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Summary — Estimation and prediction techniques for Poisson and linear animal models
were compared in a simulation study where observations were modelled as embryo yields
having a Poisson residual distribution. In a one-way model (fixed mean plus random animal
effect) with genetic variance (aﬁ) equal to 0.056 or 0.125 on a log linear scale, Poisson
marginal maximum likelihood (MML) gave estimates of o2 with smaller empirical bias
and mean squared error (MSE) than restricted maximum likelihood (REML) analyses
of raw and log-transformed data. Likewice, estimates of residual variance (the average
Poisson parameter) were poorer when the estimation was by REML. These results were
anticipated as there is no appropriate variance decomposition independent of location
parameteis in <he linear model. Predictions of random effects obtained from the mode
of the joint posterior distribution of fixed and random effects under the Poisson mixed-
model tended to have smaller empirical bias and MSE than best linear unbiased prediction
(BLUP). Although the latter method does not take into account nonlinearity and does
not make use of the assumption that the residual distribution was Poisson, predictions
were essentially unbiased. After log transformation of the records, however, BLUP led
to unsatisfactory predictions. When embryo yields of zero were ignored in the analysis,
Poisson animal models accounting for truncation outperformed REML and BLUP. A
mixed-model simulation involving one fixed factor (15 levels) and 2 random factors for
4 sets of variance components was also carried out; in this study, REML was not included
in view of highly heterogeneous nature of variances generated on the observed scale.
Poisson MML estimates of variance components were seemingly unbiased, suggesting
that statistical information in the sample about the variances was adequate. Best linear
unbiased estimation (BLUE) of fixed effects had greater empirical bias and MSE than
the Poisson estimates from the joint posterior distribution, with differences between the
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2 analyses increasing with the genetic variance and with the true values of the fixed
effects. Although differences in prediction of random effects between BLUP and Poisson
joint modes were small, they were often significant and in favor of those obtained with
the Poisson mixed model. In conclusion, if the residual distribution is Poisson, and if the
relationship between the Poisson parameter and the fixed and random effects is log linear,
REML and BLUE may lead to poor inferences, whereas the BLUP of breeding values is
remarkably robust to the departure from linearity in terms of average bias and MSE.

Poisson distribution / embryo yield / generalized linear mixed model / variance
component estimation / counts

Résumsé — Evaluation d’un modele individuel poissonnien pour le nombre d’embryons
dans un schéma d’ovulation multiple et de transfert d’embryons. Des techniques
d’estimation et de prédiction pour des modéles poissonniens et linéaires ont été comparées
par simulation de nombres d’embryons supposés suivre une distribution résiduelle de Pois-
son. Dans un modéle & un facteur (moyenne fizée et effet individuel aléatoire) avec des
variances génétiques (012,) égales a 0,056 ou 0,125 sur une échelle loglinéaire, la méthode de
mazimisation de la vraisemblance marginale (MML) de Poisson donne des estimées de o2
ayant un biais empirique et une erreur quadratique moyenne (MSE) inférieurs a ’analyse
des données brutes, ou transformées en logarithmes, par le mazimum de vraisemblance
restreinte (REML). De méme, la variance résiduelle (le paramétre de Poisson moyen)
était moins bien estimée par le REML. Ce résultat était prévisible, car il n’existe pas de
décomposition appropriée de la variance indépendante des parameétres de position dans
le modéle linéaire. Les prédictions des effets aléatoires obtenues a partir du mode de la
distribution conjointe a posteriori des effets fizés et aléatoires sous un modéle mizte pois-
sonien tendent & avoir un biais empirique et une MSE inférieurs a la meilleure prédiction
linéaire sans biais (BLUP). Bien que cette derniére méthode ne prenne en compte ni la
non-linéarité ni ’hypothése d’une distribution résiduelle de Poisson, les prédictions sont
sans biais notable. Le BLUP appliqué aprés transformation logarithmique des données con-
duit cependant o des prédictions non satisfaisantes. Quand les valeurs nulles du nombre
d’embryons sont ignorées dans l’analyse, les modéles individuels poissonniens prenant en
compte la troncature donnent de meilleurs résultats que le REML et le BLUP. Une simu-
lation de modéle mizte & un facteur fizé (15 niveauz) et 2 facteurs aléatoires pour 4 en-
sembles de composantes de variance o également été réalisée; dans cette étude, le REML
n’était pas inclus & cause de la nature hautement hétérogéne des variances générées sur
l’échelle d’observation. Les estimées MML poissonniennes sont apparemment non biaisées,
ce qui suggére que l’information statistique sur les variances contenue dans l’échantillon
est adéquate. La meilleure estimation linéaire sans biais (BLUE) des effets fixés a un
biais empirique et une MSE supérieurs auz estimées de Poisson dérivées de la distribution
conjointe a posteriori, avec des différences entre les 2 analyses qui augmentent avec la va-
riance génétique et les vraies valeurs des effets fixés. Bien que les différences soient faibles
entre les effets aléatoires prédits par le BLUP et par les modes conjoints poissonniens,
elles sont souvent significatives et en faveur de ces derniéres. En conclusion, st la distri-
bution résiduelle est poissonnienne, et si la relation entre le paramétre de Poisson et les
effets fizés et aléatoires est loglinéaire, REML et BLUE peuvent conduire & des inférences
de mauvaise qualité, alors que le BLUP des valeurs génétiques se comporte d’une maniére
remarquablement robuste face aux écarts & la linéarité, en termes de biais moyen et de
MSE.

distribution de Poisson / nombre d’embryons / modele lindaire mixte généralisé /
composante de variance / comptage



Assessment of a Poisson animal model 265

INTRODUCTION

Reproductive technology is important in the genetic improvement of dairy cattle.
For example, multiple ovulation and embryo transfer (MOET) schemes may aid in
accelerating the rate of genetic progress attained with artificial insemination and
progeny testing of bulls in the past 30 years (Nicholas and Smith, 1983).

