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Abstract We develop and apply a multilevel modeling approach that is simultaneously
capable of assessing multigroup and multiscale segregation in the presence of substan-
tial stochastic variation that accompanies ethnicity rates based on small absolute counts.
Bayesian MCMC estimation of a log-normal Poisson model allows the calculation of
the variance estimates of the degree of segregation in a single overall model, and
credible intervals are obtained to provide a measure of uncertainty around those
estimates. The procedure partitions the variance at different levels and implicitly
models the dependency (or autocorrelation) at each spatial scale below the topmost
one. Substantively, we apply the model to 2011 census data for London, one of the
world’s most ethnically diverse cities. We find that the degree of segregation depends
both on scale and group.

Keywords Segregation . Ethnicity .Multilevel modeling .Multiple scales . London

Introduction

The massive research literature on residential segregation in general, and ethnic
residential segregation in particular, has widely recognized of the importance of spatial
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scale to its measurement, reflecting the different scales at which the decision-making
processes regarding where to live within a city’s residential fabric are made. Among
those able to exercise at least some choice within the housing market—that is,
excluding those allocated to a dwelling by a public sector agency—decisions are made
regarding the following: (1) the part of a city to live in (e.g., inner city or outer suburb);
(2) the sector of a city, taking into account access to places of work, schooling, leisure
and cultural activities, and so on; and (3) the particular dwelling within a chosen area,
partly reflecting access to both local services plus significant others, such as kin and
coethnics. Thus, members of some groups may be substantially concentrated in
particular parts of a metropolitan area only but widely scattered within them; others
may occupy tight, near-exclusive clusters of dwellings that are distributed across
several different segments of the housing market.

Measuring the degree to which groups are spatially segregated invokes (implicitly, at
least) the well-known modifiable areal unit problem (MAUP) as applied to spatially
aggregated census and other data. Researchers have long recognized that a measured
level of segregation—using a range of standard procedures, such as the much-deployed
indices of dissimilarity and segregation—is a function of both the scale of aggregation
(see Jones and McEvoy 1978; Logan et al. 2015; Manley 2014; Wong 2003; Woods
1976) and the particular set of areas used at any one scale. Scale is important for
understanding the causes and impact of segregation, and there is no one correct scale
with which to measure it. Consequently, we argue in this article the need for analysis at
multiple scales and to do so simultaneously to enable an assessment of the degree of
segregation at one scale net of another. One of the few studies to do this (Fischer et al.
2004) not only looked at the level of segregation at different scales within the United
States (from region down to census tract) but also decomposed those levels to identify
the relative importance of each (see also Voas and Williamson 2000; Johnston et al.
(2003) and Fowler (2015) both also made the case for a multiscale approach but like
those just referred to, did not do so in a modeling framework). The modeling approach
adopted here does not resolve the MAUP. Like most other studies, its findings are
constrained by the spatial units deployed, most, if not all, of which are pre-given. Use
of other spatial architectures may generate different findings, although we believe that
the general patterns identified here are unlikely to be contradicted, which is an
assumption that can be fully evaluated only with future extensive simulation studies.

The approach also needs to be multigroup because many city populations comprise
more than one substantial ethnic minority alongside the dominant, usually majority, group
(Reardon and Firebaugh 2002). The investigation of ethnic residential segregation in
London undertaken here, for example, has to analyze simultaneously the distributions of
13 major ethnic groups forming a city, according to Sturgis et al. (2014:1291), “. . . with a
justifiable claim to be the most ethnically diverse, not just in the UK, but in the world.”

Many studies of segregation published over the last near-century have recognized its
multigroup, multiscale nature, but with few taking into account Tranmer and Steel’s
(2001:947) argument, demonstrated both theoretically and empirically, that if a model is
specified excluding an important level (or spatial scale), “the effects of the levels above the
highest level included in the analysis will be reflected in estimated components for the
highest level included”: a micro-level segregation measure could be inflated if a macro-
level pattern is omitted/ignored. Almost without exception, however, the chosen measures
have been descriptive only, without taking into account the natural variation that underpins
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any distribution of population groups across a series of defined spatial units, especially
where small numbers of individuals are a common component of many of those distri-
butions using small spatial units (for overviews of that massive literature, see Reardon and
Firebaugh 2002; Reardon and O’Sullivan 2004). Even the technically most-sophisticated
essays exploring the multiscale nature of ethnic residential segregation (e.g., Lee et al.
2008; Östh et al. 2014, 2015; Reardon et al. 2008, 2009; Wright et al. 2011) provide
descriptive measures only, without any formal modeling that incorporates uncertainty.
This article addresses that lacuna, deploying a multilevel modeling strategy for the first
time in the analysis of multigroup, multiscale ethnic segregation patterns.

We address three related questions: What is the extent of ethnic residential segrega-
tion in London in 2011; which ethnic groups are most segregated; and at which spatial
scales are they segregated? These questions are set in an explicit inferential and
modeling framework that is essential when dealing with the uncertainty that arises
with the analysis of small absolute counts. This article has a threefold structure: we
consider the nature of the available fine-grained ethnic census data; we develop the
multilevel multiscale, multigroup modeling framework; and we apply it to London.

Methodology

The Census Data

The data to be analyzed comprise a set of counts for a very large table for all usual
residents defined in terms of 13 main categories of ethnicity, at the finest geographical
level of detail that is available for the 2011 Population Census of England and Wales.1

Our hierarchy of areas in London comprises four sets of nested spatial units employed
in reporting these data. At the largest scale are the 32 London boroughs, which ranged
in population in 2011 from 158,649 (Kensington and Chelsea) to 363,378 (Croydon).
The City of London, which is not treated as a separate borough here,2 functions as a
service center rather than a residential district, and has a much smaller population of
less than 10,000. The boroughs have formally existed for more than 50 years and are
the principal subdivisions of the administrative area of the Greater London County.
Each borough is governed by a borough council, which oversees the majority of local
government services, such as social services, waste collection, roads, and schools.3 The
boroughs also reflect the history of the growth of London and can be quite distinctive in
character (Manley et al. 2015), with London being described as a city with 33 small
“cities” within it.4

At the smallest areal scale are the 25,086 output areas (OAs), defined to have a
compact shape and to minimize within-area and maximize between-area variation in
housing tenure and dwelling type, nested within the boroughs and their electoral wards,
and with size constraints. Their mean population was 326, with a standard deviation

1 The data can be obtained from Table KS201EWon the relevant websites (e.g., https://www.nomisweb.co.uk/).
2 It is included within the City of Westminster, with which it is joined in a Parliamentary constituency.
3 These responsibilities, though, are reducing because of administrative centralization by successive UK
governments and the creation in 1990 of a separate Greater London Authority, with an elected mayor and
assembly, which has powers over transport, policing, economic development, and the fire service.
4 This information is available online (http://www.londontown.com/LondonStreets/).

