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Abstract This paper focuses on the guaranteed cost sta-

bility analysis of fuzzy-model-based (FMB) control sys-

tems. Representing the nonlinear plant using a Takagi–

Sugeno (T–S) fuzzy model, a fuzzy controller is employed

to close the feedback loop. A weighted linear quadratic

cost function is considered as the cost index to measure the

performance of the closed-loop fuzzy system in terms of

the system states, system outputs, and control signals. The

stability of the FMB control system is investigated by the

Lyapunov stability theory subject to the minimization of

cost index for performance realization. A membership-

function-dependent approach using the piecewise-linear

membership functions is employed to include the infor-

mation of membership functions into the stability analysis.

Membership-function-dependent stability conditions in

terms of linear matrix inequalities are obtained to deter-

mine the system stability and feedback gains with the

consideration of the system performance measured by the

cost function. A simulation example is provided to illus-

trate the effectiveness and merits of the proposed approach.

Keywords Fuzzy controller � Guaranteed cost � Fuzzy-

model-based control � Linear matrix inequalities (LMIs) �
Membership-function dependent � Stability analysis

1 Introduction

Takagi–Sugeno (T–S) fuzzy model was first developed by

Takagi and Sugeno in 1985 [1], which provided an effec-

tive model to represent nonlinear plants which facilitates

the system analysis and control synthesis. It is proved that

any smooth nonlinear control systems can be approximated

by T–S fuzzy models with linear rule consequence[2]. The

inverted pendulum system can be one of these systems and

other systems represented by T–S fuzzy models can be

found in [2–5]. With the T–S fuzzy model, the system

dynamics of the nonlinear systems can be represented as an

average weighted sum of some local linear subsystems,

where the weights are determined by membership func-

tions [2] which embed the system nonlinearities. Based on

the T–S fuzzy model, a fuzzy controller is proposed to

close the feedback loop which forms a fuzzy-model-based

(FMB) control system for feedback control [6]. Since then,

the T–S FMB control systems have drawn the attention of
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fuzzy control researchers for more than 20 years due to its

effectiveness on handling nonlinear control systems [7, 8].

In particular, the issues of stability analysis and control

synthesis have been investigated extensively and fruitful

results can be found in [2, 9–19] and the references therein.

The Lyapunov-based approach is a popular method used

to investigate the stability of T–S FMB control systems.

Through the Lyapunov stability theory, basic stability

conditions of T–S FMB control systems can be achieved in

terms of LMIs. If there exists a common solution of a group

of Lyapunov inequalities in terms of LMIs which can be

solved effectively by convex optimization methods such as

interior point method [2], the FMB control system is

guaranteed to be asymptotically stable [9]. With the par-

allel distribution compensation (PDC) [9] design approach,

the stability conditions can be relaxed and some further

related works can be found in [2, 9–16]. The work in [10]

used the symmetry property of the membership functions

of the T–S fuzzy model and fuzzy controller in the analysis

and then managed to relax the LMI-based stability condi-

tions. Inspired by the work in [10], various techniques have

been proposed to gather the membership functions in the

stability analysis [2, 11–15]. The work in [11] combined all

the LMIs used in [10] to form a large symmetric matrix

resulting in further reducing the conservativeness of sta-

bility conditions. The work in [16] generalized the stability

conditions with the consideration of the permutations of

membership functions using the Pólya theorem.

Under the PDC design technique [2, 9–16], both the T–S

fuzzy model and fuzzy controller are required to share the

same set of premise rules (the same premise variables,

number of rules, and membership functions), which limits

the flexibility of the controller design and as well as

unnecessarily increase the complexities of the controller in

some cases. However, if the premise rules of the fuzzy

controller are different from those of the T–S fuzzy model,

the stability analysis results will be very conservative as the

permutations of the membership functions used in the PDC

design cannot be applied due to the mismatched premised

membership functions.

Furthermore, in most of the existing works, the mem-

bership functions have not been considered in the stability

analysis which means that the stability conditions are valid

for arbitrary membership functions. Given that only the

specific membership functions used in T–S fuzzy model

and fuzzy controller are needed to be considered in the

control problem, the stability conditions are relatively

conservative if the FMB control systems are unnecessarily

guaranteed stable under all kinds of membership functions.

Taking the membership functions and their information

into account for stability analysis is a method to come up

with membership-function-dependent stability conditions

alleviating the conservativeness resulting from difficulty on

handling the permutations of the mismatched premised

membership functions.

One of the main difficulties to bring the information of

membership functions into the analysis is the continuity

property of the membership functions. When we consider

continuous membership functions, the number of LMIs

will reach infinity so it is impractical to apply numerical

techniques to solve the solution to the stability conditions.

