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ABSTRACT:

Reliable obstacle avoidance is a key to navigating with UAVs in the close vicinity of static and dynamic obstacles. Wheel-based mobile
robots are often equipped with 2D or 3D laser range finders that cover the 2D workspace sufficiently accurate and at a high rate. Micro
UAV platforms operate in a 3D environment, but the restricted payload prohibits the use of fast state-of-the-art 3D sensors. Thus,
perception of small obstacles is often only possible in the vicinity of the UAV and a fast collision avoidance system is necessary. We
propose a reactive collision avoidance system based on artificial potential fields, that takes the special dynamics of UAVs into account
by predicting the influence of obstacles on the estimated trajectory in the near future using a learned motion model. Experimental
evaluation shows that the prediction leads to smoother trajectories and allows to navigate collision-free through passageways.

1 INTRODUCTION

We aim for fully autonomous geometric and semantic mapping
of (partially) unknown environments using a multicopter based
on the MikroKopter platform (MikroKopter, 2013). This high-
level task demands detailed flight plans that fulfill the mission
objectives and ensure collision-free navigation in the vicinity of
buildings, vegetation, and dynamic obstacles. Due to the com-
plex flight dynamics of the unmanned aerial vehicle (UAV) and
dynamic or previously unknown obstacles, it is necessary for the
UAV to quickly react on deviations from the plan. For this pur-
pose we follow a multi-layer approach for the navigation of the
UAV. Within the lower layers, high-frequency controllers stabi-
lize the attitude of the multicopter. A control layer provides an
interface to the higher layers, allowing control of linear and an-
gular velocities instead of the multicopter’s attitude and thrust.
Between the control and the higher planning layers (3D path and
mission planning), we employ a fast reactive collision avoidance
module based on artificial potential fields (Ge and Cui, 2002).
We have chosen this approach as a safety measure reacting di-
rectly on the available sensor information at a higher frequency
than used for planning. This enables the UAV to immediately
react to perceived obstacles in its vicinity. Furthermore, it can
handle small deviations from the planned path caused by external
influences such as wind without raising the need to costly replan-
ning on higher planning layers. Also in manual operation, obsta-
cle avoidance assists a human pilot to operate the UAV safely in
challenging situations, e. g., flying through a narrow passageway.

We take the special properties of UAVs in contrast to earthbound
vehicles into account, by extending the classic potential field ap-
proach to collision avoidance with a prediction of the outcome
of a chosen control for a fixed time horizon. This improves the
navigation performance and closes the gap between pure reactive
control and planned motions.

After a discussion of related work in the next section, we will
briefly describe our UAV’s motion control architecture. In Sec. 4
we detail our potential field-based approach to collision avoid-
ance. The used motion model is explained in Sec. 5. We give
an overview over our simulation environment and report results
from simulation and a proof of concept example on the real UAV
in Sec. 6. Finally, we conclude our paper and discuss future work.

Figure 1: Our local obstacle avoidance algorithm acts as a safety
measure between control inputs given by a planning layer or a
human pilot remotely controlling the robot. This ensures safe
operation in challenging situations, e. g., narrow passageways.

2 RELATED WORK

The application of UAVs in recent robotics research varies es-
pecially in the level of autonomy ranging from basic hovering
and position holding (Bouabdallah et al., 2004) over trajectory
tracking and waypoint navigation (Puls et al., 2009) to fully au-
tonomous navigation (Grzonka et al., 2012).

Particularly important for fully autonomous operation is the abil-
ity to perceive obstacles and avoid collisions. Obstacle avoidance
is often neglected, e. g., by flying in a certain height when au-
tonomously flying between waypoints. Most approaches to ob-
stacle avoidance for micro UAVs are camera-based due to the
constrained payload (Mori and Scherer, 2013, Ross et al., 2013).
Hence, collision avoidance is restricted to the narrow field of view
(FoV) of the cameras.

