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Abstract. Cloud-to-ground (CG) lightning flash data col-
lected by the lightning detection network installed at the Ko-
rean Meteorological Administration (KMA) have been used
to study the urban effect on lightning activity over and around
Seoul, the largest metropolitan city of South Korea, for the
period of 1989–1999. Negative and positive flash density and
the percentage of positive flashes have been calculated. Cal-
culation reveals that an enhancement of approximately 60%
and 42% are observed, respectively, for negative and positive
flash density over and downwind of the city. The percent-
age decrease of positive flashes occurs over and downwind of
Seoul and the amount of decrease is nearly 20% compared to
upwind values. The results are in good agreement with those
obtained by Steiger et al. (2002) and Westcott (1995). CG
lightning activities have also been considered in relation to
annual averages of PM10 (particulate matter with an aero-
dynamic diameter smaller than 10µm) and sulphur dioxide
(SO2) concentrations. Interesting results are found, indicat-
ing that the higher concentration of SO2 contributes to the
enhancement of CG lightning flashes. On the other hand,
the contribution from PM10 concentration has not appeared
in this study to be as significant as SO2 in the enhancement
of CG lightning flashes. Correlation coefficients of 0.33 and
0.64 are found between the change in CG lightning flashes
and the PM10 and SO2, respectively, for upwind to downwind
areas, suggesting a significant influence of the increased con-
centration of SO2 on the enhancement of CG flashes.
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1 Introduction

The urban effect on enhancing cloud-to-ground (CG) light-
ning activity over and downwind of cities has first been doc-
umented by Westcott (1995). Several studies have been per-
formed after Westcott (1995) to study the effect of an ur-
ban area on the initiation and enhancement of CG lightning
(e.g. Orville et al., 2001; Steiger et al., 2002; Soriano and
Pablo, 2002). Most of these studies have ascribed the effect
to the urban heat island circulation, along with a possible
role for air pollution. The effects of an urban area on the lo-
cal weather activities have been found in several studies (e.g.
Changnon et al., 1981; Landsberg, 1981; Balling and Idso,
1989). A long-term study conducted by Steiger et al. (2002)
on the percentage of positive flashes and peak current over
Houston, Texas was the first to investigate the urban effect
on lightning characteristics in these categories. They have re-
ported a−12% decrease in the percentage of positive flashes
and no significant effect on the peak current of negative and
positive CG flashes.

Due to the existence of a physical relationship between
lightning activity and convective precipitation (Petersen and
Rutledge, 1998; Soriano et al., 2001; Kar and Ha, 2003), ur-
ban effects on lightning are expected. However, the concen-
tration of cloud condensation nuclei (CCN) can be uplifted
by the pollution over the cities, which, in turn, might produce
changes in the microphysical processes taking place inside
the clouds. As a result of such changes in cloud microphys-
ical processes, a change in the charge separation processes
in thunderclouds is expected because of its dependence on
concentration, phase and the size of cloud particles. In the
boundary layer the increased pollution is expected to be op-
erative in suppressing the mean droplet size, and more cloud
water would therefore be operative in separating the elec-
tric charge, leading to the creation of more CG lightning
flashes (Orville et al., 2001). The urban enhancement of CG
lightning activity that might be associated with high PM10
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and SO2 concentrations has first been suggested by West-
cott (1995). After that a long-term analysis over the city of
Houston has been carried out by Orville et al. (2001) and
they reported an association between urban heat island and
anthropogenic pollution in the enhancement of flash density
over and downwind of the urban area.

However, no attempt has yet been made to investigate
the urban effect on lightning activity over the South Korean
peninsula, except a few studies on lightning and precipita-
tion (Kar and Ha, 2003; Lim and Lee, 2002). In this paper,
a 10-year climatological analysis of lightning data was made
over and near Seoul (37◦34′, 126◦58′), which is one of the
most populated cities in the world and is the capital of South
Korea, with over ten million people. The urban area of Seoul
is nearly 605 km2, and is similar to Houston in that both are
situated near a coastal area. Flash density of both polarity
and the percentage of positive flashes have been calculated.
The results are presented and compared to those obtained by
Steiger et al. (2002). Investigations have also been made on
the possible influence of PM10 and SO2 on lightning activity
and have been compared with the results available in the lit-
erature. As far as our knowledge is concerned, this is the first
long-term study of the urban effect on lightning activity over
a large city on the Korean peninsula.

