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A QUICK TEST FOR NONISOMORPHISM

OF ONE-RELATOR GROUPS

K. J. HORADAM

Abstract. A sequence of integers is read off from the presentation of a finitely

generated torsion-free one-relator group with nontrivial second integral homology,

without recourse to group-theoretic manipulations. This test sequence is derived

from the cup coproduct on the coring of the integral homology module of the

group, and reflects information about the group's second lower central factor

group.

Test sequences differ only if the corresponding groups are nonisomorphic. The

test process can be generalised to any one-relator group with nontrivial second

integral homology.

1. Introduction. It is generally difficult to determine when two one-relator groups

are isomorphic (see [1, p. 75] for example), though S. J. Pride [7] has shown that the

isomorphism problem for two-generator one-relator groups with torsion is solvable.

This paper describes a test for nonisomorphism of one-relator groups with isomor-

phic integral homology modules. The test is directly applicable only to groups

which are torsion-free, finitely generated and have nontrivial second integral

homology, but may be extended to any one-relator group with nontrivial second

integral homology.

The test's main advantages are that it is quick, that it involves arithmetic

calculations only, rather than manipulation of group elements, and that the

required test integers can be read off from any presentation of the group.

In §2 the test is described and in §3, proof that it measures nonisomorphism is

given. In §4 it is shown that the test may be extended to any one-relator group by

comparison with a suitable group to which the test directly applies.

I would like to thank Drs. D. Collins, C. R. Leedham-Green and S. J. Pride for

their helpful comments.

2. The test. This technique isolates a sequence of integers from a presentation of

a torsion-free finitely generated one-relator group with nontrivial second integral

homology (hereinafter referred to as a testable group). Sequences determined from

two testable groups differ only if the groups themselves differ, in which case a

specific homomorphism defined between their respective second lower central

factor groups is not an isomorphism.
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Two steps are involved: the first reads off a skew-symmetric integral matrix from

a presentation of a testable group and the second derives from this matrix a test

sequence of integers which is independent of isomorphisms of the group and hence

is presentation-free.

In all that follows, let G = (xx,. . . , xn: r> be a presentation of a testable group,

let F be the free group generated by {xx, . . ., xn), let

1 -* R -^ F-^ G -► 1

be the corresponding free presentation of G, and let e: ZF—>Z be the augmen-

tation map of the group ring ZF over the integers Z. Recall that dw/dz is the Fox

derivative [2] in ZF of the element w of ZF with respect to the generator z of F.

(2.1) Definition. For each word w and pair of generators (y, z) in F, define the

integer <w; y, z> to be

<w>; y, z> = e(3 V/dvdz).

That is, for>> =£ z, (w; y, z> is the exponent sum in w of occurrences of v preceding

each occurrence of z + 1, minus the exponent sum in w of occurrences of y

preceding each occurrence of z"1. Thus <yz'^z; y, z> = (-1) + (-1) + (3) = 1.

Recall further the definition of the invariant factors of an integral matrix. If V is

an n X n matrix with integer entries the ith determinantal divisor d¡(V) of V for

0 < 1 < n is defined to be d0( V) = 1,

d¡( V) = gcd{det v. v is an / X 1" submatrix of V),        1 < i < n.

(2.2) Definition. The ith invariant factor s¡ = s,(V) of Fis

s( y) = ( 4(F)/4-.(n     K '• < rank K,
I 0, rank K < 1 < «.

If K is skew-symmetric with rank V = 2/ it is true (see [5, Theorems IV.2, IV.3] for

example) thats2k(V) = s2k_x(V) 1 < k < /.

These two definitions are all that is required to implement the test.

Test Step 1. (i) For each pair of generators (x¡, Xj) with i <j in G, calculate

<r; x¡, Xj).

(ii) Form the skew-symmetric matrix M = M(G) with entries

<>•;**> •*/>>     £</,

mw =    0, Ac = /,
-<r; x„ x¿>,     A: > /.

Test Step 2. Calculate the invariant factors s¡(M(G)), 1 < i < n. The sequence of

invariant factors TS(G) = (sx, s2, . . ., sn) is the required test sequence for G. If the

test sequences for two presentations differ at any co-ordinate then they are

presentations of nonisomorphic groups.

Computation in Test Step l(i) may be simplified if a representation r =

r* mod F3 is known, where

r*= n n[*„*,r.
y=2 i<j
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If </■*, [x¡, Xj]} denotes the exponent sum in r* of commutator [x¡, Xj] then the

identity

<r; xt, Xj} = <r*, [x„ Xj]},        1 < i <j < n,

may be used; that is, <r; x¡, x,) = mijy 1 < i <y < n. Note this implies that any

skew-symmetric n X n integral matrix V appears as V = M(G) for at least one

testable group G.

In illustration, consider G = <x„ x2, x3, x4: r> where

r = [x3, x4][xx, x2][xx, xj][x3, x2][x2, xA][x3, x4]3

and H = <*,, x2, x3, jc4: s} where

í = r[x4, x3].