Other groups use 2D laser range finders (LRF) to localize the
UAV and to avoid obstacles (Grzonka et al., 2012), limiting obsta-
cle avoidance to the measurement plane of the LRF, or combine
LRFs and visual obstacle detection (Tomić et al., 2012). Still,
their perceptual field is limited to the apex angle of the stereo
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Figure 2: The control concept of our UAV is a hierarchical con-
trol architecture with planning layers on the top and faster con-
trol layers on the bottom. A path planner ensures the planning
completeness, a fast obstacle avoidance layer selects appropriate
velocity commands. These are fed to low-level controllers to con-
trol the UAV. Commands are depicted by solid lines, data flow is
depicted by dotted lines.

camera pair (facing forwards), and the 2D measurement plane of
the scanner when flying sideways. They do not perceive obstacles
outside of this region or behind the vehicle.

We allow omnidirectional movements of our UAV, thus we have
to take obstacles in all directions of the UAV into account. Our
main sensor for omnidirectional obstacle perception is a lightweight
rotating 3D laser scanner based on a Hokuyo UTM-30LX-EW
2D LRF. Furthermore, we augment our obstacle map with visu-
ally perceived objects from two wide-angle stereo cameras. To
perceive smaller objects, or objects that optical sensors cannot
perceive reliably, we installed a ring of eight ultra sonic sensors
covering the volume around our UAV. For a detailed description
of our sensor setup and the processing pipeline see (Holz et al.,
2013, Droeschel et al., 2013). Another micro UAV with a sensor
setup that allows omnidirectional obstacle perception is described
in (Chambers et al., 2011).

A two-level approach to collision-free navigation using artificial
potential fields on the lower layer is proposed in (Ok et al., 2013).
Similar to our work, completeness of the path planner is guaran-
teed by a layer on top of local collision avoidance. In contrast to
this work, we consider the current motion state of the UAV and
select motion commands accordingly.

Some other reactive collision avoidance algorithms for UAVs are
based on optical flow (Green and Oh, 2008) or a combination of
flow and stereo vision (Hrabar et al., 2005). However, solely op-
tical flow-based solutions cannot cope well with frontal obstacles
and these methods are not well suited for omnidirectional obsta-
cle avoidance as needed for our scenario.

Recent search-based methods for obstacle-free navigation include
(MacAllister et al., 2013, Cover et al., 2013). A good survey on
approaches to motion planning for UAVs is given in (Goerzen et
al., 2010). These methods assume complete knowledge of the
scene geometry, an assumption that we do not make here.

3 CONTROL ARCHITECTURE

We designed a hierarchical control architecture for our UAV, with
high-frequency controllers on the lower layers and slower plan-
ners on the upper layers, that solve more complex path and mis-
sion planning problems at a lower frequency (see Fig. 2). In this

Figure 3: We discretize our UAV into cells (blue) and calculate
the forces per cell. The artificial force applied to the UAV is
the average of all forces. The nearest obstacles to the cells are
depicted by red lines.

paper, we abstract the planning layers as a black box providing
the lower layer with globally consistent paths given a static envi-
ronment model and the local obstacle map. The provided trajec-
tories serve as input for the local collision avoidance layer, that
we will detail in the next section. Due to the reactive nature and
restricted information about the environment, the local collision
avoidance can get stuck in local minima. In this case, a failure
condition is detected and a global path planner has to be triggered
to generate a new valid trajectory.