In order to include the information of membership func-

tions into the analysis, methods trying to add some con-

strains on the membership functions can be found in [20,

21]. Besides, approximation of membership functions is

also one of the methods to circumvent this difficulty by

approximating the infinite number of stability conditions

with finite ones. Staircase membership functions were

proposed in [22] to approximate the original membership

functions of the FMB control system in the stability anal-

ysis. With the consideration of the approximation error, the

stability of the FMB control system is implied by the sta-

bility of the FMB control systems having the membership

grades at the flat regions of the staircase membership

functions. Along this line, piecewise-linear membership

function (PLMFs) [23] and Taylor-series membership

functions (TSMFs) [24] were proposed to facilitate the

stability analysis.

The performance of FMB control systems is another

important issue to be considered during the controller

design, and the index of performance can be the transient

response and constrains on system variables (input, output,

and control) [2]. The guaranteed performance control aims

at not only stabilizing the system, but also guaranteeing the

specific cost of the system through pre-defined cost func-

tion [25, 26]. Also there is a guaranteed cost approach

introduced by works in [27], which is able to provide an

upper bound on a given performance index and the per-

formance of the system is guaranteed to be less than the

boundary. Guan and Chen applied this method on T–S

fuzzy systems with time delay in [28], Chen and Liu

adopted the method in nonlinear systems with time-varying

delay in [29], the problem of interval time-varying delay in

T–S fuzzy systems is considered in [30], both state and

input delays in the guaranteed cost T–S fuzzy systems are

considered in work [31] and further related works can be

found in [32–35], also some industrial applications of

guaranteed cost T–S fuzzy systems can be found in [36–

39]. This approach has also been extended from T–S fuzzy

systems to polynomial fuzzy systems in works in [40]. In

this paper, we have defined a weighted cost function as the

performance criteria in the controller design. Through the

guaranteed cost approach, we manage to stabilize the

control system meanwhile maintain a constrained input,

output, control cost, which depends on the weighted cost

function we choose.
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In this paper, we consider an FMB control system where

the T–S fuzzy model and fuzzy controller do not share the

same premise rules. Consequently, the fuzzy controller

demonstrates a greater design flexibility by choosing its

own number of rules and shapes of membership functions.

PLMFs are adopted to approximate the original member-

ship functions in a favorable form to facilitate the stability

analysis. The PLMFs carrying the information of the

original membership functions can be brought into the

stability conditions so that the stability conditions become

membership-function dependent. It implies that the stabil-

ity conditions are dedicated to the FMB control system

with specific membership functions to be handled and thus

more relaxed stability results can be obtained compared

with membership-function-independent analysis results [2,

9–16]. Furthermore, we consider a cost function to describe

the system performance on top of the stability analysis. By

taking the cost function on board along with the PLMFs,

membership-function-dependent guaranteed cost stability

conditions are obtained for the design of stable FMB

control system.

This paper is organized as follows. In Sect. 2, the T–S

fuzzy model and fuzzy controller are presented. In Sect. 3,

the membership-function-dependent stability conditions in

terms of LMIs are obtained through PLMFs with the

consideration of the cost function describing the system

performance. In Sect. 4, a simulation example is presented

to verify the analysis results. A conclusion is drawn in

Sect. 5.

2 Preliminaries

A nonlinear plant is described by the T–S fuzzy model [41,

42] with p rules of the following IF-THEN format.

Rule i: IF f1ðxðtÞÞ is Mi
1AND . . .ANDfWðxðtÞÞis Mi

W

THEN _xðtÞ ¼ AixðtÞ þ BiuðtÞ; yðtÞ ¼ CixðtÞ;
ð1Þ

where Mi
a is a fuzzy term of rule i corresponding to the

function faðxðtÞÞ, a = 1, 2, . . ., W; i = 1, 2, . . ., p; W is a

positive integer; xðtÞ 2 Rn is the system state vector;

yðtÞ 2 Rl is the system output vector; Ai 2 Rn�n, Bi 2
Rn�m and Ci 2 Rl�n are known system, input and output

matrices, respectively; uðtÞ 2 Rm is the input vector. The

system dynamics and output are defined as follows,

_xðtÞ ¼
Xp

i¼1

wiðxðtÞÞðAixðtÞ þ BiuðtÞÞ; ð2Þ

yðtÞ ¼
Xp

i¼1

wiðxðtÞÞCixðtÞ; ð3Þ

where

wiðxðtÞÞ� 0 8 i;
Xp

i¼1

wiðxðtÞÞ ¼ 1; ð4Þ

wiðxðtÞÞ ¼

YW

l¼1

lMi
l
ðflðxðtÞÞÞ

Xp

k¼1

YW

l¼1

lMk
l
ðflðxðtÞÞÞ

8 i; ð5Þ

wiðxðtÞÞ, i = 1, 2, . . ., p, are the normalized grades of

membership, lMi
a
ðfaðxðtÞÞÞ, a = 1, 2, . . ., W, are the grades

of membership corresponding to the fuzzy term Mi
a.