Ethnic Residential Segregation 1997

https://www.nomisweb.co.uk/
http://www.londontown.com/LondonStreets/


(SD) of 83. These very small areas were defined by automatic zoning algorithms after
the individual and household census data had been collected (Cockings et al. 2011).
The OAs were combined in the census output tables—again, using the same criteria to
maximize their social homogeneity—into lower-level super output areas (LSOAs),
with a mean population of 1,691 (SD = 263); and middle-level super output areas
(MSOAs), with a mean population of 8,315 (SD = 1,448). Spatially, the OAs are very
fine-grained, having a median radius of 105 meters, with the mean number of OAs in a
borough being 759. Typically, there are five OAs in an LSOA, and five LSOAs in a
MSOA. The units at each scale nest exactly within each other in a hierarchical fashion.

Within this spatial framework, we analyze the distributions of the 13 largest ethnic
groups, as defined by the UK Office of National Statistics and deployed in the 2011
census, using questions that allowed respondents to state their ethnic identity within a
constrained set. Those 13 groups comprise a disparate set of categories, defined on
separate criteria (e.g., country of ancestry, skin color). They form five separate sets:

1. White population groups, which comprise the following:

& White British: The dominant group (some 49 % of the London total)
& White Irish: Those claiming Irish citizenship and/or ancestry
& White Other: A heterogeneous category comprising those claiming citizenship

and/or ancestry of a wide range of countries, including the rest of Europe, much
of the British Commonwealth, and the United States of America

2. Black population groups, which comprise the following:

& Black Africans: a heterogeneous group mainly consisting of those with either
East or West African ancestry

& Black Caribbeans5

3. Asian population groups, comprising those claiming the following ethnic
identities:

& Indian
& Pakistani
& Bangladeshi
& Chinese

4. Mixed-ethnicity groups, comprising those claiming the following identities:

& White and Black Caribbean
& White and Black African
& White and Asian

5. Arab population group.

5 We exclude the rapidly expanding, heterogeneous “black other” group.
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Most studies of segregation select a reference to which the distribution of different
groups is then compared. The dominant population is usually chosen as the base—in
this case, the White British—and other ethnicities are compared with it. One of the
advantages of the model-based methodology that we employ is that we can compare all
groups against a theoretically even expected distribution. This is derived from a two-
step process. First, the proportion of the total London population in each of the 13
groups is calculated. Then an expected count is derived for each of the 13 cells in each
row of the (13 × 25,086) data matrix by multiplying the total population for each OA
by these London proportions. If the observed count exceeds the expected, there is a
greater number of people locally than would be expected from their citywide distribu-
tion. If there is no geographical segregation whatsoever, the expected count would
equal the observed count in each and every area and for each and every group, and
these relative rates of the observed to the expected will all be 1. If the ratio of the
observed to the expected count is less than 1, the group is underrepresented in that area.
The extent of the under- and overrepresentation for each group is its segregation and is
the subject of the modeling here.

Model Specification and Estimation

Why Model?

The aim is to develop an explicit model-based approach in which segregation is
summarized by a variance term around a mean. Put simply, if there is no variance
beyond chance, each area will have the same underlying ethnic experience. Systematic
underlying differences in the relative rates between places are shown by a large
variance term, beyond what we could have observed from chance alone. As such, this
method builds on the recent analysis of school segregation (Leckie and Goldstein 2015;
Leckie et al. 2012) and indeed on the long-forgotten paper of Kish (1954), who
examined residential differentiation. The new development here is that whereas
Leckie and colleagues and Kish used a binomial model in which the outcome is a
proportion, we use a Poisson model in which the outcome is a count of the number of
people. The Poisson is highly suitable for low absolute counts because many OAs have
small numbers in many of the ethnic categories. Moreover, the Poisson formulation
allows the comparison of each and every ethnicity, and no particular ethnicity has to be
chosen as the reference category as in the binomial logit model; rather, the comparison
is with a theoretically even distribution. Our methodology also builds on the pioneering
study by Moellering and Tobler (1972), who decomposed variation for predetermined
spatial aggregates but only for continuously measured, ratio-scale data. In contrast, we
have rates based on a varying numerator and denominator. The resultant model allows
for the simultaneous analysis of multiple ethnic groups at multiple scales in an explicit
modeling framework that allows us to put confidence intervals (Bayesian credible
intervals) around the estimates. This overall model also allows us to see the extent to
which members of each ethnic group co-locate with other groups at each scale.

Although one may presume that a total population—a census—does not require an
inferential modeling approach (as strongly insisted by Gorard 2007), this is definitely
not the case here. An important characteristic of these fine-grained data is their uneven
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absolute size. Although the mean count is some 22 people of a particular ethnicity in an
OA, it ranges from 0 to 736 with a median of just 5 and a lower quartile of just 1,
indicating the extent of the clustering of different ethnic groups, as shown in descriptive
analyses of London (Johnston et al. 2014, 2015). The approximate standard error of the
log of a relative rate based on an observed to expected ratio is inversely proportional to
the square root of the observed count (Breslow and Day 1987: equation 2.9).
Consequently, we can anticipate a great deal of stochastic variation and do not want
to be misled by this natural variation. Indeed, common descriptive indices such as theD
Dissimilarity Index are known to suffer from the upward bias of the null—showing
systematic segregation when there is none—when small counts are analyzed (Allen
et al. 2015; Carrington and Troske 1997).6 In contrast, we consider the observed counts
as an outcome of a stochastic process that could produce different results under the
same circumstances. It is this underlying process, or relative risk, that is of interest, and
the actual observed values give only an imprecise estimate of this. We need a method
that estimates the differences in the “true” ethnicity rates shorn of random noise.

A Two-Level Model for OAs

To introduce the model, we begin with a two-level model in which individuals are
nested within OAs, and we do so for just two ethnic groups: Black Africans and Black
Caribbeans. We will later extend this to multiple scales and multiple groups. This basic
model is specified as follows:

Oi j e Poisson πi j

� �
Loge πi j

� � ¼ Loge Ei j

� �þ β1 jAfricani j þ β2 jCaribbeani j
β1 j ¼ β1 þ u1 j
β2 j ¼ β2 þ u2 j
u1 j
u2 j

� �e N 0;
σ2
u1

σ12 σ2
u2

� �� �
Var Oi j πi j

��� � ¼ πi j;

where Oij is the long stacked vector of the observed count for individuals i in OAs j.
This vector has two observations: the count of Black Africans and Caribbeans for each
and every OA. The other observed variables are the expected counts (Eij) for each
ethnic group if their numbers were distributed evenly according to the total population
size of the OA. In addition, two separately coded dummy variables (Africanij;
Caribbeanij) identify which stacked count represents which ethnicity.