The local obstacle avoidance commands ego-centric linear veloc-
ities to the low-level control layer at a rate of 10 Hz. The UAVs
onboard hardware controllers control the attitude of the vehicle
according to measurements of an onboard inertial measurement
unit (IMU). The attitude is closely related to the acceleration of
the UAV (c.f. Sec. 5), but small measurement errors of the IMU
and other sources of acceleration like the air flow render simple
integration over time to estimate the UAVs velocity infeasible.
Hence, we added another control layer between the local obsta-
cle avoidance and the hardware controller, that controls the UAVs
attitude according to a commanded linear velocity setpoint. We
employ decoupled PID controllers for each element of the four di-
mensional setpoint (vx, vy, vz, ω). The controlled motion state is
estimated by an extended Kalman Filter (EKF) and observations
from multiple sources, i. e., IMU data, optical flow (Honegger
et al., 2013), visual odometry (Klein and Murray, 2007), GPS,
and possibly other external sources, like a motion capture sys-
tem, depending on the availability. A motion model can be used
to predict away the control latencies.

4 LOCAL OBSTACLE AVOIDANCE

The major design goal of our approach to obstacle avoidance is to
react quickly on newly perceived obstacles. For this purpose, we
extend artificial potential fields as these can be evaluated at the
same frequency as new sensor data is processed. Furthermore,
even in cases where it becomes infeasible to determine a valid
trajectory to an intermediate goal or a collision is inevitable, the
resulting control command will avoid obstacles or at least decel-
erate the UAV, in the later case.

As input for our algorithm, we consider a robot-centered 3D oc-
cupancy grid, the current motion state xt, and a target waypoint
wt on a globally planned 3D path. In detail, the 3D occupancy
grid incorporates measurements of a rotating laser-range finder
(Droeschel et al., 2013), ultrasonic distance sensors covering the
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space around the robot and two stereo-camera pairs with wide-
angle lenses (Holz et al., 2013). The motion state xt consists of
the current linear velocity vt = (vx, vy, vz), the rotational veloc-
ity ωz , and the attitude of the UAV Rt = (ρ, φ) in an egocentric
coordinate frame aligned to the floor. A waypoint is defined by a
3D position and 1D orientation wt = (x, y, z, ψ).

The artificial potential field approach is inspired by physical po-
tential fields. In general, the robot is modeled as a particle pas-
sively moving through a field induced by attractive and repul-
sive forces. One or more goals induce attractive forces. In this
work, we consider only one goal, the waypoint wt, inducing
the force Fa. This attractive force directs the UAV towards the
goal. The waypoint is selected from a globally planned path
in a way that avoids the reactive approach to get stuck in a lo-
cal minimum. The perceived obstacles induce repulsive forces
on the flying robot. The magnitude of the repulsive force Fr

of the closest obstacle o at a position p is calculated as Fr,p =
costs (argmino (‖o− p‖)), where costs is a function that is
zero in a user-defined safe distance to obstacles and raises with
decreasing distance. This yields a repulsive force vector ~Fr,p =
Fr,p

p−o
‖p−o‖ .

The resulting force at a discrete position is now the weighted sum
of the attractive and repulsive forces Fp = aFa,p + bFr,p, with
user-defined weighting factors a, b. A 2D example of the result-
ing potential field is depicted in Fig. 4.

As most of the cells in our obstacle map are free space, we do
not pre-calculate the forces for every cell, but only for cells that
intersect with the robot’s bounding box. Due to the discrete na-
ture of our algorithm, we split the robot’s bounding box into cells
matching the size of a cell in our obstacle map. The resulting
force applied to the robot is the average of all forces applied to
the center points of these cells (see Fig. 3). Thus, we do not
need to enlarge obstacles and avoid oscillations caused by the
discretization. The motion command sent to the robot’s low-level
controller is calculated according to the resulting artificial forces.

In contrast to the idealized massless particle assumed in the po-
tential field approach, frequent acceleration and deceleration of
the UAV to follow the most cost-efficient path through the field
is disadvantageous. To be able to totally change the motion di-
rection at every discrete position would require low velocities.
Hence, we accept suboptimal paths, as long as they do not lead to
a motion state that will cause a collision in the future, e. g., if the
UAV becomes too fast in the vicinity of obstacles. To account for
the dynamic state xt of the UAV, we predict the robot’s future tra-
jectory Tt given the current linear velocities vt, the attitude Rt,
and the probable sequence of motion commands ut:t+n given in
the next n time steps (Fig. 5). To predict the trajectory, we em-
ploy a learned motion model of the UAV (c.f. Sec. 5) and the
expected resulting forces along the trajectory, given the current
knowledge about the world.