1.1 Data and methodology

The lightning data used in this study have been collected
from a lightning detection network installed by the Korean
Meteorological Administration (KMA). The network con-
sists of an advanced Position Analyzer, Model 280 (APA),
Advanced Display System (ADS), Network Display Sys-
tem (NDS), Integrated Storm Information System (ISIS) and
Advanced Lightning Direction Finder (ALDF, model 141),
made by Lightning Location and Protection, Inc., which is
currently known as Vaisala, Tucson, Arizona. Cloud-to-
Ground (CG) lightning strikes are detected by each magnetic
direction finder and the direction finder determines the direc-
tion toward a detected electromagnetic lightning discharge.
Each lightning event, after being detected by the sensors, is
transmitted to the position analyzer, to determine its polar-
ity, amplitude, latitude, longitude, date and time of occur-
rence. Nearly 80%–90% of all CG lightning is automatically
detected by a direction finder, which occurs within a nomi-
nal detectable distance of 400 km, with less than 4-km accu-
racy. However, especially near the edges of the network, the
assumption of 80% uniform flash detection efficiency may
not be realistic. In our present analysis no attempt has been
taken to correct the detection efficiency. The details of the
detection efficiency of the lightning network from its past
to its present form has been summarized by Cummins et
al. (1998a, b) of Vaisala, Inc.

For this study, we have used a spatial scale of approxi-
mately 0.08◦ latitude×0.08◦ longitude. The number of CG
flashes within the specified block surrounding Seoul city

has been counted. The area associated with each grid box
is ∼8.8 km×6.6 km∼58 km2. Hence, each block associ-
ated with upwind, over and downwind comprises 10 grid
boxes. These 10 grid boxes cover almost the whole urban
area of Seoul. Generally, the upwind and downwind areas
were selected based on the strong prevailing wind motion.
The prevailing wind motion in the Korean peninsula has a
clear southwesterly component and, hence, upwind (down-
wind) areas are located to the southwest (northeast) (Sun and
Lee, 2002). In calculating the upwind, urban and downwind
CG lightning flash density, we have followed the procedure
adopted by Soriano (2002), but the selection of our spatial
scale in counting the lightning flash is considerably different
from that used by Soriano (2002), who used a spatial scale
of 0.1◦ latitude×0.1◦ longitude. Hence, to accomplish this,
the number of CG flashes in blocks, each comprising 10 grid
boxes, within the urban area of Seoul city, is counted. But
in the case of upwind and downwind areas, first the num-
ber of CG flashes is counted in blocks which are located to
the west, south-west, south, north, northeast and east of the
town. Then the total number of CG flashes over upwind and
downwind areas is counted by taking the mean of the three
southwest and northeast blocks, respectively. The number of
flashes within the urban area is then compared to that of the
flashes in the upwind and downwind areas. Calculation of
negative flash density, positive flash density and the percent-
age of positive flashes for upwind and downwind areas, have
been made in a similar way. The number of grid boxes in
upwind and downwind areas, for computing the number of
lightning flashes, is equal to the number of grid boxes within
urban area of Seoul city in which urban lightning flashes are
counted. The number of grid boxes in upwind, urban down-
wind areas is equal. The number of lightning flashes in each
block is counted for a ten-year period and then averaged. In
calculating the total number of CG flashes over upwind, ur-
ban and downwind areas, we have ignored the polarity of
lightning flash. In contrast, in calculating the flash densities
of both polarities and the percentage of positive flashes, we
have paid special attention to the polarity of lightning flashes.
The percentage increase in the lightning flash density over a
particular region has been calculated by taking the difference
in the average flash density between that particular region
and its neighbouring region and dividing it by the average
flash density of the neighbouring region and finally multi-
plying the number by one hundred. Figure 1 shows the loca-
tion of the sensors and Seoul city. The sensors automatically
detect over 90% of all cloud-to-ground lightning occurring
within a nominal detectable distance, with less than 1 km ac-
curacy, as shown in Fig. 1. The system accuracy and de-
tection efficiency are indicated by the thick black and gray
contours, respectively.
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Fig. 1. Location of the sensors and the city of Seoul. Thick black
and gray lines are system accuracy and detection efficiency, respec-
tively. Small circles (o) indicate the location of lightning stations.

Fig. 2. Spatial distribution of negative flash density (fl km−2 yr−1)

over Seoul for the years 1989–1999.

1.2 Results and discussion

The spatial distribution of the mean annual negative and pos-
itive flash density over Seoul and nearby areas has been pre-
sented in Figs. 2 and 3, respectively. A significant enhance-
ment of negative and positive flash density is noticed over
and downwind of the city. The prevailing winds over the Ko-
rean peninsula have a clear southwesterly component and,
hence, upwind (downwind) areas are located to the southwest
(northeast). A significant enhancement of approximately
60% and 42% are observed, respectively, for negative and
positive flash density over and downwind of the city, com-
pared to the nearby surrounding areas. The percentage in-
crease in the flash density found in this study corresponds
well with the results reported by Wescott (1995) and Steiger
et al. (2002), but it is bit low compared with the results found
by Pinto et al. (2004).