Then

M(G) =

0
-1

0
-2

1
0
1

-1

0 2
-1 1

0 4
-4 0

and   M(H) =

0 1
-1 0

0 1
-2 -1

0 2
-1 1

0 3
-3 0

Since dx(M(G)) = 1 it follows that sx(M(G)) = s2(M(G)) = 1, and as d4(M(G)) -

[d3(M(G))f = 4, it follows that s3(M(G)) = 54(M(G)) = 2 and F5(G) =

(I, I, 2, 2). Similarly, F5(//) = (1, 1, 1, 1), hence G * H.

(2.3) Example. Let G = <*,, x2: /•> be a testable two-generator group. Then

/• = [xx, x2Y mod F3 for a unique integer/», so that TS(G) = (|/»|, |/»|), thus there

are infinitely many distinct isomorphism classes of such groups.

(2.4) Example. Let G = (xx, x2, x3: r> be a testable three-generator group. Then

r = [xx, x2f[xx, x3]'[x2, x3r mod F3 and F5(G) = (g, g, 0) where g = (k, I, m).

Thus there are infinitely many distinct isomorphism classes of such groups.

(Analysis similar to that of the prior two examples clearly holds for groups with

any number of generators; for instance there is a doubly-countable number of

distinct isomorphism classes of testable five-generator groups.)

3. The homomorphism ty(G). We prove that the test sequence TS(G) measures

(in a way to be made precise) the second term G2/ G3 of the lower central factors of

G. Recall that for a testable group G, H2(G; Z) s Z and HX(G; Z) is free abelian.

Let r\: R n F2/[R, F] -> H2(G; Z) be the Hopf isomorphism, jx: F2/F3[R, F] -»

/\2HX(G; Z) be the isomorphism given by [/,/*]F3[Ä, F] -> ir(f)G2 A v(f*)G2,

[ , ]: /\2HX(G;Z)^>G2/G3 be the homomorphism given by gG2Ag*G2-»

[g, g*]G3, and t: R n F2/[R, F] -» F2/F3[R, F] be the homomorphism induced by

inclusion.

(3.1) Definition. The homomorphism ^(G): H2(G; Z)-» /\2HX(G; Z) is de-

fined to be <>Ù(G) = n « i ° i)-1.

In [3] it is shown firstly that the sequence

<$(G) r,i

H2(G;Z) -»  A2#,(G;Z)^G2/GY 1
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is exact, secondly that

n   7-1

*D(G) o v(r[R, F]) = 2  2 <n x„ *,>(x,G2 A *,G2),
7-2Í-1

and thirdly that öD(G) = r>oö(G) where ß(G) is the diagonal comultiplication (cup

coproduct)

ß(G): H2(G; Z) -* HX(G, Z)VHX(G; Z) ç //,(G; Z) ® /f,(G; Z)

and </> is the isomorphism defined by

(xtG2 ® x,G2 - x,G2 ® x,G2) -» x,G2 A *,G2,       1 < i <j < n.

Suppose G and H are testable groups with isomorphic integral homology

modules. If a: H2(G; Z) -» H2(H; Z) is an isomorphism (so a = ± 1) and /}:

HX(G; Z) —» HX(H; Z) is any isomorphism, it is easy to deduce that

(ß ® /?) ° ß(G) = ß(//) » a»(jSA /?) » ^(G) = <$(#) » a.

When isomorphisms a and yS exist satisfying these conditions, we write ß(G) —

$i(H) via (a, ß), or, equivalently, ^(G) ~ ty(H) via (a, /})> and — is an equiva-

lence relation on the set of such homomorphisms.

Since ß(G) ~ ß(/Y) via (a, ß) if and only if M(H) = ± BTM(G)B, where £ is

the change-of-basis matrix corresponding to ß, we conclude that ß(G) — Q(H) if

and only if Af(G) and M(H) have the same invariant factors (for instance, see [5,

Theorem IV.3]). This specifies the connection between the test sequence TS(G) and

the homomorphism ^(G):

TS(G) = TS(H) <=> 6D(G) ~ <%(H).

A preliminary definition is needed before the relationship between ^(G) and

G2/G3 may be described. Any isomorphism ß: HX(G; Z) -> HX(H; Z) induces a set

map ß': G2/G3 -» H2/H3 given by

/8'( ñ [&,*;]«<?,) = n [MÄ),Mg;)]^3
\i=i /  /-i

where h(g) is a coset representative of ß(gG2). It follows that

[,]o(/}A/}) = /3'°[,].

(3.2) Theorem. Let G and H be testable groups and let ß: HX(G; Z) -» /f,(/f; Z)

6e a/j isomorphism. Then <5D(G)~6D(/Y) t)w (a,/3) i/ ant/ only if ß'\ G2/G3^>

H2/H3 is an isomorphism.