These predicted forces are used to influence the motion command
selection. Larger forces indicate that the UAV will come close to
an obstacle in the future while following the trajectory started
by the current motion command. Hence, the next velocity com-
manded to the low-level controller needs to be reduced, accord-
ingly. This is implemented in our algorithm as a reduction of the
maximum velocity for the next motion command, if the magni-
tude of the forces along the trajectory becomes too large. For
the prediction of the trajectory, this new maximum velocity is as-
sumed as the maximum in the predicted future.

Figure 5: We predict the influence of a motion command by
rolling out the robot’s trajectory (green) using a learned motion
model. The current artificial repulsive forces are depicted in red.

The prediction of the trajectory Tt is implemented as follows

Tt = pt:t+n = (pt, pt + 1, . . . , pt+n)

pi+1 = Axi +Bui + pi i ∈ [t : t+ n− 1]

ui = C ~Fpi ,

where A,B denote matrices based on our motion model (de-
scribed in the next section) to estimate a pose difference given
the dynamic state and a control input. C denotes a mapping of
a force vector to a velocity command. Given the estimated se-
quence of future positions pt:t+n, we search the smallest index
i ∈ (t : t+ n) for which the magnitude of the force exceeds a
threshold, i. e., Fpi > Fmax. If such an i exists, we reduce the
maximum velocity vmax to

vnew =

(
1

2
+

i

2n

)
vmax.

Hence, while approaching an obstacle the maximum velocity com-
manded to the UAV is gradually reduced.

In the case that no trajectory with sufficiently small predicted
forces can be found, the UAV stops. Here, we exploit the property
of multicopters that, in contrast to fixed-wing UAVs, the dynamic
state of the system can be changed completely within a short time.
Hence, the look-ahead needed to estimate the effects of a control
input is tightly bound. We have chosen the length of the trajec-
tory roll out as the time the multicopter needs to stop, which is
one second.

5 LEARNING A MOTION MODEL

To obtain a motion model of our robot we fly our multicopter re-
mote controlled within a motion capture system (MoCap). This
system provides ground-truth data of the robot’s position and at-
titude at an average rate of 100 Hz allowing for the derivation of
the robot’s dynamic state. Due to inconsistent delays within the
MoCap system, captured data is often noisy and unsuitable for
simple delta-time differentiation needed to correctly calculate the
dynamic state. Thus after capturing, all data is processed using a
low-pass filter allowing for more accurate estimates of instanta-
neous velocities.

The filtered state measurement must then be synchronized with
the user’s control commands to derive the motion model. Due
to previously discussed MoCap time delays and the architecture
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Figure 4: The robot’s local trajectory (green) is influenced by a weighted sum of attractive (left) and repulsive forces (middle). This
induces an artificial potential field to navigate collision-free to an intermediate goal (right).

of the data capturing system, these two components are initially
captured using different computer system and later fused. As
timestamps rarely coincide, interpolation of the filtered state is
matched with control commands and transformed from the ”cap-
ture frame” into the ”UAV frame” while scaling the control com-
mands to a [−1, 1] scale. The final state estimate data can be used
to derive the motion model parameters.

Several effects from flying within the MoCap system must be
considered before an appropriate motion model can be derived.
Due to a restricted capture volume, external thrust effects can be
observed due to ground, ceiling, and wall planes interacting with
the propeller-generated wind. These effects are minimized when
flying within the central region of the capture volume, thus data
acquisition is only performed within this restricted volume. Ad-
ditionally, some maneuvers are impossible to capture due to both
safety and acceleration constraints - however as flying advanced
maneuvers is not a goal of the project, this issue can be safely
ignored. Using this simple set of capture constraints, external
factors to the motion of the multicopter can be minimized.