The counts are modeled in a Poisson regression model,7 where the observed counts
are seen as coming from a Poisson distribution with a mean rate of occurrence given by
πij. However, it is the natural log of the underlying rate that is modeled, and this is

6 D measures the share of either group in a two-group total population that must be moved, without
replacement, across the set of spatial units to achieve zero—a measure of how far away the distribution is
from evenness. D will be upwardly biased because it represents the sum of the absolute value of the
differences in proportions in an area. Natural stochastic variation will lead to nonzero differences when the
counts are numerically small; and because the count cannot be negative, the index will be upwardly biased.
Moreover, D is typically applied without any calculation of uncertainty, such as confidence intervals.
7 See Owen and Jones (2015) and Jones et al. (2014) for more details on this specification.
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achieved by the use of an offset, which is the log of the expected count with a
coefficient constrained to 1 (McCullagh and Nelder 1989). Thus, the expected value
is effectively treated as a nuisance and allows us to model the underlying relative rate
with the response simply being the log of the observed counts rates (difference in logs
being equivalent to division in raw values). Moreover, using the log also ensures that
we cannot estimate a negative relative rate.

The two intercepts in the model are (1) β1, which gives the log average rate across
all OAs for Black Africans; and (2) the overall log rate for the Black Caribbean
population, β2. We anticipate that both of these estimates, when exponentiated, will
give the all-London rate for the mean area as 1.8 There are allowed-to-vary differences
for each OA for each ethnicity (u1j; u2j); a positive value indicates a log rate that is
higher than expected given an even distribution or equivalently a relative concentration
of that ethnic group. These differences are assumed to come from a joint normal
distribution, such that the variance σu1

2 and σu2
2 give the differences between OAs for

Black Africans and Caribbeans, respectively. These are our measures of comparative
segregation. A useful term is the higher-level OA covariance term, ou12; when
standardized by the product of the square root of the variances, this gives the
correlation between the differences for the two groups. A negative value
indicates that each group is antagonistically located relative to the other; a
positive value represents a tendency to co-locate.

At the lowest individual level, the variances are constrained to be equal to the
underlying rate for each ethnic group as befits an exact Poisson distribution.
Consequently, the model separates the two sources of variation: the variation due to
“true” between-OA variation, and that due to stochastic Poisson variability.
Equivalently, the lower level of the model is used to model the natural variation of a
Poisson variable, whereas the higher level is used to model the extra-Poisson variation
of the “true” rates to give a measure of comparative segregation.

The apparent problem, of course, is that we do not have individual data but only
aggregate counts for OAs because of confidentiality requirements. However, we can
use the device of a pseudo-level in which the OAs are both the is and js in the model.
Consequently, there is exactly the same set of units at Level 1 and Level 2, and each
Level 2 unit has exactly one Level 1 unit. This views the aggregate counts at Level 2 as
consisting of replicated responses for individuals at Level 1. This device allows for
extra Poisson variation in the same manner as Browne et al. (2005) achieved for
overdispersed binomial multilevel models.

Owen and Jones (2015) discussed a number of ways of turning these variances,
which are on a log scale, into a more readily interpretable form. They found that the
most appealing is the median rate ratio (MRR) given that this facilitates comparisons
between standardized rates. The MRR can be conceptualized as the increased rate (on
average; hence, the median) if one compares the rates of two MSOAs chosen at random

8 MCMC procedures (see later) estimate the overall intercept such that the population average value—the log
rate in the mean area—is approximately zero. The cluster-specific value, which represents the log rate in the
median area, can be much lower than this (Jones and Subramanian 2014b). The MLwiN software estimates the
cluster specific estimates, but the customized predictions facility (Rasbash et al. 2012) allows the derivation of
the population average values through simulation. Because the data and models are specified such that these
log population average values are zero, we discuss them no further: the variance summarizes these differences
from this even distribution.
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from the distribution with the estimated variance. If there is no segregation, then the
MRR would be 1; a value of 2 would indicate substantial segregation with the
randomly chosen area, with the higher rate having twice the rate of the lower area.9

The calculation of the MRR is a simple transformation of the variance, and the same
operation could be used to derive the 95 % credible intervals (CIs) around each MRR
value for significance testing purposes.10

The normality assumption of the higher-level differences is obviously a key as-
sumption for the validity of the variance in summarizing the differences in the relative
rates. Although inference in multilevel models is typically robust to moderate depar-
tures from normality (McCulloch and Neuhaus 2011), severe skewness or outliers can
pose problems. Whether these are present can be informally assessed with a normal
probability plot. In practice, we have found that the normality assumption is generally
met, no doubt due to using the log of the underlying rate. Indeed, in their study of
London schools, Leckie and Goldstein (2015) found that parameter estimates obtained
through MCMC procedures were not unduly sensitive to the inclusion/exclusion of
religiously exclusive outlying schools.11

Multiscale Modeling

The model can readily be extended to work at more scales, and this is the specification
for two ethnicities and the three scales of the individual, the OA, and the MSOA that
form a strict three-level hierarchy.

Oi jk e Poisson πi jk

� �
Loge πi jk

� � ¼ Loge Ei jk

� �þ β1 jkAfricani jk þ β2 jkCaribbeani jk
β1 jk ¼ β1 þ v1k þ u1 jk
β2 jk ¼ β2 þ v2k þ u2 jk
v1k
v2k

� �eN 0;
σ2
v1

σv12 σ2
v2

� �� �
u1 jk
u2 jk

� �eN 0;
σ2
u1

σ12 σ2
u2

� �� �
Var Oi jk πi jk

��� � ¼ πi jk ;

whereOijk is the long stacked vector of the observed counts for both Black Africans and
Caribbeans in cell (type of person) i for OA j in MSOA k. Of the two intercepts, β1

gives the log average rate across all MSOAs and OAs for Africans, and the London-

9 The formula is MRR ¼ exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� Variance

p � 0:6745

 �

; the value 0.6745 is the 75th percentile of the
cumulative distribution function of the normal distribution with mean 0 and variance 1. The credible intervals
for a MRR can be obtained by plugging in the credible intervals of the variance on the log scale obtained from
a MCMC run.
10 Larsen and Merlo (2005) developed this approach originally for multilevel logit models (the median odds
ratio), and Larsen (2006) later extended it to log Poisson models (naming it themedian mean ratio). Consistent
with Chan et al. (2011), we prefer the termMRR because it is a better descriptor of what it measures. The term
mean ratio comes from the use of the Poisson model in the analysis of mean incidence rates, and Larsen was
aiming to develop a comparable measure for the interpretation of random effects.
11 The estimated log differences from the empirical Bayes (EB) quasi-likelihood procedures were found in
some cases (e.g., for the highly concentrated Bangladeshis) to be skewed, but this was reduced substantially
when the full Bayes (FB) MCMC procedures were used.
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wide log rate for Caribbeans is β2. There are ethnic-specific differences at the MSOA
level (v1k; v2k) and for OAs within MSOAs (u1k; v1k). These differences at each of the
higher levels are assumed to come from a joint normal distribution; thus, σv1

2 gives the
segregation for Africans at the MSOA level, and we can test whether this is different
from the variance for Caribbeans, σv2

2 . The higher-level covariance term, when stan-
dardized, will give the correlation between the differences at that level between each
pair of ethnic groups—that is, the extent to which ethnic groups co-locate at that scale.