Proof. Consider the commuting diagram

<3)(G) [,]

H2(G;Z)       -»        /\2HX(G;Z)     U      G2/G3     -»     1

Mil ° |j»'

^^;Z)    ^    A2#,(#;Z)   (-+    ^2/^3   -+   1

If ^(G) — ty(H) via (a, /?) then ß' is an isomorphism immediately. Conversely, if

ß' is an isomorphism,  then since (in either row) Ker[  , ] is unique up  to
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nonisomorphism of one-relator GROUPS 199

isomorphism, there exists an isomorphism a: H2(G; Z) —* H2(H; Z) such that

(ß/\ ß)° 6D(G) = <%(H)°a.   U

(3.3) Corollary. If G and H are testable groups with isomorphic integral

homology then TS(G) = TS(H) if and only if there exists an isomorphism ß:

HX(G; Z) -* HX(H; Z) inducing an isomorphism ß': G2/G3 -* H2/H3.   □

Finally, suppose y: G -> H is an isomorphism of testable groups. Then y induces

isomorphisms yab: HX(G; Z)-» HX(H; Z) and y2: G2/G3-> H2/H3 with y2 = y^,

necessarily. Hence

TS(G) ¥= TS(H) =*G*H.

4. General use of the test.

(4.1) Groups with torsion. (See [6, Corollary 4.13.1], for example.) If G and H are

torsion-free   one-relator   groups   with   G = <*,, . . . , x„: r>    and   H =

<x„ . . ., x„: s) and if G(k) = <x„ . .., x„: r*>  and H(k) = <x„ . . . , x„: sk}

then

GmH=> G(k) m H(k)   for all k e Z.

(4.2) Infinitely generated groups. If G* is an infinitely generated one-relator group

it can be decomposed as a free product G* = G * G' where G is a finitely-gener-

ated one-relator group on a minimum number of generators and G' is free on the

set X(G). If H* = H * H' is another such decomposition, the Kurosh decomposi-

tion theorem [4, §35] implies

G*a//*«*Gs//and card X(G) = card X(H),

so in particular G 9* // => G* s* H*.

This analysis also applies to finitely generated groups not presented on a

minimal generating set.

(4.3) Groups with trivial second integral homology. If G* is a one-relator group

with H2(G*; Z) = 0 it may be embedded in a one-relator group G with H2(G; Z)

=?*= 0 in such a fashion that if H* is another such group then in certain cases G & H

implies G* & //*.

Let G* = (x,, . . ., xn: r*> where r* is cyclically reduced of length > 1 and

n > 2. If F* is the free group on {*,,. . ., xn) then r* & FJ and thus some

generator of F* has nonzero exponent sum in r*. By [6, Theorem 3.5] it may be

assumed that only one generator (xx say) has nonzero exponent sum (a say) in r*.

Then G* can be embedded in a one-relator group G = <a, b, x2, . . . , xn: r} in

which every generator has zero exponent sum in r. In fact G = G* *A Y where Y is

the free group on {a, b) and the (free) subgroup A of G* generated by {x,} is

amalgamated by the isomorphism xx -» [a, b]. If G* is torsion-free then so is G and

H2(G; Z) ^ Z. Finally, suppose /f* is another such group with isomorphic integral

homology. Necessarily H* has a presentation <x,, .. ., xn: j*> where xx is the only

generator with exponent sum nonzero (in fact equal to a). If G * H, then one of

two conclusions may be drawn: either G* * /f*, or else G* — if* but no isomor-

phism <f>: G* -» if* has <Kx,) = xf.
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5. Concluding remarks. Since Ker i = R n F3[R, F]/[R, F] for a testable group

G, it follows that 6D(G)~0 if and only if r G F3. Equivalently, if H =

<Xj, . . ., x„: j> is another testable group, then ^)(G) = ^(H) if and only if

r = s mod F3, or, in other words, TS(G) ¥• TS(H) only if r ^ s mod F3. Thus the

test sequence is not sufficient to distinguish between one-relator groups. For

instance, if G = <x„ x2: [jt„ x2]~) and H = <x,, x2: [x2, x2]}, then TS(G) =

TS(H), but G & H since G has infinite cyclic centre and H has trivial centre.

However, the test sequence for G does generally carry more information than is

given by G2/G3, by virtue of Corollary (3.3). In fact, if the relator r of the testable

group G is written in the form r = r* mod F3 specified earlier, then the relation

matrix of the abelian group G2/G3 is the single column matrix «r*, [x„ xy]>) with

1 < / <j < n. Hence G2/G3 s Z/<g> © Zm_1, where m ={n(n - 1) and g -

gcd{<r*, [x„ *,]>, 1 < i <j < n). Because TS(G) = (g, g, s3,.. ., sn) it follows

that for another testable group H, G2/G3 ^H2/H3 if and only if TS(G) and

TS(H) agree on their first two coordinates.
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