, e = 6 and e = 7. We see that 
the convergence rate hardly suffers from the anisotropy. Further we see that the convergence 
is not really dependent on the level of discretization. 

6. Conclusions 

In the asymptotic phase, the convergence rates of the SCM algorithm are almost completely 
independent of the level of discretization and of the anisotropy of the problem. However, 
each cycle of this algorithm requires three coarse grid corrections. This implies that the 
recursive application of this algorithm requires a number of arithmetic operations that is 
more than proportional to the number of degrees of freedom. Hence, they do not satisfy 
our aim of an optimal order of complexity. Collective correction algorithms overcome this 
difficulty. 

Good convergence for the collective algorithm depends on coherence between the solu­
tions on the different fine grids. Therefore, we apply hierarchical smoothing to obtain coher-
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Figure 8. Convergence of CCM for the anisotropic equation (3.1), with a 11 = 0.001 (left) and 
a 11 = 100.0 (right) and the right hand side f = 100, for .e = 5, .e = 6 and .e = 7 
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ent solutions. Now the solution is solved with a defect correction process that makes use of 

the hierarchical basis representation. Additionally, we apply the hierarchical smoothing to 

speed up the convergence of the equations. With this combined process of defect correction 

and hierarchical smoothing we obtain good convergence results, i.e., convergence which is 

only slightly dependent on the discretization level and anisotropy of the problem. 

Thus far we have calculated the defect correction by means of the hierarchical FE dis­

cretization. For the general case this still can be expensive. The next challenge is to find 

more efficient discretization operators to calculate the defect in (5.1). 
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