Spatial Modeling of Segregation

Classic measures of segregation (like D) are aspatial and depend only on the numerical
values in each observation unit (e.g., OAs in London), taking no account of the situation in
surrounding areas or the spatial patterning in the rates. Swapping the units spatially so that all
the areas with large Caribbean populations are contiguous would produce no change in such
an index but may imply much greater segregation. Researchers in recent years have shown
considerable interest in developing spatially sensitive measures from two broad viewpoints.
From the spatial econometrics perspective (Paelinck and Klaassen 1979), Wong (1998)
developed a family of local spatial segregation indices that take account of neighborhood
joins, thus taking into account the population characteristics of a wider area (defined a priori
as in touching boundaries). Wong (2003) extended these measures to work at multiple
scales, but those measures were not set in an inferential framework and were based on the
observed (and therefore potentially unreliable) local rates. From the spatial smoothing
perspective (Fotheringham et al. 2002), Reardon and his coauthors (2004, 2009) also
developed spatially sensitive measures. They used a spatially weighted version of the
information theory index where the weights are determined a priori by some function of
the spatial distance between areas. Lee et al. (2008; see also Östh et al. 2014, 2015) used this
approach to analyze multiple scales by defining circles of different radii and moving these
around the map. They provided an analysis at scales from a 500 meter radius (a pedestrian-
based neighborhood) to a 4,000 meter radius (which they call a “macro-local environment”)
of nearly 20 square miles.12 Their determination of the degree of segregation involved no
modeling or inferential framework to deal with unreliable rates resulting from small counts.

Both sets of approaches take into account local spatial autocorrelation or dependen-
cy. It may be thought that multilevel models of the type that we are developing here are
aspatial, and Elffers (2003) has argued that the between-area variance is invariant to the
spatial arrangement of areas. This is undoubtedly true of the standard two-level model,
but it is not true in general, for two reasons. First, it is possible to include spatial
weights in a multilevel model for the higher areal levels (see Jones and Subramanian
2014b) and thereby estimate both unstructured and spatially structured segregation.
Such explicitly spatial multilevel modeling is undergoing rapid development.13 Second,

12 In London, the OA with a median radius of 100m is considerably finer than their 500m pedestrian-based
neighborhood; the borough scale with a mean radius of 3,922m is highly comparable to their macro-local
environment.
13 For example, Dong and Harris (2015) and Dong et al. (2015) developed a multilevel model that not only
has spatial dependence between higher-level areal units but also has additional dependency between lower-
level units; Lee et al. (2014) used random effects to achieve subregions of localized smoothness with
additional cluster fixed effects to model step changes between neighboring spatial units to guard against over
smoothing across boundaries.
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the hierarchical model with more than two levels has an implicit spatial dependence,
and we now consider this in more detail.

We begin by stressing that multilevel models analyze the within- and between-
differences (Bell and Jones 2015), and the variance σu1

2 in the second formulation no
longer summarizes differences between OAs as in the original model but now repre-
sents the differences between OAs after taking account of the differences between
MSOAs in which they are located (Subramanian et al. 2001). To illustrate the proce-
dure, Fig. 1 uses two higher-scale examples. In each of the three diagrams, the solid line
shows the relevant London-wide relative rate of 1—the theoretical even distribution of
the population who are, say, Bangladeshi. The city is split at the larger spatial scale into
two MSOAs, A and B, each of which is divided at the smaller scale into three OAs. In
panel (a) A and B differ substantially in their Bangladeshi relative rates but differ little
across their constituent OAs within each MSOA. Segregation is substantial at the larger
scale but, holding its extent at that level constant, insubstantial at the smaller scale.
Bangladeshis are concentrated in B; but in both A and B, there is little within-MSOA,
between-OA variation. Panel (b), on the other hand, shows little difference between
MSOA A and B but substantial variation within each; and panel (c) shows substantial
variation at both scales. In panel (a), therefore, segregation displays macro-scale
variability only; in panel (b), it displays only micro-scale variability; and in panel (c),
there is substantial segregation at both scales. Because the multilevel approach mea-
sures segregation at one scale net of the others, it does not inevitably mean that the finer
scale is necessarily the most segregated.

The key notion in the model is that the highest-level difference is a random, allowed-
to-vary departure from a general relationship, and each level’s residual is an allowed-to-
vary random departure from the higher-level departure. Consequently, we can calculate
a variance partitioning coefficient (VPC: Goldstein 2011; Jones and Subramanian
2014a), which decomposes the total variance into the multiple scales. Moreover, this
VPC gives the proportion of the variance between—or the degree of similarity or
correlation within—scales, equivalent to the well-known intraclass correlation coeffi-
cient (Kish 1954).

Conceptually, in the three-level example, σv1
2 is the between-MSOA variance for

ethnic group 1, which is our measure of segregation at this level; σu1
2 is the within-

MSOA, between-OA variance for ethnic group 1, which is a measure of segregation at
the OA level net of differences at the MSOA level; and σv1

2 +σu1
2 is the between-OA

variance for ethnic group 1, which is equivalent to the measure of variance for that scale
in the initial two-level model.

Consequently, the proportion of the total variance due to differences between
MSOAs, the intra-MSOA correlation is given by

σ2
v1

σ2
v1 þ σ2

u1 þ σ2
e1

;

where σe1
2 is the within-MSOA, within-OA, between-people variance for group 1.14

14 The matter in practice is more complicated due to the Level 1 Poisson nature of the σe1
2 variance; the full

specification is given by Stryhn et al. (2006), who derived the intraclass correlation for Poisson responses in a
multilevel model.
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The proportion of the variance due to differences between OAs, the intra-OA
correlation is given by

σ2
v1 þ σ2

u1

σ2
v1 þ σ2

u1 þ σ2
e1

:

Finally, we can calculate the similarity of OAs within the same MSOAs:

σ2
v1

σ2
v1 þ σ2

u1

:

The hierarchical structure is therefore defining the local neighborhood struc-
ture, and we are implicitly modeling spatial dependence. The degree of segre-
gation is not invariant to swapping because we are specifying that a set of OAs
belongs within—is hierarchically nested in—a specific MSOA. The inherently
spatial nature of this dependence is shown in Fig. 2. Cells (C) are sorted so
that they are nested in OAs (O) and MSOAs (M), and it can then be seen that
intra-OA correlation (ρ1) assesses the degree of correlation in the same MSOA
and same OA, while the intra-MSOA correlation (ρ2) gives the correlation for
those in the same MSOA but different OAs.15

The final elaboration of the model is to extend it to more than two ethnicities and to
more than three scales. This is trivial in terms of specification but increases estimation
time substantially.