We model the flight dynamics as a time-discrete linear dynamic
system (LDS) xt+1 = Axt + But that predicts the state of the
UAV at the time t+ 1 given the current state estimate xt (i.e. at-
titude Rt, position pt, angular ωt and linear vt velocities, thrust
Tt) and the user command input ut. The state transition model
A and control-input model B are fitted to the captured data using
ordinary least squares. Due to the properties of a multicopter and
through repeated verification using the MoCap system, the atti-
tude in the horizontal plane (i.e. roll and pitch) when maintaining
altitude is assumed to be proportional to the acceleration along
the corresponding axis. Additionally, the yaw component of the
model is considered independent from the remaining parameters.

Considering only the horizontal plane velocity and attitude (i.e. x
and y axes), the transition model A for the x and y axis velocities
has the general form:

[
Dxx Dxy Axx Axy

Dyx Dyy Ayx Ayy

]
with state input xt =


Vx

Vy

Rx

Ry


where Dij represents the dampening effects in the i-axis given
the j-axis velocity and Aij represents the acceleration effects
from attitude in the i-axis given the j-axis attitude. Generally
the dampening terms Dxx, Dyy are near 1; Dxy , Dyx are near 0
while the acceleration terms Axy , Ayx correspond to the propor-
tionality constant of the attitude; Axx, Ayy are near 0 (note that
an attitude in one axis affects the acceleration of the perpendicu-
lar axis). Additionally, due to a non-symmetric inertia tensor of

the multicopter, these matrix values may also not be symmetric
resulting in different accelerations and dampening for the forward
and lateral movements. The reduced state input consists of the x
and y axis velocity (Vx, Vy) and the x and y axis rotations corre-
sponding to roll and pitch, respectively (Rx, Ry).

Through similar analysis, the control-input model B in the hori-
zontal plane velocity and attitude (x and y axes) has the general
form: 

ΦAxαx
ΦAxαy

ΦAyαx ΦAyαy

δxx δxy

δyx δyy

 with control input ut =

[
αx

αy

]

where ΦAij represents the integrated accelerations from control
input angles over the time period used for model learning in the i
axis from control input j. δij approximates the reaction constants
of the multicopter system to reach a desired attitude in the i axis
from the j axis desired input. The control input is the desired
attitude for the x and y axes (i.e. roll and pitch respectively).
Both ΦAxαx

, ΦAyαy
are relatively large while ΦAxαy

, ΦAyαx

are small showing a independence between multicopter rotation
axes. The δ values also show an independence between rotation
axes, however their values are specific to both the multicopter
control reaction speed, control delay, thrust output, and time pe-
riod used for learning.

In addition to predicting the trajectory for the purpose of colli-
sion avoidance, this model can be utilized in the low-level ve-
locity controller (Achtelik et al., 2009), for kinodynamic motion
planning (Şucan and Kavraki, 2009), and to predict away system
delays due to the time difference of control input and control exe-
cution. Furthermore, our simulation environment uses the model
to ensure realistic behavior of the simulated multicopter.

6 EVALUATION

We evaluate the accuracy of our learned motion model and the
performance and reliability of our predictive collision avoidance
module in simulation and on the real system.

6.1 Simulation Environment

To test and evaluate our system, we employ the physics-based
simulation framework Gazebo (Koenig and Howard, 2004). The
Simulator is well integrated into the robotic middleware Robot
Operating System (ROS) (Quigley et al., 2009) that we use to
operate our robots. The physics engine of Gazebo is not aiming
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Figure 6: Example of a learned motion model. We compared the
predicted pitch angle and resulting linear velocity (crosses) given
an user input with the measured ground-truth data (lines).

at simulating flying robots. Hence, we extended the simulator to
move objects according to a black box motion model, given exter-
nal control inputs and timings from simulation. Here, we can use
learned motion models of a UAV as plugins to move them realis-
tic, without loosing other capabilities of the simulator like simu-
lated sensors or collision detection. Furthermore, we developed
modules to support multi-echo laser range finders (e. g., Hokuyo
UTM-30LX-EW) and ultra sonic sensors.