A fuzzy controller with c rules of the following format is

employed to control the nonlinear plant represented by the

T–S fuzzy model (2).

Rule j: IF g1ðxðtÞÞ is N
j
1AND. . .AND gX ðxðtÞÞ is N

j
X

THEN uðtÞ ¼ GjxðtÞ
ð6Þ

where N
j
b is a fuzzy term of rule j corresponding to the

function gbðxðtÞÞ, b = 1, 2, . . ., X; j = 1, 2, . . ., c; X is a

positive integer; Gj 2 Rm�n, j = 1, 2, . . ., c, are constant

feedback gains to be determined. The fuzzy controller is

defined as follows,

uðtÞ ¼
Xc

j¼1

mjðxðtÞÞGjxðtÞ; ð7Þ

where

mjðxðtÞÞ� 0 8 j;
Xc

j¼1

mjðxðtÞÞ ¼ 1; ð8Þ

mjðxðtÞÞ ¼

YX

l¼1

lNj

l
ðglðxðtÞÞÞ

Xc

k¼1

YX

l¼1

lNk
l
ðglðxðtÞÞÞ

8 j; ð9Þ

mjðxðtÞÞ, j = 1, 2, . . ., c, are the normalized grades of

membership, lN j
a
ðgaðxðtÞÞÞ, b = 1, 2, . . ., X, are the grades

of membership corresponding to the fuzzy term N
j
b.

Considering the T–S fuzzy model (2) and the fuzzy

controller (7) connected in a closed loop, with the property

of the membership functions that
Pp

i¼1 wiðxðtÞÞ ¼
P

j¼1

cmjðxðtÞÞ ¼
Pp

i¼1

Pc
j¼1 wiðxðtÞÞmjðxðtÞÞ ¼ 1, the FMB

control system is obtained as follows,

_xðtÞ ¼
Xp

i¼1

wiðxðtÞÞðAixðtÞ þ Bi

Xc

j¼1

mjðxðtÞÞGjxðtÞÞ

¼
Xp

i¼1

Xc

j¼1

wiðxðtÞÞmjðxðtÞÞðAi þ BiGjÞxðtÞ: ð10Þ
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The control objective is to drive the system state vector

xðtÞ to the origin by determining the feedback gains Gj. As

the premise membership functions of the T–S fuzzy model

and fuzzy controller are not the same, the analysis results

with the PDC design [16, 43–48] cannot be applied to

check for the stability of the FMB control system (10).

3 Stability Analysis

In this section, we will investigate the system stability of

the FMB control system considering a guaranteed cost

fuzzy controller in the form of (7) through a cost measuring

the system performance. For brevity, the time t for vari-

ables is dropped for the situation without ambiguity, e.g.,

xðtÞ is denoted as x.

The following quadratic Lyapunov function candidate is

employed for the stability analysis of the FMB control

system (10).

V ¼ xTPx; ð11Þ

where 0\P ¼ PT 2 Rn�n. Denote z ¼ P�1x and X ¼ P�1.

Define the feedback gains Gj ¼ NjX
�1; where Nj 2 Rm�n,

j ¼ 1; 2; . . .; c, are matrices to be determined. From (10)

and (11), we have,

_V ¼ _xTPxþ xTP _x

¼
Xp

i¼1

Xc

j¼1

wiðxÞmjðxÞxT
�
ðAi þ BiGjÞTP

þ PðAi þ BiGjÞ
�
x

¼
Xp

i¼1

Xc

j¼1

wiðxÞmjðxÞxTQijx:

ð12Þ

J ¼
Z 1

t

x

y

u

2

64

3

75

T

W

x

y

u

2

64

3

75dt; ð13Þ

where 0�W 2 RðnþlþmÞ�ðnþlþmÞ is a pre-defined weight-

ing matrix.

Remark 1 The cost J[ 0 (except for x ¼ 0) is employed

to measure the system performance. It can be considered as

the energy consumed by the system state x, the system

output y; and the control signal u. With regard to the same

weighting matrix W, a smaller value of J implies a better

system performance in terms of less energy consumption

contributed by the combination of x, y; and u, which will

eventually affect the transient behavior of the FMB control

system (10) such as rise time, settling time, overshoot,

undershoot, etc. The performance object is to suppress the

value of J as much as possible through the design of the

feedback gains Gj subject to the system stability.