An important bottleneck of MOET technology, however, is the high variability in
quantity and quality of embryos collected from superovulated donor dams (Lohuis et
al, 1990; Liboriussen and Christensen, 1990; Hahn, 1992; Hasler, 1992). Keller and
Teepker (1990) simulated the effect of variability in number of embryos following
superovulation on the effectiveness of nucleus breeding schemes and concluded that
increases of up to 40% in embryo recovery rate (percentage of cows producing no
transferable embryos) could more than halve female-realized selection differentials,
the effect being greatest for small nucleus units. Similar results were found by Ruane
(1991). In these studies, it was assumed that residual variation in embryo yields
was normal, and that yield in subsequent superovulatory flushes was independent of
that in a previous flush, ie absence of genetic or permanent environmental variation
for embryo yield.

Optimizing embryo yields could be important for other reasons as well. For
instance, with greater yields, the gap in genetic gain between closed and open
nucleus breeding schemes could be narrowed (Meuwissen, 1991). Furthermore,
because of possible antagonisms between production and reproduction, it may be
necessary to use some selection intensity to maintain reproductive performance
(Freeman, 1986). Also, if yield promotants, such as bovine somatotropin, are
adopted, the relative economic importance of production and reproduction, with
respect to genetic selection, will probably shift towards reproduction. Finally, if
cytoplasmic or nonadditive genetic effects turn out to be important, it would be
desirable to increase embryo yields by selection, so as to produce the appropriate
family structures (Van Raden et al, 1992) needed to fully exploit these effects.

Lohuis et al (1990) found a zero heritability of embryo yield in dairy cattle.
Using restricted maximum likelihood (REML), Hahn (1992) estimated heritabilities
of 6 and 4% for number of ova/embryos recovered and number of transferable
embryos recovered, respectively, in Holsteins; corresponding repeatabilities were
23 and 15%. Natural twinning ability may be closely related to superovulatory
response in dairy cattle, as cow families with high twinning rates tend to have a
high ovarian sensitivity to gonadotropins, such as PMSG and FSH (Morris and
Day, 1986). Heritabilities of twinning rate in Israeli Holsteins were found to be 2%,
using REML, and 10% employing a threshold model (Ron et al, 1990).

Best linear unbiased prediction (BLUP) of breeding values, best linear unbiased
estimation (BLUE) of fixed effects, and REML estimation of genetic parameters
are widely used in animal breeding research. However, these methods are most
appropriate when the data are normally distributed. The distribution of embryo
yields is not normal, and it is unlikely that it can be rendered normal by a
transformation, particularly when mean yields are low and embryo recovery failure
rates are high. Analysis of discrete data with linear models, such as those employed
in BLUE or REML, often results in spurious interactions which biologically do not
exist (Quaas et al, 1988), which, in turn, leads to non-parsimonious models.
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It seems sensible to consider nonlinear forms of analysis for embryo yield. These
may be computationally more intensive than BLUP and REML, but can offer more
flexibility. The study of Ron et al (1990) suggests that nonlinear models for twinning
ability may have the potential of capturing genetic variance for reproduction that
would not be usable by selection otherwise. For example, threshold models have
been suggested for genetic analysis of categorial traits, such as calving ease (Gianola
and Foulley, 1983 ; Harville and Mee, 1984). In these models, gene substitutions are
viewed as occurring in a underlying normal scale. However, the relationship between
the outward variate (which is scored categorically, eg, ‘easy’ versus ‘difficult’ calving)
and the underlying variable is nonlinear and mediated by fixed thresholds. Selection
for categorical traits using predictions of breeding values obtained with nonlinear
threshold models was shown by simulation to give up to 12% greater genetic gain in
a single cycle of selection than that obtained with linear predictors (Meijering and
Gianola, 1985). Because genetic gain is cumulative, this increase may be substantial.
The use of better models could also improve (eg, smaller mean squared error (MSE})
estimates of differences in embryo yield between treatments.

In the context of embryo yield, an alternative to the threshold model is an
analysis based on the Poisson distribution. This is considered to be more suitable
for the analysis of variates where the outcome is a count that may take values
between zero and infinity. A Poisson mixed-effects model has been developed by
Foulley et al (1987). From this model, it is possible to obtain estimates of genetic
parameters and predictors of breeding values.

The objective of this study was to compare the standard mixed linear model
with the Poisson technique of Foulley et al (1987), via simulation, for the analysis of
embryo yield in dairy cattle. Emphasis was on sampling performance of estimators
of variance components (REML wversus marginal maximum likelihood, MML, for
the Poisson model), of estimators of fixed effects and of predictors of breeding
values (BLUE and BLUP evaluated at average REML estimates of variance, versus
Poisson posterior modes evaluated at the true values of variance).

AN OVERVIEW OF THE POISSON MIXED MODEL

Under Poisson sampling, the probability of observing a certain embryo yield
response (y;) on female ¢ as a function of the vector of parameters 8 can be written
as:

AViexp(—\;)

Pr(Y; = 4:l0) = il

, yi=01,2,...; A;>0 [1]

with
E[Yi[A] = Var[Yi[A] = A 2]

The Poisson mixed model introduced by Foulley et al (1987) makes use of the link
function of generalized linear models (McCullagh and Nelder, 1989). This function
allows the modelling the Poisson parameter A; for female ¢ in terms of #. This
parameterization differs from that presented in Foulley et al (1987) who modelled
Poisson parameters for individual offspring of each female, allowing for extension
to a bivariate Poisson-binomial model. The univariate Poisson model was also used
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in Foulley and Im (1993) and Perez-Enciso et al (1993). In the Poisson model, the
link is the logarithmic function.

7 =In(\;), —oco < <00, 0 <A <0 (3]
such that

m=wie =z || 4

Above, 8’ = [B/,u'],B is a p x 1 vector of fixed effects, u is a ¢ x 1 vector of
breeding values, and w] = [x]z]] is an incidence row vector relating © to ;. Let
X = {x!} and Z = {2/} be incidence matrices of order n x p and n x g, respectively,
such that:

n={n} =XB +Zu [5]
In a Bayesian context, Foulley et al (1987) employ the prior densities

p(B) o constant [6a]

and
ulA, 2 ~ N(0,Ac?) [6b]

where A is the matrix of additive relationships between animals and 02 is the
additive genetic variance. Given o2, Foulley et al (1987) calculate the mode of the
joint posterior distribution of § and u with the algorithm

X'RX X'RZ . gl X'Ry
Z’RZ Z'RZ+ ol DN l:u[t] ] [Z’Ry} g
where t denotes iterate number,
Rnzn = Diag{:}
y=n+ Ry - Bole)] =n+ {4 8

and where y is the vector of observations. Note that the last term in [8] can
be regarded as a vector of standardized (with respect to the conditional Poisson
variance) residuals.