Fig. 3. Spatial distribution of positive flash density (fl km−2 yr−1)

over Seoul for the years 1989–1999.

Fig. 4. Spatial distribution of percent positive flashes over Seoul for
the years 1989–1999.

The spatial distribution of the percentage of positive
flashes over Seoul and nearby areas has been depicted in
Fig. 4. An approximate decrease in the percentage of pos-
itive flashes occurs over and downwind of Seoul. The per-
centage decrease of nearly 20% is evident compared to the
surrounding areas. This result agrees fairly well with that
obtained by Steiger et al. (2002), who reported a decrease of
−12% over Houston compared with surrounding areas. Pos-
sible explanations of such a decrease in percentage of pos-
itive flashes can be given from the microphysical processes
of charge separation. The sign and magnitude of the charge
transfer to the graupel target during ice crystal interaction is
largely dependent on the impurities in the cloud water, as
suggested by Jayaratne et al. (1983). During their experi-
ment they have found that the graupel target charged nega-
tively for all temperatures (−6◦C to−25◦C) after impurities
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Fig. 5. Scatter plot and best-fit line of percent change in the number
of CG flashes and annual averages of PM10 concentrations for the
years 1995–1999.

were placed in the cloud. If the droplets contained a small
amount of the most commonly available natural contami-
nants, the charge reversal temperature of−25◦C was shifted
to higher temperatures. It is worth mentioning here that the
charge reversal temperature is defined as the cloud tempera-
ture at which the charge transferred to the graupel pellet dur-
ing ice crystal rebounding collision events changes sign. At
low temperatures it is negative; at higher temperatures it is
positive. Occurrence of such negative graupel charging due
to increased impurities in the cloud water at higher tempera-
tures can stretch the region of main negative charge lower to
the cloud, covering the positive charge center below (Prup-
pacher and Klett, 1997, Fig. 18-2). The newly stretched re-
gion of negative charge of the thunderstorm tripolar charge
distribution model (MacGorman and Rust, 1998) may gen-
erate more negative CG flashes, decreasing the relative fre-
quency of positive flashes. It is worth mentioning in this con-
text the results of Avila et al. (1999). They have found that
for smaller-droplet spectrum the target graupel is charged
positively over most of the temperature range they studied
(−10◦C to−25◦C). But for larger droplet spectrum the target
graupel is charged negatively at temperatures below−18◦C
during ice-ice collisions in the presence of supercooled wa-
ter. This suggests in the lower region of a thunderstorm con-
taining a smaller droplet spectrum, the existence of a deeper
positive charge center. This speculation of a deeper positive
charge center intensifies further the possibility of higher per-
cent positive values over an area favorable for the formation
of such a type of droplet spectrum or over a polluted airmass.
These above two hypotheses conflict with each other. Hence,
an extensive analysis is required to resolve this ambiguity.

It has been found in several studies that the pollution can
enhance convection in the downwind. For example, clouds
downwind of particulate sources produce more rain than

Fig. 6. Scatter plot and best-fit line of percent change in the number
of CG flashes and annual averages of SO2 concentrations for the
years 1995–1999.

other storms, as has been reported by Mather (1991). To
study the effect of urban particulate matter on CG lightning
activity, the annual averages of PM10 and SO2 concentrations
have been considered in relation to the percent change in CG
flashes. For the sake of simplicity we can treat these concen-
trations as gross indicators of the CCN concentrations. These
data are available only from 1995 to 1999. Hence, we have
restricted our lightning data analysis for five years to main-
tain a consistency among the data sets. Figure 5 shows the
scatter plot of CG lightning change with PM10 concentra-
tions while Fig. 6 exhibits the same for CG lightning change
with SO2 concentrations. Figure 6 suggests a connection
between the percent change in CG flashes from upwind to
the urban area and from upwind to the downwind area with
SO2. On the other hand, in Fig. 5, the connection between
PM10 concentrations and the percent change in CG flashes
from upwind to the urban area and from upwind to the down-
wind area is not so conclusive as compared to SO2 concentra-
tions. Hence, it may be concluded that increased concentra-
tion of SO2 contributes in enhancing the CG flashes but the
increased PM10 concentration does not seem to be as influ-
ential a parameter as SO2 to the increase in lightning flashes.
However, it has been suggested by Orville et al. (2001) that
the production of CG lightning is enhanced by the increase
in the mixed phase region cloud water and is paralleled by an
increase in the separation of the electrical charge. Since the
sulphate particles are usually more active in the formation
of cloud droplets compared to PM10 (Seinfeld, 1975), a sig-
nificant contribution from SO2 concentration is expected to
the enhancement of CG lightning compared with PM10 con-
centration. Our results partially correspond to the report of
Westcott (1995), but corroborate well the results of Soriano
et al. (2002). Westcott (1995) has found that large annual
values of SO2 and PM10 correspond generally to the large
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values of urban and downwind CG flash. Hence, data from
other geographical locations and for more years are required
to resolve this diversity in findings. Correlation coefficients
between PM10 concentrations and the change in the num-
ber of CG flashes from upwind to urban and from upwind
to downwind areas are found to be 0.30 and 0.33, respec-
tively, while the correlation coefficients between SO2 con-
centrations and the change in the number of CG flashes from
upwind to urban and from upwind to downwind areas are
found to be 0.55 and 0.64, respectively. All the correlation
coefficients are significant at the 99.9 confidence level and
have been shown separately in Table 1.