Model Estimation

In the Poisson model, quasi-likelihood empirical Bayes (EB) procedures have been
found to overestimate the higher-level variance (Jones and Subramanian 2014b).
Consequently, we use full Bayes (FB) procedures for all the models in this article

15 There is, of course, no implicit assumption of dependence at the MSOA level, but there would be if the
higher borough level were included.

MSOA (A) OAs

(a) (b) (c)

MSOA (B) OAs

MSOA (B)

MSOA (A)

London
MSOA (A)

MSOA (B)
London

MSOA (A)

London

MSOA (B)

Fig. 1 Higher-level variations: (a) large between-MSOA and small between-OA-within-MSOA, (b) small
between-MSOA and large between-OAs-within-MSOAs, and (c) substantial between-MSOA and between-
OAs-within-MSOA
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specified with minimally informative prior distributions.16 The FB approach allows the
calculation of (potentially asymmetric) CIs, which indicate the degree of support
enjoyed by different values of our segregation measures, which are estimated without
having to rely on asymptotic normality assumptions that are unlikely to hold in
applications with a relatively small number of units (as in the case of the Boroughs)
and for variance terms that cannot be less than 0.

An important by-product of the MCMC estimation is the deviance information
criterion (DIC; Spiegelhalter et al. 2002), which yields an estimate of the badness of
fit of the model penalized by model complexity, which in turn is estimated by the
degrees of freedom consumed in the fit (pD). A difference in DIC of 10 between two
models implies very little support for the model with the higher value of DIC.

We estimate the models with the MLwiN 2.31 software (Rasbash et al. 2014). The
estimates are based on an initial quasi-likelihood estimation, a discarded burn-in of
50,000 simulations to get away from potentially biased results, and a further 100,000
monitoring simulations according to Draper’s (2008) good-practice recommendations.
We find it beneficial to use hierarchical centering to obtain less-correlated chains—that
is, more informative chains (Browne 2012). The trace of the estimates is evaluated for
convergence (shown by lack of trend), and the models were run so that the effective
sample size (ESS) of the estimates for each parameter was at least equivalent to 500
independent estimates to characterize the degree of support for parameter values. The
estimation takes several days on a standard desktop PC.

Ethnic Residential Segregation in London, 2011

The motivation for developing the modeling process detailed earlier is to understand
segregation in London better for multiple ethnic groups and at multiple scales. To do
this, we fit the model for the 13 ethnicities as a sequence: first as cells within OAs, and
then additionally adding the intermediate (LSOA and MSOA) to the largest (Borough)

16 The prior distributions are specified as follows for the case of two ethnicities in a two-level model:

p β1ð Þ∝1; p β2ð Þ∝1
p

σ2
u1

οu12 σ2
u2

� �� �
e Inverse Wishart2 2�

cσ2
u1dοu12 cσ2

u2

" #
; 2

 !

The probability prior for the βs is given as a uniform distribution in which any value is equally likely.

And for the between-OA variance–covariance matrix, we use a conjugate inverse Wishart prior distribu-

tion. It is based on the EB initial quasi-likelihood estimates in such a way as to be only mildly

informative (Browne 2012:16). Browne and Draper (2000) examined the performance of this inverse

Wishart prior distribution and chose it as the default in MLwiN. Gelman (2006) found that the choice of

priors for the variance terms is of the greatest importance when there are few higher-level units and the

variance is likely to be small. This does not apply here where, in the worst case, there are more than 30

highest-level spatial units (the Boroughs) and quite large variances are anticipated. Indeed, we also tried

a uniform variance for the prior, but it made little difference.

2006 K. Jones et al.



scales. Goodness-of-fit is estimated using the DIC criterion, and the improve-
ment at each step is assessed by the change in that measure (ΔDIC). Any
change of more than –10 is considered substantial, and Table 1 shows that each
additional scale contributes substantially to appreciating the spatial variation in
the distribution of all 13 ethnic groups.

The key indicator of the modeled degree of segregation for each group at each level
is the variance, and the 52 values (13 ethnic groups at four scales) are given in Table 2,
along with their 2.5 % and 97.5 % CIs. These can be interpreted in three major ways:
(1) within ethnic group, between scales; (2) within scale, between ethnic groups; and
(3) cross-group correlations.

Within Ethnic Group: Between Scales

The first set of interpretations looks at each ethnic group separately, exploring differ-
ences in the level of segregation across the four scales and establishing whether these

M 1 1 1 2 2 2 2 3 3 3

O 1 1 2 1 1 2 2 1 1 2

C 1 2 1 1 2 1 2 1 2 1

1 1 1 1 ρ1 ρ2 0 0 0 0 0 0 0

1 1 2 ρ1 1 ρ2 0 0 0 0 0 0 0

1 2 1 ρ2 ρ2 1 0 0 0 0 0 0 0

2 1 1 0 0 0 1 ρ1 ρ2 ρ2 0 0 0

2 1 2 0 0 0 ρ1 1 ρ2 ρ2 0 0 0

2 2 1 0 0 0 ρ2 ρ2 1 ρ1 0 0 0

2 2 2 0 0 0 ρ2 ρ2 ρ1 1 0 0 0

3 1 1 0 0 0 0 0 0 0 1 ρ1 ρ2

3 1 2 0 0 0 0 0 0 0 ρ1 1 ρ2

3 2 1 0 0 0 0 0 0 0 ρ2 ρ2 1

C: cells; O: Output Areas; M: MSOAs

ρ1 Dependency: same MSOA and same OA

ρ2 Dependency: same MSOA and different OA

Fig. 2 An extract of the dependency structure of a three-level hierarchical model
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differences are statistically substantial using the CIs, as commended in what Cummings
(2014) termed the “new statistics,” which abjures the term statistically significant.
Thus, the first block shows that the White British are more segregated at the
Borough than at the MSOA scale, but the overlap between the CIs for the two measures
suggests no substantial difference. Those levels of segregation are, however, much
larger than those at the smaller two scales, and substantially so. White British people
are substantially segregated into particular boroughs and MSOAs within London;
within each of those units, however, small-scale variation around the local average is
minimal. In general, therefore, each London Borough is relatively homogeneous across
its smaller-scale areas in the White British share of the local population: whatever the
percentage White British overall (and in most cases, it was either high or low), there is
little variation around that figure across its constituent neighborhoods.

To aid comparison, we reexpress the variances as MRRs (Table 3). For inter-
pretation, we can classify these ratios according to well-known effect sizes, as
Cohen (1988) recommended originally for odds ratios. Accordingly, values greater
than 4.3 indicate very large ratios: MRRs between 2.5 and 4.3 and between 1.5
and 2.5 are considered medium and small, respectively; and MRRs less than 1.5
are treated as low.17 The pattern is very clear, as summarized in Table 4: the
overwhelming number of MRRs have either low (below 1.5) or small (1.5 to 2.5)
values. The only exceptions are (1) five Borough rates, four of which are medium
(for Indian, Pakistani, Black Caribbean, and Arab), one large (for Bangladeshi);
and (2) one OA rate that is medium (again, for Bangladeshi).