Remark 2 The weighting matrix W plays an important

role to the system performance. A special case is to choose

W ¼
Wx 0 0
0 Wy 0
0 0 Wu

2
4

3
5; where 0�Wx 2 Rn�n is the

weighting matrix controlling the energy consumed by the

system state x; 0�Wy 2 Rl�l is the weighting matrix

controlling the energy consumed by the system output y;

and 0�Wu 2 Rm�m is the weighting matrix controlling

the energy consumed by the control signal u.

From (3), (7), and (13), we have

J ¼
Z 1

t

xT
I

Pp
i wiCiPc
j mjGj

2
64

3
75

T

W

I
Pp

i wiCiPc
j mjGj

2
64

3
75xdt ; ð14Þ

where I is the identify matrix of compatible dimensions.

From (14) and (12), we have

_V �
Xp

i¼1

Xc

j¼1

wiðxÞmjðxÞxT
�
ðAi þ BiGjÞTP

þ PðAi þ BiGjÞ
�
x

þ xT
I

Pp
i wiCiPc
j mjGj

2

64

3

75

T

W

I
Pp

i wiCiPc
j mjGj

2

64

3

75x

¼
Xp

i¼1

Xc

j¼1

wiðxÞmjðxÞzTQijz

þ zT
X

Pp
i wiCiXPc
j mjNj

2
64

3
75

T

W

X
Pp

i wiCiXPc
j mjNj

2
64

3
75z

; ð15Þ

where X ¼ P�1; z ¼ X�1x, Qij ¼ Aixþ XAT
i þ BiNjþ

NT
j B

T
i ; Gj ¼ NjX

�1; Nj 2 Rm�n is a matrix to be deter-

mined for all j.

It is required that _V � 0 (equality holds when x ¼ 0) for

system stability which can be achieved by

Xp

i¼1

Xc

j¼1

wiðxÞmjðxÞQij

þ
X

Pp
i wiCiXPc
j mjNj

2
64

3
75

T

W

X
Pp

i wiCiXPc
j mjNj

2
64

3
75\0

ð16Þ

The non-convex inequalities can be converted to LMIs

form using Schur complement [49]. The lemma of Schur

complement is as follows:

Lemma 1 The LMI is given as

M ¼
A B

C D

� �
[ 0 ;
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where A 2 Rp�p, B 2 Rp�q, C 2 Rq�p, D 2 Rq�q; and

M 2 RðpþqÞ�ðpþqÞ, also D is invertible, the linear inequality

M\0 is equivalent to

A� BD�1C[ 0

Then, from Schur complement lemma, the inequality

(16) is equivalent to

Xp

i¼1

Xc

j¼1

wiðxÞmjðxÞHij\0; ð17Þ

where Hij ¼
Qij TT

ij

Tij �W�1

� �
; Tij ¼

X
CiX
Nj

2
4

3
5.

As a result, it can be proved by the Lyapunov stability

theory that the system stability is implied by V [ 0 and
_V\0 (excluding x ¼ 0). The cost (13) reflects the system

performance. Following from the fact J[ 0 in (14) and

assuming that the FMB control system (10) is stable, from

(12) and (16), we have

_V\� xT
I

Pp
i wiCiPc
j mjGj

2
64

3
75

T

W

I
Pp

i wiCiPc
j mjGj

2
64

3
75x ð18Þ

Taking integration on both sides of (18) from 0 to 1 and

using the fact that xð1Þ ! 0, we have

xð0ÞTPxð0Þ[ J ð19Þ

Remark 3 It can be seen from (19) that xð0ÞTPxð0Þ,
where xð0Þ is the initial condition, is the upper bound of J.

By suppressing xð0ÞTPxð0Þ, the upper bound of J can be

reduced reflecting a better system performance.

Let xð0ÞTPxð0Þ� axð0ÞTxð0Þ which gives

P\aI: ð20Þ

By minimizing the value of a, the upper bound of J, i.e.,

xð0ÞTPxð0Þ, can be minimized. By Schur complement, the

inequality (20) is equivalent to the following:

aI I

I X

� �
[ 0 ð21Þ

Theorem 1 The FMB control system (10) formed by a

nonlinear system represented by the fuzzy model (2) and

the fuzzy controller (7) connected in a closed loop is

asymptotically stable and the system performance satisfies

the cost (13) which is bound by a pre-determined value

of a[ 0 if there exist decision matrix variables Nj 2 Rm�n

and x 2 Rn�n, and pre-defined weighting matrix 0�W 2
RðnþlþmÞ�ðnþlþmÞ such that the following LMIs are satisfied:

aI I

I X

� �
[ 0;

Hij\0; 8 i; j ;

where Qij¼AiXþXAT
i þBiNjþNT

j B
T
i ; Hij¼

Qij TT
ij

Tij �W�1

� �
;

Tij¼
X
CiX
Nj

2
4

3
5; and the feedback gain is given as Gj¼NjX

�1

for all j.