Marginal maximum likelihood (MML), a generalization of REML, has been
suggested for estimating variance components in nonlinear models (Foulley et al,
1987; Hoschele et al, 1987). An expectation-maximization (EM) type iterative
algorithm is involved whereby

p2le+1 = (@A-'a)H + T

. (9]
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where T = trace(A~!Cyy), such that

X'RX X'RZ !

-1 —
ZRZ ZRZ+2 [

2
Ou

(10]

Ces CBH]
CuB Cuu

and U is the u-component solution to [7] upon convergence for a given o2 value. In
[9], k pertains to the iteration number, and iterations continue until the difference
between successive iterates of [9], separated by nested iterates of [7], becomes
arbitrarily small. The above implementation of MML is not exact, and arises from
the approximation (Foulley et al, 1990)

uly, 05 ~ N1, Cuu) [11]

SIMULATION EXPERIMENTS
A one-way random effects model

Embryo yields in two MOET closed nucleus herd breeding schemes were simulated.
Breeding values (u) for embryo yields for ns; and ng base population sires and
dams, respectively, were drawn from the distribution u ~ N(0,102), where o2 had
the values specified later. The dams were superovulated, and the number of embryos
collected from each dam were independent drawings from Poisson distributions with
parameters:

Aq = exp[lp + uy) [12]

where 1 is a ng X 1 vector of ones, p is a location parameter and ug is the vector
of breeding values of the ngy dams. In nucleus 1, p = In(2), whereas in nucleus 2
u = In(8). Note from [12] that for a given donor dam d;,

In(A\g,) =p+ug, 1=1,2,...,n4 [13a]
so, in view of the assumptions,
E(In(Ag,) = R [13b]

which implies that the location parameter p can be interpreted as the mean of the
natural log of the Poisson parameters in the population of donor dams. It should
be noted, as in Foulley and Im (1993) that

o2
E(\a,) = E(exp(p +uq)) = exp(u)exp(E(uq,)) = exp(u)exp <—2i) [13¢]

Thus

E(Aq;) > exp(w)

The sex of the embryos collected from the donor dams was assigned at random
(50% probability of obtaining a female), and the probability of survival of a female
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embryo to age at first breeding was m = 0.70 in nucleus 1, and 7 = 0.60 in nucleus 2.
This is because research has suggested that embryo quality and yield from a single
flush tend to be negatively associated (Hahn, 1992). Thus the expected number of
female embryos surviving to age at first breeding produced by a given donor dam
d; is, for i =1,2,...ng,

™
E(nzfl)‘dz) = 5/\dd
and, on average,

2
B(n) = FE0) = FE(exp(u+ua)) = Fexpluep (5 )

7 = 0.70 for nucleus 1

u
Z = =
- 2exp(u) { 47 = 2.40 for nucleus 2

The genetic merit for embryo yield for the ith female offspring, u,,, was generated
by randomly selecting and mating sires and dams from the base population, and
using the relationship:

1 1 1,
Uo, = §Us,- + §udi + 2 §au
where us, and ug, are the breeding values of the sire and dam, respectively, of
offspring 4, and the third term is a Mendelian segregation residual; z ~ N(0,1).
As with the dams, the vector of true Poisson parameters for female offspring
was A, = exp[lp + u,] where u, represents the vector of daughters’ genetic
values. The unit vector 1 in this case would have dimension equal to the number
of surviving female offspring. Embryo yields for daughters were sampled from a
Poisson distribution with parameter equal to the ith element of A,,.
Four populations were simulated, and each was replicated 30 times: 1) nucleus 1
(b = In2), 02 = 0.056; 2) nucleus 1 (0 = In2), 02 = 0.125; 3) nucleus 2
(u = In8), 62 = 0.056; and 4) nucleus 2 (u = In8), 02 = 0.125. Features of
the 2 nucleus herds are in table I. The expected nucleus size is slightly greater than
ns + ng(1 + (7/2)exp(n)), ie about 218 cows in each of the 2 schemes, plus the
corresponding number of sires. The values of o2 were arrived at as follows: Foulley
et al (1987), using a first order approximation, introduced the parameter

1,2y 0-3

S S 14
which can be viewed as a ‘pseudo-heritability’. Using this, the values of 02 in the
4 populations correspond to: 1) ‘h?’ = 0.10; 2) ‘h?’ = 0.20; 3) ‘h?’ = 0.31; and
4) ‘h?’ = 0.50.

In each of the 30 replicates of each population, variance components for embryo
yield were estimated employing the following methods: 1) Poisson MML as in
Foulley et al (1987); 2) REML as if the data were normal; 3) truncated Poisson
MML excluding counts of zero, and using the formulae of Foulley et al, (1987);
4) REML-0, e REML applied to the data excluding counts of zero; and (5) REML-
LOG, which was REML applied to the data following a log transformation of the



270 RJ Tempelman et al

Table I. Features of the MOET schemes simulated with a one-way random effects model.