6.2 Experiments

We tested our approach in waypoint following scenarios in sim-
ulation. The tests include bounded environments with walls and
unbounded environments, where the waypoints direct the UAV
through window like openings of different size. These experi-
ments revealed that our collision avoidance approach is able to
follow paths, if a relatively sparse trajectory is given that cov-
ers the most crucial navigation points. The simulated UAV was
able to fly through all passageways and windows of its size plus a
safety margin (see Fig. 5). The prediction of the near future out-
come of motion commands leads to smoother trajectories, keep-
ing the UAV further away from obstacles than the same potential
field approach without trajectory prediction while allowing com-
parable velocities as the classic approach.

We compared our approach with a classic potential field approach
without look-ahead in a scenario containing several walls with
window-like openings of different size. Furthermore, we evalu-
ated the effect of a fixed reduction of the velocity with and with-
out trajectory prediction, i. e., reduced velocity if a force thresh-
old is reached now or in the predicted time horizon, respectively.
Example trajectories from the test runs are depicted in Fig. 7. We
summarize the average repulsive forces, a measure of the prox-
imity of obstacles during a flight, and the average durations of the
test runs in Tab. 1. No collisions occurred during these test runs.
Experiments with the real system have shown that the hovering
multicopter can avoid approaching obstacles.

We evaluated the learned motion model by comparing the propa-
gated dynamic state of an UAV given an user input with ground
truth data from the MoCap (Fig. 6). The predicted state of the
UAV matches the real state well for time periods sufficiently long
for our predictive approach.

Our collision avoidance approach runs at approximately 100 Hz
on a single core of an Intel Core 2 processor, which includes data

Table 1: Effect of slowing down with and without prediction
compared to the standard potential field approach (PF). Fixed
slow down due to predicted future forces leads to a slight increase
in the flight time, but a decrease in the average repulsive force ap-
plied to the UAV. Adapting velocities according to the predicted
duration of the flight until the force threshold is reached mitigate
the slow down effects.

Time (s) Avg. Force Frac. of PF
PF 11.9 (0.5) 0.44 (0.06) 1
Slow Down 12.56 (0.8) 0.43 (0.04) 0.98
Slow Down 1 s 14.3 (1.7) 0.28 (0.04) 0.64
Adaptive Vel. 1 s 12.9 (0.8) 0.3 (0.01 ) 0.68

acquisition and map building. Hence, this collision avoidance al-
gorithm is particularly well suited for UAVs with relatively small
processing power or complex scenarios where the onboard com-
pute unit has to carry out many other processing tasks in parallel.

7 CONCLUSIONS

We developed a fast, reactive collision avoidance layer to quickly
react on new measurements of nearby obstacles. It serves as
a safety measure between higher planning layers or commands
given by a human pilot and the low-level control layer of the UAV.
Standard potential field approaches assume that the motion of a
vehicle can be changed immediately at any position in the field.
To overcome this limitation, we predict the trajectory resulting
from the current dynamic state and the artificial potential field
into the future. This leads to safer and smoother trajectories for a
multicopter. To predict the UAV’s trajectory we employ learned
motion models.

In future work, we will focus on the high-level planning layers,
to plan qualitatively good, globally consistent, paths at a rate of
1 Hz or faster, to avoid local minima and to accomplish the mis-
sion goals in an optimal way. Therefore, we will employ mul-
tiresolution path planning techniques (Behnke, 2004), that we
will transfer from earthbound robots to UAVs. Furthermore, we
will investigate the possibility to learn motion models outside of
a MoCap system using precise differential GPS and IMU data.
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