Remark 4 The conditions x[ 0 is omitted in Theorem 1

which is implied by
aI I
I X

� �
[ 0.

Remark 5 The stability conditions in Theorem 1 are

membership-function-dependent which does not consider the

information of membership functionswi andmj in the stability

analysis resulting in conservative stability analysis result.

In the following, we attempt to include the information

of membership functions into the stability conditions to

relax the stability analysis result. We approximate the

membership function hijðxÞ � wiðxÞmjðxÞ using the PLMF

[50]. The basic idea constructing the PLMF is first to

sample the original membership functions. Linear interpo-

lation is then employed to approximate the grades of the

original membership functions based on the sample points.

Details are given as follows. The state space of interest U is

first divided into q connected sub-state spaces Uk, k ¼ 1;

2; . . .; q. Consequently, we have U ¼
Sq

k¼1 Uk. Mathemat-

ically, the PLMF ĥijðxÞ approximating the original mem-

bership function hijðxÞ can be expressed as follows:

ĥijðxÞ ¼
Xq

k¼1

X2

i1¼1

� � �
X2

in¼1

Yn

r¼1

vrirkðxrÞdiji1i2...ink;

8 i; j; k;

ð22Þ

0� ĥijlðxÞ� 1; ð23Þ

0� diji1i2...ink � 1; ð24Þ

where diji1i2...ink is a constant scalar to be determined which

is in general a sample point of the original membership

function hijðxÞ at a chosen point x; 0� vriskðxrðtÞÞ� 1 and

vr1kðxrðtÞÞ þ vr2kðxrðtÞÞ ¼ 1 for r; s ¼ 1; 2; . . .; n; ir ¼ 1; 2;

xðtÞ 2 Uk; otherwise, vriskðxrðtÞÞ ¼ 0. As a result of the

above settings, we have the following property:

Xq

k¼1

X2

i1¼1

X2

i2¼1

� � �
X2

in¼1

Yn

r¼1

vrirkðxrðtÞÞ ¼ 1: ð25Þ

The approximation error satisfies

Dhij � hijðxÞ � ĥijðxÞ�Dhij; ð26Þ
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where Dhij and Dhij are constant scalars to be determined.

From (17) and (22), we have

Xp

i¼1

Xc

j¼1

hijðxÞHij

¼
Xp

i¼1

Xc

j¼1

ĥijðxÞHij þ
Xp

i¼1

Xc

j¼1

ðhijðxÞ � ĥijðxÞÞHij

�
Xp

i¼1

Xc

j¼1

ĥijðxÞHij þ
Xp

i¼1

Xc

j¼1

ðDhij � DhijÞyij;

ð27Þ

where 0� yij ¼ yTij 2 RðnþlþmÞ�ðnþlþmÞ and yij �Hij for all

i and j

Expanding ĥijðxÞ in (27), we have

Xp

i¼1

Xc

j¼1

Xq

k¼1

X2

i1¼1

. . .
X2

in¼1

Yn

r¼1

vrirkðxrÞdiji1i2���inkHij

þ
Xp

i¼1

Xc

j¼1

ðDhij � DhijÞyij

¼
Xq

k¼1

X2

i1¼1

� � �
X2

in¼1

Yn

r¼1

vrirkðxrÞ

�
Xp

i¼1

Xc

j¼1

ðdiji1i2...inkHij þ ðDhij � DhijÞyijÞ

ð28Þ

Given the property (25), the satisfaction ofPp
i¼1

Pc
j¼1ðdiji1i2...inkHij þ ðDhij � DhijÞyijÞ\0 implies the

sanctification of (17) which further implies _V � 0 except

x ¼ 0. The stability analysis result obtained through

PLMFs is summarized in the following Theorem.

Theorem 2 The FMB control system (10) formed by a

nonlinear system represented by the fuzzy model (2) and

the fuzzy controller (7) connected in a closed loop is

asymptotically stable and the system performance satisfies

the cost (13) which is bound by a pre-determined value of

a[ 0 if there exist decision matrix variables Nj 2 Rm�n,

X 2 Rn�n and yij ¼ yTij 2 RðnþlþmÞ�ðnþlþmÞ, and pre-de-

fined weighting matrix 0�W 2 RðnþlþmÞ�ðnþlþmÞ such that

the following LMIs are satisfied:

aI I

I X

� �
[ 0;

yij [ 0; 8 i; j;

yij [Hij; 8 i; j;

Xp

i¼1

Xc

j¼1

ðdiji1i2...inkHij þ ðDhij � DhijÞyijÞ\0;

8 i; j; k; i1; i2; . . .; in;

where Qij¼AiXþXAT
i þBiNjþNT

j B
T
i ; Hij¼

Qij TT
ij

Tij W
�1

� �
;

Tij¼
X
CiX
Nj

2

4

3

5; diji1i2...ink is a sample point of the original

membership function hijðxÞ at a chosen point x; Dhij and Dhij

are constant scalars satisfying Dhij�hijðxÞ�ĥijðxÞ�Dhij
for all i and j; and the feedback gain is given as Gj¼Nj

X�1 for all j.