Nucleus 1 Nucleus 2
1. E(\)* 2 8
2. Number of base sires ns 16 8
3. Number of base dams ngy 128 64
4. Expected embryo yield* 256 512
5. Expected number of female offspring E(n{)** 256 x 0.35 512 x 0.30
6. Expected nucleus sizeT 234 226

* Approximate, see text; ** approximate, numbers vary from replicate to replicate, see
text; t approximate, expected nucleus size = 2 + 3 + 5.

non-null responses while discarding the null responses. Empirical bias and mean
squared error (MSE) of the estimates, calculated from the 30 replicates, were
used for assessing performance of the variance component estimation procedure.
Because the probability of observing a zero count in a Poisson distribution with
a mean of 8 is very low, the truncated Poisson and REML-0 analyses were not
carried out in nucleus 2. Likewise, breeding values were predicted using the following
methods: 1) the Poisson model as in [7] with the true o2, and taking as predictors
A = exp[lp + U], where u is the vector of breeding values of sires, dams, and
daughters; 2) BLUP (1p* + u*) in a linear model analysis where the variance
components were the average of the 30 REML estimates obtained in the replications
and the asterisk denotes direct estimation of location parameters on the observed
scale; 3) a truncated Poisson analysis with the true o2 and predictors as in 1);
4) BLUP-0, as in 2) but excluding zero counts, and using the average of the
30 REML-0 estimates as true variances; and 5) BLUP-LOG, as in 2) after excluding
zero counts and transforming the remaining records into logs. The average of the
30 REML-LOG estimates of variance components was used in this case. BLUP-
LOG predictors of breeding values were expressed as exp[1i+ 1] where [ and U are
solutions to the corresponding mixed linear model equations. Hence, all 5 types of
predictions were comparable because breeding values are expressed on the observed
scale. As given in [12], the vector of true Poisson parameters or breeding values
for all individuals was deemed to be A = exp[lu + u]. Average bias and MSE of
prediction of breeding values of dams and daughters were computed within each
data set and these statistics were averaged again over 30 further replicates. Rank
correlations between different estimates of breeding values were not considered as
they are often very large in spite of the fact that one model may fit the data
substantially better than the other (Perez-Enciso et al, 1993).

A mixed model with two random effects

The base population consisted of 64 unrelated sires and 512 unrelated dams, and
the genetic model was as before. The probability of a daughter surviving to age at
first breeding was 7 = 0.70.
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Embryo yields on dams and daughters were generated by drawing random
numbers from Poisson distributions with parameters:

Aijk = exp(n + H; + 85 + ug) [15]

where u is a fixed effect common to all observations, H = {H;} is a 15 x 1 vector
of fixed effects, s = {s;} ~ N(0,Ic?) is a 100 x 1 vector of unrelated ‘service sire’
effects, u = {ux} ~ N(0, Ac?) is a vector of breeding values independent of service
sire effects, and 02 and o2 are appropriate variance components.

The values of u + H; were assigned such that:

E(A\ijx) ~expp+ H;) =4 i=1,2,...,15 [16]

Thus, in the absence of random effects, the expected embryo yield ranged from
1 to 15. Each of the 15 values of u + H; had an equal chance of being assigned to
any particular record.

Service sire has been deemed to be an important source of variation for embryo
yield in superovulated dairy cows (Lohuis et al, 1990; Hasler, 1992). However,
no sizable genetic variance has been detected when embryo yield is viewed as
a trait of the donor cow (Lohuis et al, 1990; Hahn, 1992). This influenced the
choice of the 4 different combinations of true values for the variance components
considered. In all cases, the service sire component was twice as large as the
genetic component. The sets of variance components chosen were: (A) o2 = 0.0125,
02 = 0.0250; (B) 02 = 0.0250, 02 = 0.0500; (C) 02 = 0.0375, o2 = 0.0750;
and (D) 02 = 0.0500, 02 = 0.1000. Along the lines of [14], the genetic variances
correspond to ‘pseudoheritabilities’ of 7.5-22%, and to relative contributions of
service sires to variance of 15-44% ; these calculations are based on the approximate
average true fixed effect A on the observed scale in the absence of overdispersion:

15
A~ Zexp(u—}—Hi) =8

i=1

For each of the 4 sets of variance parameters, 30 replicates were generated
to assess the sampling performance of Poisson MML in terms of empirical bias
and square root MSE. Relative bias was empirical bias as a percentage of the
true variance component. Coefficients of variation for REML and MML estimates
of variance components were used to provide a direct comparison as they are
expressed on different scales. REML estimates were also required in order to
compare estimates of fixed effects and predictions of random effects obtained
under a linear model analysis with those found under the Poisson model. MML
and REML estimates were computed by Laplacian integration (Tempelman and
Gianola, 1993) using a Fortran program that incorporated a sparse matrix solver,
SMPAK (Eisenstat et al, 1982) and ITPACK subroutines (Kincaid et al, 1982) to
set up the system of equations [7]. For REML, this corresponds to the derivative-
free algorithm described by Graser et al (1987) with a computing strategy similar
to that in Boldman and Van Vleck (1991).

As in the one-way model, averages of REML estimates of the variance compo-
nents obtained in 30 replicates were used in lieu of the ‘true’ values (which are not
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well defined) to compute estimates of fixed effects and predictions of random effects
in the linear model analysis; for the Poisson model, the true values of the variance
components were used. Empirical biases and MSEs of the estimates of fixed effects
obtained with the linear and with the Poisson models were assessed from another
30 replicates within each set of variance components. One more replicate was then
generated for each variance component set, from which the empirical average bias
and MSE of prediction of service sire and animal random effects were evaluated.

In order to make comparisons on the same scale, the Poisson model predictands
of the random effects were defined to be b-exp(s) for service sires and b-exp(u) for
additive genetic effects, respectively; b is the ‘baseline’ parameter:

10 ex + H;
b= ; p(%—) [17]
In view of [15],
Aijr = exp(p + H;)exp(s;)exp(u) [18]
so that
E(Aijk) ~ exp(u + H;) (19]
Hence,

15
E ijk ~b
(Z 15
i=1

The ‘baseline’ value can then be interpreted as the expected value of the Poisson
parameter of an observation made under the conditions of an ‘average’ level of
the fixed effects and in the absence of random effects. The Poisson mixed-model
predictions were constructed by replacing the unknown quantities in b, exp(s), and
exp(u) by the appropriate solutions in [7].