The across-scale differences for each of the ethnic groups are shown in Table 3. For
8 of the 13 groups (White Irish, White Other, Indian, Pakistani, Bangladeshi, Black
African, Black Caribbean, and Arab), segregation is highest at the Borough scale and
second highest at the OA scale, with much lower levels at the MSOA and LSOA scales.
Overlapping CIs indicate that those differences are not statistically substantial in several
cases; however, the CIs for Borough and OA scales overlap for Pakistanis, but not for
Indians and Bangladeshis.

No other group has a pattern similar to the White British: that of continued declining
segregation with decreasing scale. The three mixed-ethnicity groups—like the eight
identified previously—have their highest segregation levels at the Borough and OA
scales, too, but larger for the latter than the former (although in the case of the White-
Black Caribbean mixed group, the CIs overlap). The Chinese stand out with much
greater modeled segregation at the OA level than any of the other three; within each

17 These MRR values (and the variance estimates on which they are based) are relative and not absolute
measures of segregation. We are currently exploring ways of transforming them into absolute measures.

Table 1 Model goodness-of-fit

Scale DIC ΔDIC

OA 1,635,526 ––

+LSOA 1,625,241 –10,285

+LSOA & MSOA 1,623,016 –2,225

+LSOA & MSOA & Borough 1,622,704 –312

2008 K. Jones et al.



Borough, a small number of neighborhoods have relatively numerous Chinese resi-
dents, but they are not substantially concentrated in particular Boroughs.

Table 2 Modeled variances by ethnic group and scale

Ethnic Group/Scale V
2.5 %
CI

97.5 %
CI Ethnic Group/Scale V

2.5 %
CI

97.5 %
CI

White British Indian

Borough 0.306 0.132 1.030 Borough 1.179 0.705 1.905

MSOA 0.198 0.111 0.743 MSOA 0.364 0.326 0.407

LSOA 0.026 0.025 0.028 LSOA 0.088 0.080 0.096

OA 0.028 0.028 0.029 OA 0.294 0.285 0.304

White Irish Pakistani

Borough 0.293 0.174 0.498 Borough 1.827 1.108 2.972

MSOA 0.101 0.091 0.113 MSOA 0.495 0.441 0.566

LSOA 0.031 0.026 0.036 LSOA 0.125 0.109 0.141

OA 0.158 0.152 0.165 OA 0.753 0.727 0.781

White Other Bangladeshi

Borough 0.436 0.267 0.709 Borough 3.443 2.025 5.835

MSOA 0.099 0.090 0.110 MSOA 0.627 0.525 0.950

LSOA 0.028 0.026 0.031 LSOA 0.250 0.220 0.284

OA 0.085 0.083 0.088 OA 1.566 1.508 1.626

White and Black Caribbean Chinese

Borough 0.294 0.174 0.483 Borough 0.288 0.172 0.483

MSOA 0.188 0.167 0.216 MSOA 0.246 0.218 0.275

LSOA 0.074 0.065 0.084 LSOA 0.107 0.095 0.121

OA 0.338 0.325 0.351 OA 0.588 0.568 0.610

White and Black African Black African

Borough 0.263 0.156 0.441 Borough 0.664 0.403 1.101

MSOA 0.187 0.163 0.216 MSOA 0.512 0.453 0.611

LSOA 0.076 0.065 0.088 LSOA 0.147 0.136 0.158

OA 0.551 0.528 0.574 OA 0.354 0.344 0.363

White and Asian Black Caribbean

Borough 0.142 0.087 0.233 Borough 1.011 0.595 1.685

MSOA 0.039 0.033 0.046 MSOA 0.402 0.358 0.475

LSOA 0.031 0.025 0.037 LSOA 0.098 0.090 0.106

OA 0.291 0.279 0.303 OA 0.246 0.238 0.254

Arab

Borough 1.423 0.872 2.323

MSOA 0.285 0.250 0.327

LSOA 0.138 0.120 0.160

OA 0.770 0.740 0.799

Notes: V = modeled variance; CI = credible intervals.
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In general, therefore, these modeled variances suggest that for most of London’s
ethnic groups in 2011, segregation was both a macro- and a micro-scale phenomenon
(the Borough and OA, respectively) but not also at the meso-scale (MSOA and LSOA).
Most migrant groups are concentrated into particular boroughs, and within them there
is significant small-scale local variation given that they are clustered in some parts of
the boroughs but not others. The White British are the main exception to this: they, too,
are concentrated in particular boroughs, within which there is no local spatial variation.
They are represented by panel (a) in Fig. 1, whereas most of the others fall in type (c)
(also shown in Fig. 1), and the Chinese are the main exception as type (b) (Fig. 1). The
majority White British are concentrated in large blocks of territory, represented here at
the Borough scale, in which the subdivisions are homogeneously White, whereas the
minority ethnic groups are also concentrated in (a smaller number of) certain boroughs
and additionally in certain small blocks within those boroughs.

Within Scale: Between Ethnic Groups

In these comparisons, the segregation levels (variances) are rank ordered to identify
which are the most- and least-segregated ethnic groups at each scale (Table 5).
Although there are differences in detail, the general pattern is very clear: the most-
segregated groups at all four scales are those with self-assessed Asian (especially South
Asian) and Black ethnicities, whereas the least segregated at every scale, too—are the
White British, Irish, and Others. The levels of segregation for those claiming a mixed
ethnic identity tend to be less than those for the nonwhite group that they partially
identify with, but more than for the white populations.

Although the 13 groups can be arranged along continua as in Table 5, the differences
between adjacent groups are rarely significantly different, especially at the larger spatial
scales. At the Borough scale, for example, the CIs overlap between every adjacent pair,
but there are differences between nonadjacent pairs.18 The first substantial difference
(denoted by the underline) along the continuum is between the Bangladeshis (variance
(V) = 3.443; CI = 2.025, 5.835) and the Indians (V = 1.179; CI = 0.705, 1.905). The next
substantial difference is between Indians and the mixed White–Black Caribbean group
(V = 0.294; CI = 0.174, 0.483). No group below that on the continuum differs
substantially from the White–Black Caribbeans, suggesting that the 13 groups can be
divided into three according to their segregation level at that scale, with the boundaries
between the three groups shown by lines in the ranking: (1) three of the four South Asian
groups (the most segregated at that scale); (2) the Indians, the two Black groups, and the
White Others (less segregated); and (3) the remaining groups, comprising the White
British and Irish, the Chinese, and the three mixed groups (the least segregated).