Remark 6 The problem of minimizing the value of a
subject to the stability conditions in Theorems 1 and 2

can be formulated as a generalized eigenvalue problem

that the solution can be solved numerically, say, using

existing scientific engineering software package such as

Matlab.

4 Simulation Example

A simulation example is given to verify the analysis results

in terms of stability and performance. A 3-rule T–S fuzzy

model inspired from [48] in the form of (2) is considered

where the system, input and output matrices are chosen as

A1 ¼ 1:59 � 7:29

0:01 0

� �
, A2 ¼ 0:02 � 4:64

0:35 0:21

� �
, A3 ¼

�3:25 � 4:33

0 � 0:05

� �
, B1 ¼ 1

0

� �
, B2 ¼ 8

0

� �
, B3 ¼ �4

�1

� �
,

C1 ¼ 1:21 �3:65½ �, C2 ¼ 3:15 6:37½ �, C3 ¼ �2:25 1:66½ �,
x¼½x1 x2�T . The membership functions are chosen as

follows.

w1ðx1Þ ¼ lM1
1
ðx1Þ ¼

1 for x1\� 10

�x1 þ 2

12
for � 10� x1 � 2

0 for x1 [ 2

8
>><

>>:

ð29Þ

w2ðx1Þ ¼ lM2
1
ðx1Þ ¼ 1 � w1ðx1Þ � w3ðx1Þ ð30Þ

w3ðx1Þ ¼ lM3
1
ðx1Þ ¼

0 for x1\� 2

x1 þ 2

12
for � 2� x1 � 10

1 for x1 [ 10

8
>><

>>:

ð31Þ

The 3-rule T–S fuzzy model is obtained as follows:

_x ¼
X3

i¼1

wiðx1ÞðAixþ BiuÞ ð32Þ

and its output is obtained as
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y ¼
X3

i¼1

wiðx1ÞCix: ð33Þ

We consider a 2-rule fuzzy controller in the form of (7) is

employed to close the feedback loop. The membership

functions of the fuzzy controller are chosen as follows.

m1ðx1Þ ¼ lN1
1
ðx1Þ ¼ 1 � 1

e
�x1

2

ð34Þ

m2ðx1Þ ¼ lN2
1
ðx1Þ ¼ 1 � m1ðx1Þ ð35Þ

The 2-rule fuzzy control is obtained as follows:

u ¼
X2

j¼1

mjðx1ÞGjx: ð36Þ

Unlike the fuzzy controller using PDC design, the fuzzy

controller uses different number of rules and shape of

membership functions different from those of the T–S

fuzzy model.

In order to investigate the impact of the weighting

matrix on different signals, namely the system states x, the

system outputs y; and the control signals u, the weighting

matrix W is chosen as shown in Remark 2. As the off-

diagonal block entries of W are all set as zero, so that the

mutual influence between x, y; and u are eliminated. The

influence from the weighting matrices Wx, Wy and Wu to

the system states x, the system outputs y and the control

signals u, respectively, is more significant.

In this simulation, the system is tested by applying

different weighting matrices Wx, Wy; and Wu as given in

Table 1 that we take 1 as the reference and 0.01/100 as

small/large value for the weighting matrices resulting in 9

cases in total. For cases 1–3, we only change Wx but keep

Wy and Wu unchanged to investigate how Wx influences

the system states in particular x1. Similarly, for cases 4–6,

we only change Wy but keep Wx and Wu unchanged to

investigate how Wy influences the system output y. For

cases 7–9, we only change Wu but keep Wx and Wy

unchanged to investigate how Wu influences the control

signal u.