In the linear mixed model, the predictors were defined to be:

15 ~x -~
wHHPY
1 —_ ¢
(Z = ) +3 [20a)
=1
and
15 /}I* +H*
1 et 2 a* 2
(; 5 ) +1 [20b)]

for service sire and genetic effects, respectively. Here the unit vectors 1 are of the
same dimension as the respective vectors of random effects and the asterisk is used
to denote direct estimation of location parameters on the observed scale.
Estimators for fixed effects were also expressed on the observed scale. The true
values of the fixed effects were deemed to be ¢ = exp(p + H;) for i = 1,2,...15 as
in [16]. Estimators for fixed effects under the Poisson model were therefore taken to

be exp (i + flz) fori=1,2,...,15. As the linear mixed model estimates parameters
on an observable scale, estimators for fixed effects were taken to be i* + H}.
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RESULTS AND DISCUSSION
One-way model

Means and standard errors of estimates of the genetic variance (02) for the five
procedures are given in table II and MSEs of the estimates are given in table III.
Clearly, estimates obtained with REML and REML-0 were extremely biased; this
is so because the genetic components obtained are not on the appropriate scale of
measurement (ie the canonical log scale). The problem was somewhat corrected
by a logarithmic transformation of the records. For E();) &~ 2 and o2 = 0.056,
the REML-LOG, Poisson and Poisson-truncated estimators were nearly unbiased
(within the limits of Monte-Carlo varianceg, but the Monte-Carlo standard errors
were much larger for REML-LOG. For ¢; = 0.125, the Poisson estimates were
biased downwards (P < 0.05) for both values of E();), while those of REML-
LOG were biased upwards and significantly so with E();)} =~ 8. In a one-way sire
threshold model, Hoschele et al (1987) also found downward biases for the MML
procedure. In spite of these small biases, however, the MSEs of the Poisson estimates
(table III) were much lower than those of REML-LOG. The very large (relative to
Poisson and REML-LOG) MSEs of the REML and REML-0 procedures illustrate
the pitfalls incurred in carrying out a linear model analysis when the situation
dictates a nonlinear analysis, or a transformation of the data.

Table II. Empirical means and standard errors of estimates (30 replicates) of genetic
variance (02) in the one-way model.

Analysis® ol=0.056 02=0.125

EA) = 2 EA)=~ 8 EA) = 2 EA) =8
Poisson 0.047 =+ 0.007 0.052 =+ 0.003 0.110* =+ 0.007 0.115* 4+ 0.004
REML 0.260** + 0.051 3.69** + 0.427 0.597* =+ 0.065 8.40™* £ 0.546
REML-LOG 0.067 =+ 0.013 0.076* +£0.010 0.136 + 0.019 0.151* + 0.011
Poisson-truncated 0.053 = 0.007 na 0.103** 4+ 0.001 na
REML-0 0.210** 4 0.041 na 0.502** £ 0.054 na

® See text; * different (P < 0.05) from true value based on t-test; ** different (P < 0.01)
from true value based on t¢-test; na: not applicable.

A linear one-way random effects model, however, can be contrived in which case
it can be shown that REML may actually estimate somewhat meaningful variance
components on the observed scale. Presuming that multiple records on an individual
is possible, the variance of Y;; (with subscripts denoting the jth record on the ith
individual) can be classically represented as:

Var(Yy;) = E [Var(Yijlui)] + Var [E(Y;|u;)] 213
which from [2] can be written as:

Var(Y;;) = E[exp(u + u;)] + Var[exp(p + u;)] [21b)
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Table III. Empirical (30 replicates) mean squared errors of genetic variance (2) relative
to Poisson analysis (Poisson = 1) in the one-way model.

Analysis® o2=0.056 o2=0.125
Poisson 1.00 1.00 1.00 1.00
REML 92.3 52 857 221 130678
REML-LOG 3.69 8.86 6.88 6.61
Poisson-truncated 1.23 na 2.13 na
REML-0 57.5 na 145 na

& See text; na: not applicable.

such that from [13c] and results presented by Foulley and Im (1993):
2
Var(Y;;) = exp (u + %—) + exp(2u)exp(02) [exp(02) - 1]

= o2 4o [21¢]

The covariance between different records on the same individual (ie cov (Y3,
Yi;/)) can be used to represent the variance of the random effects.

COV(Yij, Yijf) =E [COV()’ij, Yijl |’Uﬂi):| + cov [E()’z] |uz) y E(}/ijr |u,)] [22&]

Given independent Poisson sampling conditional on u;, the first term of the above
equation is null, and

Cov(Yiy, Y1) = Cov[E(Viglu:), B(Vig fus)]
= Var[exp(u + u;)]

exp(2u)exp(az) [exp(ol) — 1]
=g [22D]

Thus a one-way random linear model that has the same first and second moments
as Y;; is

Yz‘j zu*+u;‘+e;‘j
where Y;; is the jth record observed on the ith animal, p is the overall mean, u}
is the random effect of the ith animal and ej; is the residual associated with the

jth record on the ith animal. Here u* = exp (u+02/2),u’ has null mean and
u 1

variance 02* = exp(2u)exp(o?)[exp(c2) — 1] and e;; has null mean and variance

02" = exp (n+02/2). The empirical mean REML estimates reported in table I

closely relate to the functionals for 02* in [22b], in spite of the violated independence

assumption between genetically related random effects in the animal model.
Tables IV and V give the empirical means and MSEs, respectively, of the

estimates of residual variance. It should be noted that the approximation exp(u)



Assessment of a Poisson animal model 275

underestimated E();), as expected theoretically. In the Poisson model, the residual
variance is the Poisson parameter of the observation in question. Hence the residual
variance in a linear model analysis would be comparable to E();). The log-
transformed REML estimates (REML-LOG) have no meaning here because the
Poisson residual variance is generated on the observed scale, contrary to the genetic
variance which arises on a logarithmic scale. Generally, the Poisson and REML
methods gave seemingly unbiased estimates of the true average Poisson parameter.
However, REML estimates of residual variance, rather, of E(};), appeared to be
biased upwards (P < 0.01) for the higher genetic variance and higher Poisson mean
population (table IV). The MSEs of Poisson estimates of average residual variances
were much smaller than those obtained with REML, especially in the populations
with a higher mean. REML-0 was even worse than REML, both in terms of bias
(table IV) and MSE (table V). This is due to truncation of the distribution (eg,
Carriquiry et al, 1987) which is not taken into account in REML-0. The truncated
Poisson analysis gave upwards biased estimates and had higher MSE than the
standard Poisson method. However, truncated Poisson outperformed REML in an
MSE sense in estimating the average residual variance, in spite of using less data
(zero counts not included).

Table IV. Empirical means and standard errors of estimates (30 replicates) of ‘average’
residual variance in the one-way model.