The effect of pollution on lightning production can be ex-
plained by the Rosenfeld hypothesis (Rosenfeld and Lensky,
1998; Williams et al., 1999). Rosenfeld and Lensky (1998)
have shown by analyzing the data from the Advanced Very
High Resolution Radiometer (AVHRR) that compared to ru-
ral clouds there is either a very narrow or no coalescence
zone, with a deep mixed-phase zone and glaciation occur-
ring at higher levels for the clouds forming over polluted re-
gions. We have considered in our present analysis the annual
number of lightning flashes and the annual average concen-
trations of PM10 and SO2. The higher CCN concentration
over Seoul results in the reduction of mean cloud droplet size,
which, in turn, decreases the process of coalescence and the
droplet collision efficiency (Roger and Yau, 1989). Hence,
it can be concluded that more supercooled water can exist at
greater depths in clouds generated in a polluted atmosphere.
Saunders (1993) has reported the dependence of the nonin-
ductive charge separation process on the amount of super-
cooled liquid water in the thundercloud. Abundance of su-
percooled water may generate large graupel, which, in turn,
may produce enhanced storm electrification through colli-
sions with ice particles. Enhancement of cloud buoyancy
is also possible through the freezing process by the excess
cloud water in the mixed phase zone.

2 Conclusions

An extensive long-term climatological study over Seoul, the
capital city of South Korea, has been done for the years
1989–1999 using the lightning data from KMA. Results in-
dicate a significant increase of nearly 60% and 42% in the
negative and positive flash density, respectively, over and
downwind of Seoul compared to the nearby surrounding ar-
eas. This study also reveals that a considerable 20% de-
crease in the percentage of positive flashes occurs over and
the downwind of the city compared with upwind area. The
results are in good agreement with those obtained by Steiger
et al. (2002). PM10 and SO2 concentrations have been an-
alyzed in relation to the CG lightning activities, consider-
ing the PM10 and SO2 concentrations as a gross indicator
of CCN. Results indicate a contributory link between higher
concentration of SO2 and the percentage change in the num-

Table 1. Correlation coefficients between percent change of CG
flashes and PM10 and SO2 concentrations.

PM10 SO2

(Urban-Upwind)/Upwind 0.30 0.55
(Downwind-Upwind)/Upwind 0.33 0.64

ber of CG flashes. On the other hand, PM10 concentration
was not as influential a factor in the enhancement of CG
lightning flashes. Correlation coefficients of 0.33 and 0.64
are found, respectively, for PM10 and SO2 concentrations
when compared separately with the percent change of CG
lightning activity for upwind to downwind areas. However,
for the upwind to urban area, correlation coefficients of 0.30
and 0.55 are found for PM10 and SO2, respectively, when
compared with the percent change of CG lightning activity
separately. Higher correlation coefficients between CG light-
ning activity and SO2 suggest a significant influence of the
increased concentration of SO2 to the increase in CG flashes,
which corroborates with the results of Soriano et al. (2002).
This higher correlation coefficient strongly supports that the
pollution plays a key role in the enhancement of lightning ac-
tivity, as also suggested by Steiger and Orville (2003). It was
Williams et al. (1999) who first proposed the pollution hy-
pothesis for lightning enhancement. They suggested that in
the case of the continental and dirty boundary layer, the avail-
able liquid water in the storm updraft is distributed amongst
an innumerable number of small droplets, thereby suppress-
ing mean droplet size and thwarting the coalescence process.
As a result, the cloud water reaches the mixed phase region,
thereby participating in the generation of excess cloud buoy-
ancy, in the formation of precipitation, and in the separation
of electric charge, thereby increasing the lightning activity.
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