Table 1 Weighting matrices Wx, Wy; and Wu for the 9 cases

Case Wx Wy Wu

1 0:01 0

0 1

� �
1 1

2 1 0

0 1

� �
1 1

3 100 0

0 1

� �
1 1

4 1 0

0 1

� �
0.01 1

5 1 0

0 1

� �
1 1

6 1 0

0 1

� �
100 1

7 1 0

0 1

� �
1 0.01

8 1 0

0 1

� �
1 1

9 1 0

0 1

� �
1 100

Table 2 Feedback gains Gj for

the 9 cases
Case Gj X

1 G1 ¼ ½�5:9428

G2 ¼ ½8:5994 � 10�1

2:7671 � 10�2 �1:0801 � 10�3

�1:0801 � 10�3 3:8639 � 10�4

� �

2 G1 ¼ �6:6695 �7:6349½ �
G2 ¼ 1:1626 3:8265½ �

2:4056 � 10�2 �9:6318 � 10�4

�9:6318 � 10�4 3:6427 � 10�4

� �

3 G1 ¼ �1:2996 � 101 �1:2636 � 101
� �

G2 ¼ 3:4361 6:1895½ �
2:9074 � 10�3 �1:3968 � 10�4

�1:3968 � 10�4 8:5156 � 10�5

� �

4 G1 ¼ �5:7126 �6:2878½ �
G2 ¼ 7:5703 � 10�1 3:1231

� � 3:1525 � 10�2 �1:2250 � 10�3

�1:2250 � 10�3 4:2259 � 10�4

� �

5 G1 ¼ �6:6695 �7:6349½ �
G2 ¼ 1:1626 3:8265½ �

2:4056 � 10�2 �9:6318 � 10�4

�9:6318 � 10�4 3:6427 � 10�4

� �

6 G1 ¼ �1:0067 � 101 �1:1047 � 101
� �

G2 ¼ 2:4792 5:4934½ �
1:3238 � 10�3 �5:8860 � 10�5

�5:8860 � 10�5 2:9299 � 10�5

� �

7 G1 ¼ �1:0397 � 101 �1:1034 � 101
� �

G2 ¼ 2:5856 5:4546½ �
9:2651 � 10�2 �4:1984 � 10�3

�4:1984 � 10�3 2:1657 � 10�3

� �

8 G1 ¼ �6:6695 �7:6349½ �
G2 ¼ 1:1626 3:8265½ �

2:4056 � 10�2 �9:6318 � 10�4

�9:6318 � 10�4 3:6427 � 10�4

� �

9 G1 ¼ �5:1315 �5:6521½ �
G2 ¼ 5:1337 � 10�1 2:7991

� � 3:8101 � 10�4 �1:4576 � 10�5

�1:4576 � 10�5 4:6047 � 10�6

� �
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To apply Theorem 2, we need to define the PLMFs as in

(22). As the membership functions of both T–S fuzzy

model and fuzzy controller depends on x1, the PLMFs can

be constructed by considering only x1. Considering

x1 2 ½�10; 10�, diji1k is set as hijðx1Þ by considering the

sample points of x1 at f�10;�9:5; . . .; 9:5; 10g, e.g.,

diji11 ¼ hijð�10Þ, diji12 ¼ hijð�9:5Þ and so on. The function

v11kðx1Þ ¼ x1�x1k

x1k�x1k
and v12kðx1Þ ¼ 1 � v11kðx1Þ; where x1k

and x1k denote the lower and upper end points of x1 at the

k-th region, e.g., x1k ¼ �10 and x1k ¼ �9:5 when k ¼ 1,

x1k ¼ �9:5 and x1k ¼ �9 when k ¼ 2 and so on. It should

be noted that v11kðx1Þ ¼ 0 and v12kðx1Þ ¼ 0 when x1 is

outside the k-th region. According to the chosen original

membership functions and PLMFs, it is found numerically

that Dh11 ¼ Dh32 ¼ �2:4426 � 10�3, Dh12 ¼ Dh31 ¼
�6:7708 � 10�4, Dh21 ¼ Dh22 ¼ �1:7826 � 10�3, Dh11 ¼

Dh32 ¼ 1:7839 � 10�3, Dh12 ¼ Dh31 ¼ 1:3139 � 10�3,

Dh21 ¼ Dh22 ¼ 2:4622 � 10�3 satisfying the inequality.

(26). For comparison purposes, we employ Theorem 1 to

check the system stability. However, no feasible solution is

found which indicates that the stability conditions in The-

orem 2 are more relaxed thanks to the stability analysis

using the PLMFs.

From the above settings, Theorem 2 is employed to

check the system stability and determine the feedback

gains. Table 2 tabulates the feedback gains Gj and X for the

9 cases. The 9 fuzzy controllers are employed to stabilize

the T–S fuzzy model. The time responses of x1, x2, y, and u

are shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. It

can be seen from the figures that all fuzzy controllers are
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Fig. 1 Response of state x1ðtÞ for Cases 1 (solid line), 2 (dashed

line), and 3 (dotted line)
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Fig. 2 Response of state x2ðtÞ for Cases 1 (solid line), 2 (dashed

line), and 3 (dotted line)
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Fig. 4 Response of output y(t) for Cases 1 (solid line), 2 (dashed

line), and 3 (dotted line)
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Fig. 3 Control signal u(t) for Cases 1 (solid line), 2 (dashed line), and

3 (dotted line)
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able to stabilize the T–S fuzzy model that the system states

x1 and x2 approach the origin.