Analysis® ol=0.056 02=0.125
EN) =~ 2 EN) ~ 8 EA) =2 EM\) =~ 8

True average A; 2084 +0.008 8.324 £ 0.056 2.180 &+ 0.013 8.712 + 0.073
Poisson 2.090 =+ 0.020 8.341 £ 0.074 2.175 £ 0.019 8.701 + 0.084
REML 2.030 =+ 0.058 8.460 £ 0.277 2.130 £ 0.070 9.747 =+ 0.368
REML-LOG 0.440** + 0.012 0.151** £ 0.007 0.421** £ 0.020 0.157** £ 0.008
Poisson-truncated 2.119 4 0.027 na 2.272** 4+ 0.025 na
REML-0 1.657** £ 0.060 na 1.753** £ 0.053 na

2 See text; ** different (P < 0.01) from true value based on ¢-test; na: not applicable.

Empirical mean biases of predictions of breeding values for dams and daughters
are shown in table VI for 02 = 0.056 and table VII for 02 = 0.125. Poisson-based
methods and BLUP gave unbiased estimates of breeding values while BLUP-LOG
and BLUP-0 performed poorly ; BLUP-LOG had a downward bias and BLUP-0 had
an upward bias. Predictions of breeding values for the truncated Poisson analysis
were generally unbiased.

Empirical MSEs of predictions of breeding values are shown in tables VIII
(62 = 0.056) and IX (02 = 0.125). Paired t-tests were used in assessing the
performance of the comparisons Poisson versus BLUP (and BLUP-LOG) and
Poisson truncated versus BLUP-0. BLUP-LOG and BLUP-0 procedures had the
largest MSEs, probably due to their substantial empirical bias. For 02 = 0.056
(table VIII), the Poisson procedure and BLUP had a similar MSE. However, Poisson
had a slightly smaller (P < 0.10) MSE of prediction of dams’ breeding values
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Table V. Empirical (30 replicates) mean squared errors of ‘average’ residual variance
relative to Poisson analysis (Poisson = 1) in the one-way model.

Analysis® o= 0.056 ol=10125
Poisson 1.00 1.00 1.00 1.00
REML 8.85 45.1 14.6 100
REML-LOG 223 1272 288 1529
Poisson-truncated 1.27 na 1.86 na
REML-0 26.2 na 31.57 na

& See text; na: not applicable.

Table VI. Empirical mean biases of predictions of breeding values (+ standard error of
the mean bias) on the observed scale in the one-way model (02 = 0.056).

Analysis® EA) =~ 2 EA) ~ 8

Dams Daughters Dams Daughters
Poisson —0.023 +0.015 0.016 +0.014 0.016 =£0.049 0.012 = 0.041
BLUP —-0.025 +0.015 0.018 +£0.014 0.027 =£0.049 0.007 =+ 0.041
BLUP-LOG -0.382 =+ 0.011 —0.345"* + 0.013 —0.668"* 4 0.046 —0.683** 4 0.038
Poisson- —0.020 +0.021 0.015 =+ 0.019
truncated
BLUP-0 0.233" £ 0.017 0.266™* + 0.015

# See text; ** different (P < 0.01) from true value based on t-test of 30 replications.

Table VII. Empirical mean biases of predictions of breeding values (& standard error of
the mean bias) on the observed scale in the one-way model (¢2 = 0.125).

Analysis® EA) =~ 2 EA) ~ 8

Dams Daughters Dams Daughters
Poisson -0.010 £ 0.017 —0.018 =+ 0.018 —0.066 + 0.054 0.025 = 0.033
BLUP —0.008 +0.018 —0.020 =+ 0.021 —0.042 4+ 0.058 0.015 =+ 0.032
BLUP-LOG -0.405** + 0.013 —0.435"* £ 0.021 —0.829** 4 0.060 —0.779* =+ 0.042
Poisson-
truncated 0.024 +0.021 0.006 + 0.023
BLUP-0 0.249** + 0.019  0.232™* £ 0.021

2 See text; ** different (P < 0.01) from zero based on a t-test of 30 replications.
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when E()\;) =~ 2, and a smaller (P < 0.05) MSE for predicting daughters’ breeding
values when E()\;) ~ 8. For g2 = 0.125 (table IX), Poisson and BLUP had similar
MSEs when E()\;) = 2, but Poisson had smaller MSEs than BLUP (P < 0.05) for
both dams and daughters when E();) ~ 8. These small differences between BLUP
and Poisson are somewhat surprising in view of the different scales of prediction,
and their practical significance is an open question. It was also surprising that the
differences between BLUP and Poisson tended to be more significant with E(A;) ~ 8
than with E(\;) & 2, since it is known that the Poisson distribution approaches a
normal distributions as \; increases (Haight, 1967). However, this may be due to
a higher power of the test when detecting a larger difference. Another explanation
may be that a lower E()\;) leads to a lower ‘pseudoheritability’ and, hence, a lower
degree of association between phenotypes and breeding values. In this case, the
linear and Poisson models may differ less when predicting breeding values because
of a higher degree of shrinkage towards zero. When counts of zero were excluded,
the Poisson-truncated method had always smaller MSEs of prediction of breeding
values than the BLUP-0 method.

Table VIII. Empirical mean squared errors of predictions of breeding values of the

observed scale relative to Poisson analysis (Poisson = 1) in the one-way model (02 =
0.056).

Analysis® EN) = 2 EA) =~ 8

Dams Daughters Dams Daughters
Poisson 1.00 1.00 1.00 1.00
BLUP 1.00 1.00 1.00 1.01*
BLUP-LOG 1.68** 1.57** 1.22%* 1.22**
Poisson-truncated 1.05 0.98
BLUP-0 1.35** 1.37**

& See text; differences between Poisson versus BLUP (or BLUP-LOG) and Poisson-
truncated versus; BLUP-0 were assessed using paired t-tests: | P < 0.10; * P < 0.05;
** P <0.01.