Similar splits are reported in the other three columns of Table 5 for the smaller
scales. They show greater variety: more clusters of ethnic groups that differ substan-
tially from their neighbors in their degree of segregation, although segregation levels
are generally low at the MSOA and LSOA scales. The greatest degree of substantial
variation is at the smallest scale (the OA), which is divided into nine segments in each
of which the top-ranked ethnic group has a significantly smaller level of segregation
than that at the bottom of the segment above it and where each of the four least

18 This can be checked using the CIs reported in Tables 2 and 3.

2010 K. Jones et al.



segregated groups has a significantly smaller modeled level of segregation from that
immediately above it on the continuum. The Bangladeshis are the most segregated at all
four scales, and the Arabs and Pakistanis are also highly segregated across the four; at

Table 3 Modeled variances by ethnic group and scale

Ethnic Group/Scale MRR
2.5 %
CI

97.5 %
CI Ethnic Group/Scale MRR

2.5 %
CI

97.5 %
CI

White British Indian

Borough 1.695 1.414 2.633 Borough 2.817 2.228 3.731

MSOA 1.529 1.374 2.278 MSOA 1.778 1.724 1.838

LSOA 1.166 1.163 1.173 LSOA 1.327 1.310 1.344

OA 1.173 1.173 1.176 OA 1.677 1.664 1.692

White Irish Pakistani

Borough 1.676 1.489 1.960 Borough 3.630 2.729 5.178

MSOA 1.354 1.333 1.378 MSOA 1.956 1.884 2.050

LSOA 1.183 1.166 1.198 LSOA 1.401 1.370 1.431

OA 1.461 1.450 1.473 OA 2.288 2.255 2.323

White Other Bangladeshi

Borough 1.877 1.637 2.233 Borough 5.871 3.886 10.016

MSOA 1.350 1.331 1.372 MSOA 2.128 1.996 2.534

LSOA 1.173 1.166 1.183 LSOA 1.611 1.564 1.663

OA 1.321 1.316 1.327 OA 3.299 3.226 3.375

White and Black Caribbean Chinese

Borough 1.677 1.489 1.940 Borough 1.668 1.485 1.940

MSOA 1.512 1.477 1.558 MSOA 1.605 1.561 1.649

LSOA 1.296 1.275 1.318 LSOA 1.366 1.342 1.393

OA 1.741 1.723 1.760 OA 2.078 2.052 2.106

White and Black African Black African

Borough 1.631 1.458 1.884 Borough 2.176 1.832 2.721

MSOA 1.511 1.470 1.558 MSOA 1.979 1.900 2.108

LSOA 1.301 1.275 1.327 LSOA 1.442 1.422 1.461

OA 2.030 2.000 2.060 OA 1.764 1.750 1.777

White and Asian Black Caribbean

Borough 1.433 1.325 1.585 Borough 2.609 2.087 3.449

MSOA 1.207 1.189 1.227 MSOA 1.831 1.770 1.930

LSOA 1.183 1.163 1.201 LSOA 1.348 1.331 1.364

OA 1.673 1.655 1.691 OA 1.605 1.593 1.617

Arab

Borough 3.120 2.437 4.280

MSOA 1.664 1.611 1.725

LSOA 1.425 1.392 1.465

OA 2.310 2.272 2.346

Notes: MRR = modeled median rate ratios; CI = credible intervals.
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the other extreme, the White British are either the least- or the second least–segregated
group (again, as with all of the other comparisons, with segregation at the higher scales
held constant).

These findings are in line with those of other descriptive, single-scale analyses of
ethnic segregation in London (e.g., Johnston et al. 2015), but also extend them. There is
no established theory suggesting which groups should be most or least segregated,
let alone of any variations across scales. In general, however, the more recent arrivals
are expected to be more segregated than the longer-established groups; those culturally
more distinct from the host society are expected be more segregated than those that are
less so (most Black Caribbeans are Christians, for example); and those claiming mixed
ethnicities are expected to be less segregated than the minority group with which they
partially identify but more segregated than the dominant White groups (their mixed
identity being an indicator of cultural, and possibly economic, assimilation). The
findings reported in Tables 2, 3, and 5 sustain that interpretation. Thus, the predomi-
nantly Muslim Bangladeshis and Pakistanis are among the most segregated groups at
every scale, for example, but the more heterogeneous other South Asian group (Indians,
comprising Muslims and Sikhs as well as the majority Hindus19) is less so; and the
White and mixed groups are among the least segregated.

In addition, however, the decomposition provided by the modeled variances—the
assessed segregation level at each scale is net of that identified at the higher scales—
provides information not available from other studies. This is exemplified in two
particular cases. The Black Caribbeans are long-established in London—large-scale
immigration having been initiated in the late 1940s—and the group has not grown over
the most recent decade with few new arrivals (Jivraj and Simpson 2015). They are
relatively highly segregated at the macro-scale (i.e., Borough), reflecting the parts of
London in which they initially settled, but much less so at the micro-scale (i.e., OA),
almost certainly indicative of economic and social mobility over the last few decades;
while concentrated in particular parts of London (indicative of inertia in residential
decision-making at the macro-scale), they are not strongly clustered within particular
smaller areas there—a patterning that distinguishes them from several other more
recent and still-expanding (Johnston et al. 2013) immigrant groups, including the
Black Africans.

19 That internal heterogeneity cannot be decomposed using the available census data on self-assessed ethnicity.

Table 4 Summary of the size of the MRR values in Table 3 at the four spatial scales

MRR

Scale
Low
<1.5

Small
1.5–2.0

Medium
2.0–4.2

Large
4.2<

Borough 1 7 4 1

MSOA 1 7 4 1

LSOA 12 1 0 0

OA 3 9 1 0

2012 K. Jones et al.
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By way of contrast, the relative size of the segregation measures for the
Chinese is the inverse of that for the Black Caribbeans. They rank ninth among
the 13 groups for their degree of segregation at the Borough scale, for example,
but fourth at the OA scale (and the CIs in Table 3 indicate a statistically
significant difference between the two). Across London as a whole, therefore,
the Chinese are relatively widely distributed—certainly more so than the other
Asian ethnic groups. (The Chinese MRR at that scale is significantly smaller
than those for the Bangladeshis, Pakistanis, and Indians: see Table 2.) Within
those areas where they are relatively concentrated, however, they are more
clustered at the most local scale (at the OA level) than all but three other
groups, including Indians. As with Black Caribbeans, therefore, these multiscale
estimates net of any segregation at higher scales not only confirm our general
appreciation of which groups are more or less segregated; they also add an
important indication of the statistical significance of those differences and
demonstrate that relative levels of segregation vary by scale, indicative, among
other factors, of the groups’ length of settlement in the city and its degree of
economic and cultural assimilation into the wider society.