To facilitate comparison among cases, we define the

following performance indexes Jx1
, Jy; and Ju which are the

integral of squared signals.

Jx1
¼

Z 1

t

x1
Tx1dt ¼

Z 1

t

x1
2dt ð37Þ

Jy ¼
Z 1

t

yTydt ¼
Z 1

t

y1
2dt ð38Þ

Ju ¼
Z 1

t

uTudt ¼
Z 1

t

u2dt ð39Þ

A smaller value of performance index indicates a smaller

consumption implying a better performance. Table 3 tab-

ulates Jx1
, Jy; and Ju for the 9 cases in Table 1. In cases 1–

3, the cost Jx1
decreases (increases) when placing heavier

(lighter) weight on x1. Referring to Fig. 1, the effect on

different weights on x1 can be seen that the response of

state x1 demonstrates a faster (slower) transient response

with shorter (longer) settling time and smaller steady-state

error with the increase (decrease) of weight on x1. In cases

4 to 6, we place different weights on y. It can be seen from

Table 1 that cost Jy decreases (increases) when placing
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Fig. 5 Response of state x1ðtÞ for Cases 4 (solid line), 5 (dashed

line), and 6 (dotted line)
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Fig. 6 Response of state x2ðtÞ for Cases 4 (solid line), 5 (dashed

line), and 6 (dotted line)
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Fig. 8 Response of output y(t) for Cases 4 (solid line), 5 (dashed

line), and 6 (dotted line)
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Fig. 7 Control signal u(t) for Cases 4 (solid line), 5 (dashed line), and

6 (dotted line)
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heavier (lighter) weight on y. Referring to Fig. 7, it

demonstrates that a faster (slower) transient response with

shorter (longer) settling time and smaller steady-state error

with the increase (decrease) of weight on y. Similarly, in

cases 7–9, we place different weights on u to investigate

how it is influenced. It is found that the cost Ju decreases

(increases) when placing heavier (lighter) weight on

u. Furthermore, Fig. 11 shows that a smaller (larger) con-

trol signal is required to stabilize the T–S fuzzy model

corresponding to a heavier (lighter) weight on u.

Through this example, we can conclude that Theorem 2

offers relaxed stability conditions using the PLMFs in the

stability analysis. Furthermore, with the consideration of
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Fig. 9 Response of state x1ðtÞ for Cases 7 (solid line), 8 (dashed

line), and 9 (dotted line)
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Fig. 10 Response of state x2ðtÞ for Cases 7 (solid line), 8 (dashed

line), and 9 (dotted line)
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Fig. 11 Control signal u(t) for Cases 7 (solid line), 8 (dashed line),

and 9 (dotted line)
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Fig. 12 Response of output y(t) for Cases 7 (solid line), 8 (dashed

line), and 9 (dotted line)

Table 3 Costs J, Jx1
, Jy; and Ju for the 9 cases

Case J Jx1
Jy Ju

1 4:2128 � 101 1.9715 4:0047 � 101 1.9053

2 4:3146 � 101 1.9053 3:9031 � 101 2.1110

3 2:0168 � 102 1.6208 3:3549 � 101 6.0541

4 4.4273 1.9931 4:0410 � 101 1.8627

5 4:3146 � 101 1.9053 3:9031 � 101 2.1110

6 3:5546 � 103 1.7130 3:5489 � 101 3.9376

7 3:6968 � 101 1.7006 3:5215 � 101 4.1588

8 4:3146 � 101 1.9053 3:9031 � 101 2.1110

9 2:2190 � 102 2.0534 4:1377 � 101 1.7826
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cost function in the stability analysis, it offers an effective

way to realize the system performance

5 Conclusion

In this paper, the T–S FMB control system equipped with

different fuzzy rules of model and controller is investigated

in terms of both stability and performance based on Lya-

punov theory. In addition, unlike the membership-inde-

pendent methods, the information of membership function

of T–S FMB control systems has been included into the

analysis through a PLMF approach to further relax the

stability conditions. Furthermore, the weighted cost func-

tion is introduced into the analysis to improve the perfor-

mance and suppress the cost. Different requirements on

suppressing the cost can be satisfied through adjusting the

weight matrix. The stability conditions are derived in terms

of LMIs and solved in the simulation examples to show the

effectiveness of the proposed approach.
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