Mixed model

Because variance components estimated by MML and REML are on different
scales, empirical coefficients of variation (CV) were used to provide a basis of
comparison (fig 1). Clearly, REML estimates were more variable than their Poisson
counterparts. No clear pattern with respect to increasing values of the variance
components emerged, except that CVs for both MML service sire and genetic
estimates seemed relatively more stable while CVs for REML service sire estimates
steadily increased for values of o2 larger than 0.0250 (ie 02 = 0.0500). For
count data with low means, variance components that are estimated under linear
mixed-effects models, more general than the one-way random effects model, are
virtually meaningless. In Poisson-generated data, these components are highly
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Table IX. Empirical mean squared errors of predictions of breeding values of the observed
scale relative to Poisson analysis (Poisson = 1) in the one-way model (aﬁ = 0.125).

Analysis® EA) =~ 2 EA) =8

Dams Daughters Dams Daughters
Poisson 1.00 1.00 1.00 1.00
BLUP 1.00 1.00 1.03 1.05*
BLUP-LOG 1.39** 1.44** 1.27** 1.26**
Poisson-truncated 1.04 1.01
BLUP-0 1.22** 1.15**

2 See text; differences between Poisson versus BLUP (or BLUP-LOG) and Poisson-
truncated versus BLUP-0 were assessed using paired t-tests: * P < 0.05; ** P < 0.01.
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Fig 1. Coeflicients of variation for variance component estimates in the mixed-model
simulation. —@&— : REML SS; =—0— : REML GENETIC; —&— : MML S8S;
—e— : MML GENETIC; SS = service sire variance component ; GENETIC = genetic
variance component.

heteroskedastic from one observation to the next, depending on both experimental
design and location parameters (Foulley and Im, 1993).

Relative biases of the MML estimates are given in figure 2. Relative biases were
less than 4% for all 4 sets of variance components, with no clear trend with respect
to the true values of variance components. Using t-tests, these biases did not differ
from zero. Unlike results obtained with threshold models (eg, Hoschele et al, 1987;
Simianer and Schaeffer, 1989), a small subclass (equal to 1 in the Poisson animal
model) did not lead to detectable bias of variance component estimates in the
Poisson mixed model.

Relative errors (square roots of the empirical MSEs, expressed as a percentage
of the true variance component values) are given in figure 3. Trends with respect to
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Fig 2. Relative bias (%) of MML variance component estimates in the mixed-model
simulation. ——@— : Animal; —e—— : Sire.

the size of the true variances were somewhat opposite for service sire and genetic
variance component estimates. Relative error for the genetic component decreased
as the true variance increased, whereas the error of the service sire estimates
increased somewhat with the true value of the parameter. The relative errors of
MML estimates were almost identical to their empirical CVs (fig 1) because of the
small bias, as shown in figure 2.
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Fig 3. Relative error of MML variance component estimates in the mixed-model simula-
tion. ——@—: Animal; ——e—— : Sire.

Empirical biases of fixed-effect estimates obtained with linear and Poisson
procedures are given in figures 4-7 for the 4 different sets of true variance
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Fig 4. Empirical bias of BLUE and Poisson estimates of fixed effects in the mixed-model

simulation: variance component set A (05 = 0.0125;02 = 0.0250). —a— : BLUE;
——e—— : Poisson.
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Fig 5. Empirical bias of BLUE and Poisson estimates of fixed effects in the mixed-model
simulation: variance component set B(aﬁ = 0.0250; af = 0.0500). —a— : BLUE;
—e— : Poisson.

components. The 2 methods gave estimates that were biased upwards, but the
bias was larger for BLUE in all 4 cases. This apparent paradox can be explained
by the fact that BLUE is an unbiased estimator of:

o2 +0?
E(Xiji) = exp(p + H;)exp <—2‘>
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Fig 6. Empirical bias of BLUE and Poisson estimates of fixed effects in the mixed-model

simulation: variance component set C(UZ = 0.375; 02 = 0.0750). —a— : BLUE;
——e—— : Poisson.
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Fig 7. Empirical bias of BLUE and Poisson estimates of fixed effects in the mixed-model
simulation: variance component set D(ag = 0.0500; o2 = 0.1000). —a— : BLUE;
——e—— : Poisson.

and not exp(u + H;). Empirical biases for the 2 methods, and their difference,
increased with increasing values of fixed effects and with higher values of variance
components. The upward biases of the Poisson estimates were generally stable
across sets of variance components, being always less than 0.5. However, the bias
of the BLUEs of the fixed effects increased substantially as variance increased.
Although Poisson estimates of fixed effects were manifestly biased upwards at higher
embryo yields, the magnitude of their bias was several times smaller than that of
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BLUE estimates. Empirical MSEs of the fixed effects estimates are depicted in
figures 8-11 for each of the 4 sets of variance components. As with empirical biases,
MSEs of the linear model and Poisson estimates, and the differences between the
MSE:s of the 2 procedures tended to increase with increasing values of the variance
components and with the true values of the fixed effects. The MSEs of the Poisson
estimates were again more stable across sets of variance components and, although
tending to increase with the value of the fixed effects, were much smaller than those
of BLUE estimates. For example (fig 11), when embryo yield was around 15, the
MSE of BLUE was about 6 times larger than that of Poisson estimates.

0.4

w 0.3
(2]
=
_g 0.2
a
£
w 0.1

T T 1
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True fixed effect

Fig 8. Empirical mean squared errors of BLUE and Poisson estimates of fixed effect
solutions in the mixed-model simulation: variance component set A(a% = 0.0125; af =
0.0250). =——@—: BLUE; ——e——: Poisson.

Because the values of fixed effects were constructed such that:
exp(p + Hi+l) - exp(u + Hl) =1; 1= 1,2, 14

it was of interest to examine the extent to which the 2 estimators would capture such
difference. If the estimates are regressed against true values, the ‘best’ estimator
should give a slope close to one. Such regressions were assessed by ordinary least-
squares. Empirical biases and MSEs of the estimates of the regression effects
are given in figures 12 and 13, respectively. Regression estimates obtained under
both models were slightly biased downwards, particularly BLUE ; the absolute bias
increased somewhat as true variance components increased in value. The differences
between the biases of the 2 estimators were found significant in all cases using a
paired t-test (P < 0.05 for variance component set A, and P < 0.01 for variance
component sets B, C, D). The differences in empirical MSEs were in the same
direction, ie BLUE had larger MSEs.