Cross-Group Correlations

This final analysis explores the degree to which the various ethnic groups are
segregated into the same areas, at the four spatial scales. This involves stan-
dardizing the covariance for each set of differences for each ethnicity at the
relevant scale. The resultant correlation coefficients are reported in Table 6.
Only those exceeding ±0.4 are shown, with positive coefficients in italics and
negative coefficients in bold. The first block shows the correlations at the
Borough (below the diagonal) and MSOA (above the diagonal) scales; the
lower block does the same, respectively, for the LSOA and OA scales. One
clear conclusion stands out: the sparseness of the matrices (the relatively small
number of coefficients >±0.4) indicates that most distributions are relatively
independent of each other, with few (especially strong) common patterns. This
is particularly the case at the smaller scales: only 21 of the 78 coefficients are
above that threshold in the Borough analyses; 25 at the MSOA scale; 13 at the
LSOA scale; and just three at the OA. A finding of few positive correlations
indicates that at all four scales, each of the groups has a distinct residential
distribution, separate from that of most if not all of the 12 others.

The only substantial negative correlations in the four matrices apply to the
White British population: at the Borough and MSOA scales, areas where there
are many more White British residents than average tend to have fewer than
average members of several of the Asian and Black ethnic groups. Among the
positive correlations, some of the largest refer to the Black Africans and Black
Caribbeans, plus those claiming a mixed White–Black African/Black Caribbean
identity; these four groups cluster together in above average proportions at all
scales. The only other clear pattern of clustering together—notably at the
Borough and MSOA scales—is of Indians and Pakistanis, many of whom can
be found not only in the same (western) sector of London (Johnston et al.
2014) but also clustered in major segments of those boroughs.

2014 K. Jones et al.



Conclusions

This article has introduced a new procedure for measuring ethnic residential segrega-
tion, using a formal modeling strategy rather than the descriptive indices characteristic
of most studies of that phenomenon. Because it can accommodate multigroup popula-
tions, it is ideally suited for investigations of segregation in large cities, most of which
are characterized by several separate ethnic groups. The modeling procedure also
operates at a variety of spatial scales and thus can evaluate the degree of segregation
at different resolution levels. Further, because it is based on a formal modeling

Table 6 Cross-correlations comparing the pairwise distributions of the 13 groups at the four spatial scales

WB WI WO WBC WBA WA I P Ba C BA BC A

Borough/MSOA

White British 1.0 — –– –– –– –– –0.56 –0.68 –0.62 –– –0.51 –0.44 –0.41

White Irish –– 1.0 –– –– –– 0.47 –– –– –– –– –– –– ––

White Other –– 0.48 1.0 –– –– 0.47 –– –– –– 0.58 –– 0.50

White–BC –0.42 –– 0.43 1.0 0.80 –– –– –– 0.41 –– 0.72 0.81 ––

White–BA –– –– –– 0.57 1.0 –– –– –– 0.48 –– 0.83 0.76 0.53

White–Asian –– 0.53 0.59 –– –– 1.0 –– –– –– –– –– –– ––

Indian –– –– –– –– –– –– 1.0 0.71 –– –– –– –– ––

Pakistani –0.45 –– –– –– –– –– 0.51 1.0 0.57 –– –– –– ––

Bangladeshi –– –– –– –– –– –– –– –– 1.0 –– 0.65 0.62 0.47

Chinese –– –– 0.44 –– –– 0.42 –– –– –– 1.0 –– –– ––

Black African –0.40 –– –– 0.57 0.64 –– –– –– –– –– 1.0 0.82 0.53

BCaribbean –0.44 –– –– 0.68 0.58 –– –– –– –– –– 0.65 1.0 0.42

Arab –0.42 –– 0.55 –– –– 0.53 –– –– –– –– –– –– 1.0

LSOA/OA

White British 1.0 –– –– –– –– –– –– –– –– –– –0.48 –– ––

White Irish 0.47 1.0 –– –– –– –– –– –– –– –– –– –– ––

White Other –– –– 1.0 –– –– –– –– –– –– –– –– –– ––

White–BC –– –– –– 1.0 –– –– –– –– –– –– –– 0.46 ––

White–BA –– –– –– 0.58 1.0 –– –– –– –– –– –– –– ––

White–Asian –– –– –– –– –– 1.0 –– –– –– –– –– –– ––

Indian –– –– –– –– –– –– 1.0 –– –– –– –– –– ––

Pakistani –0.41 –– –– –– –– –– 0.52 1.0 –– –– –– –– ––

Bangladeshi –0.44 –– –– –– –– –– –– –– 1.0 –– –– –– ––

Chinese –– –– 0.43 –– –– –– 0.44 –– –– 1.0 –– –– ––

Black African –0.43 –– –– 0.68 0.66 –– –– –– 0.58 –– 1.0 0.42 ––

Black Caribbean –– –– –– –– –– –– –– –– –– –– 0.78 1.0 ––

Arab –– –– –– –– –– –– –– –– –– –– 0.40 –– ––

Notes: Positive coefficients are shown in italics, and negative coefficients are shown in bold. WB = White
British; WI = White Irish; WO = White Other; WBC (White–BC = Mixed White–Black Caribbean; WBA
(White–BA) = Mixed White–Black African; WA = Mixed White–Asian; I = Indian; P = Pakistani; Ba =
Bangladeshi; C = Chinese; BA = Black African; BC = Black Caribbean; A = Arab.
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procedure that takes into account natural variation in the distribution of small
absolute counts, the segregation estimates—produced using Bayesian proce-
dures—have associated credible intervals, which allow statements to be made
regarding the substantive significance of differences between groups in the
degree of segregation (at each spatial scale).

We have demonstrated the usefulness of this single overall model for ana-
lyzing the degree of residential segregation for multiple ethnicities at multiple
scales; and we have done so using data for the London metropolitan area in
2011, a very large study of 13 ethnicities at four spatial scales involving
estimating more than one-third million rates (the ratios of observed to expected
numbers in each of the areas for each of the 13 ethnic groups) for more than 8
million people. This multilevel framework can be applied elsewhere; in U.S.
cities, for example, a hierarchical structure such as that deployed by Fischer
et al. (2004) could be constructed and extended to include block groups.
Moreover, the multilevel framework has the capacity for further important
extensions, such as examining changing ethnic residential distributions (Owen
and Jones 2015). The stochastic nature of the counts is of particular importance
for this type of application because apparent secular differences could be found
due to chance fluctuations over time. It is also possible to analyze nonhierar-
chical structures, such as cross-classifications, where the contexts are not
strictly nested but crossed (Duncan et al. 1998). Such models could be used
to analyze simultaneously school segregation net of residential segregation and
vice versa. It is also possible to have models in which the variance is structured
by explanatory variables to investigate, for example, how the degree of ethnic
segregation depends on the amount of deprivation.

The substantive results from this initial application of the modeling strategy to ethnic
segregation in London in 2011 illustrate the importance of investigating scalar differ-
ences. A general pattern emerges for several of the ethnic groups analyzed: their
greatest concentration is at the largest and smallest scales, clustered both into certain
segments of the city (at the Borough scale) and, within those segments, into groups of
small areas. But that generalization does not apply to all the ethnic groups, indicating
that segregation patterns are multifaceted and that the use of single-number indices
suggesting that some are more segregated than others fails to uncover the full detail of a
complex set of overlapping maps.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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