Empirical average biases and empirical average MSEs of the predictions of service
sire effects are given in figures 14 and 15, respectively. The statistics were slightly
in favor of the Poisson model. Both methods had empirical average biases different
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Fig 9. Empirical mean squared errors of BLUE and Poisson estimates of fixed effect
solutions in the mixed-model simulation: variance component set B(aﬁ = 0.0250; a? =
0.0500). ——p@— : BLUE; ——¢— : Poisson.
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Fig 10. Empirical mean squared errors of BLUE and Poisson estimates of fixed effect
solutions in the mixed-model simulation: variance component set C(ag = 0.0375; aﬁ =

0.0750). =——&— : BLUE; =——e—— : Poisson.

(P < 0.05) from 0 only at o2 = 0.0500. Based on paired t-tests, empirical average
MSEs were not different between the 2 methods.

Statistics associated with prediction of genetic effects are depicted in figures 16
and 17, with results presented separately for base generation sires and dams, and for
their female progeny surviving to age at first breeding. Poisson-predicted breeding
values tended to be biased downwards, whereas BLUP predictions were biased
upwards; however, average bias was smaller for Poisson predictions. BLUP sire
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Fig 11. Empirical mean squared errors of BLUE and Poisson estimates of fixed effect

solutions in the mixed-model simulation: variance component set D(a% = 0.0500; 03 =
0.1000). ——@— : BLUE; ———— : Poisson.
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Fig 12. Empirical bias of estimates of the ‘regression’ of BLUE and Poisson solutions on
true values in the mixed-model simulation. —g=— : BLUE; ——e—— : Poisson.

solutions were significantly biased (P < 0.01) at the 2 highest variance components.
Dam and daughter BLUP solutions were significantly biased (P < 0.01 in all cases,
except P < 0.05 for dams at 02 = 0.0125). Poisson dam solutions were biased
(P < 0.01) only at o2 = 0.0250, while Poisson daughter solutions were biased at
02 = 0.0250 (P < 0.01) and 02 = 0.0375 (P < 0.05). Certainly, all predictions
reflect uncertainty in the baseline estimates of fixed effects given in [17] and [20] for
Poisson and BLUP models, respectively, and upward biases in BLUP predictions
of random effects reflect upward biases for the baseline estimates (fig 4-7).
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Fig 14. Empirical average bias of prediction of service sire effects in the mixel-medel
simulation. ——@— : BLUP; ——e—— : Poisson.

Differences in empirical average MSEs of prediction of breeding values between
the 2 procedures are depicted in figure 17. Although the differences between the
2 methods were small, a paired t-test gave significant differences for daughters
(P < 0.01 for 02 = 0.0125,0.0375, and 0.0500; P < 0.05 for o2 = 0.0250) and for
base generation dams, except at 02 = 0.0125 (P < 0.01 for az = 0.0250,0,0500;

P < 0.05 for 02 = 0.0375). Differences in empirical average MSE of predictions of
base generation sires were not significant.
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Fig 15. Empirical average mean squared errors of prediction of service sire effects in the
mixed-model simulation. =——@— : BLUP; ——e—— : Poisson.
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Fig 16. Empirical average bias of prediction of genetic effects in the mixed-model
simulation. ——g=—— : BLUP sire; —— : BLUP dam; - : BLUP daughter;
—m—— : Poisson sire; - : Poisson dam; -——— : Poisson daughter.

CONCLUSIONS

This study evaluated the sampling performance of estimators of location and
dispersion parameters in Poisson mixed models, and of predictors of breeding values
in the context of simulated MOET schemes. Records on embryo yield were drawn
from Poisson distributions for 4 populations characterized by appropriate parameter
values. Analyses were carried out with the Poisson model and with a linear model
in each of these populations.
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In general, the estimates of parameters and the predictions of random effects
obtained with the Poisson model were better than their linear model counterparts.
This is. not surprising because, to begin with, in the Poisson analysis, the data
were analyzed with the models employed to generate the records in the simulation.
Further, if the distribution is indeed Poisson, there is no appropriate variance
decomposition independent of location parameters in the linear model, which
makes the variance component estimators employed with normal data somewhat
inadequate for estimating dispersion parameters, particularly in the mixed effects
model. A log-transformation improved (relative to untransformed REML) the mean
squared error performance of REML estimates of genetic variance, but worsened
the estimates of residual variance. Similarly, fixed effects were estimated by BLUE
with a larger bias and mean squared error than when estimated by the Poisson
model.

BLUP was found to be robust in predicting random effects, although Poisson
joint modes were significantly better with respect to bias and MSE in many
cases. This is remarkable, considering that the BLUP predictors were based on
location-parameter-dependent estimates of variance. BLUE, however, showed bias
with increasing values of fixed effects and variance components. Truncated-Poisson
estimators and predictors always outperformed BLUP and REML when zero counts
were excluded from the analysis; truncation of null counts may be common in field
records on traits such as litter size (Perez-Enciso et al, 1993).

Estimates of variance components obtained by MML in Poisson mixed models did
not exhibit the typical bias due to small subclass sizes encountered often in threshold
models. Rather, the downward biases of MML found in the one-way models may
be due to small amount of statistical information. After all, MML is, like REML, a
biased estimator. However, it should be consistent, because all Bayesian estimators
are so under certain forms of selection (Fernando and Gianola, 1986). Héschele
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et al (1987) attributed the ‘small subclass’ bias in threshold models to inadequacy
of a normal approximation invoked in MML. The same approximation is made
when estimating variance with the Poisson model, but its consequences may be less
critical here.

In conclusion, REML and BLUE do not perform well when the assumption of a
Poisson distribution holds, even if all pertinent factors in the model are included
in the analysis. BLUP, however, was found to be robust, although it had a slightly
inferior sampling performance. This study did not address the situation when the
data are counts, but the distribution is not Poisson. For this instance, estimators
based on the assumption of normality may perform better than those that rely on
the Poisson distribution, due to central limit theory. It should also be noted that
if the operational Poisson model fails to consider all pertinent explanatory factors,
the conditional variance may be substantially greater than the conditional mean
of an observation; these 2 parameters are defined to be equal as in [2]. Possible
diagnostics for investigating this source of overdispersion were discussed by Dean
(1989).
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