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Quantum tomography of the GHZ state
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Abstract. We present a method of generation of the Greenberger–Horne–
Zeilinger state involving type II and type I parametric downconversion, and
triggering photodetectors. The state generated by the proposed experimen-
tal set-up can be reconstructed through multi-mode quantum homodyne
tomography. The feasibility of the measurement is studied on the basis of
Monte-Carlo simulations.

1 Introduction

A number of proposals for generating the Greenberger–Horne–Zeilinger (GHZ) state
[1] has been suggested in the literature [2]. Such kind of state is very interesting
as it leads to correlations between three particles in contradiction with the Einstein-
Podolsky-Rosen idea of “elements of reality” [3]. In the present contribution we present
a scheme for a complete quantum test of a GHZ state of radiation, not just for a
simple verification of some GHZ correlations, which do not prove that a true GHZ
state has been produced. In fact, the verification of a state-preparation procedure
needs a complete state-reconstruction technique, whereas correlation measurements [4]
give identical results for very different states of radiation. In this respect, a crucial
technique for state-preparation tests is quantum homodyne tomography, in which the
detrimental effect of non-unity quantum efficiency of detectors is taken into account ab
initio by the reconstruction algorithms.

In the following we propose a method for generating a GHZ state through type II
and type I parametric downconversion, and triggering photodetectors. The proposed
set-up, although it has low rate of production due to low efficiency for single-photon
downconversion, however is the only way to generate a “true” GHZ state, without an
additional vacuum component. The scheme allows a tomographic state-reconstruction,
whose feasibility here is studied on the basis of Monte–Carlo simulations.

2 Scheme for the GHZ-state generation

The scheme for the generation of the GHZ state is sketched in Fig. 1. A low-gain
type-II parametric downconverter is pumped by a strong coherent beam to generate
the state

|ξ〉 ≃ (1 + 2γ2)−1/2
[

|0〉+ γ
(

|1fe, 1go〉+ eiϕ1 |1fo, 1ge〉
)]

, (2.1)

in the four radiation modes fe,o and go,e, where o, e represent ordinary and extraordi-
nary polarizations, γ denotes the effective coupling depending on the pump strength
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Figure 1: Sketch of the experimental set-up for generating the GHZ state. A low-gain type-II parametric
downconverter is pumped by a strong coherent beam and generates the state in Eq. (2.1). Two further
downconversion processes in type I nonlinear crystals excite modes ao,e, bo,e, co,e and do,e. λ and PBS
denote a wave plate and a polarizing beam splitter, respectively. The photodetector in the lower part of the
scheme collapses the field modes in the state of Eq. (2.5). The photodetector in the upper part checks if the
second photon in one of the modes fe,o has been split in the first crystal. The resulting state is a mixture of
a Fock state in modes co,e and of a GHZ state [see Eq. (2.6)], the weights of the two components depending
on the effective gain of crystal A and on the quantum efficiency of detector D1.

and the nonlinear susceptibility of the crystal, |0〉 and |1a〉 represent the vacuum and
the single-photon Fock state for mode a, respectively.

The state ξ at the output of the first crystal is then impinged on two type-I nonlinear
crystal A and B. In this case no classical pump is used and the dynamics must be
evaluated without the parametric approximation used to derive Eq. (2.1). For example,
the unitary evolution describing crystal A is given by

ÛA = exp
[

χA
(

a†ob
†
ofe + eiϕA a†eb

†
efo − h.c.

)]

, (2.2)

χA being proportional to the nonlinear susceptibility of the medium. An analogous
expression can be written for the crystal B. For simplicity, we assume in the following
χA = χB ≡ χ. The state at the output of the couple of type-I crystals is given by

ÛAÛB|ξ〉 = (1 + 2γ2)−1/2{|0〉+
γ[(cosχ|1fe〉+ sinχ|1ao, 1bo〉)(cosχ|1go〉+ sinχ|1ce 1de〉) +
eiϕ1(cosχ|1fo〉+ eiϕA sinχ|1ae, 1be〉)(cosχ|1ge〉+ eiϕB sinχ|1co 1do)〉]} .(2.3)

As shown in Fig. 1, a wave plate and a polarizing beam splitter act respectively on
modes ce,o and de,o according to the unitary transformations

{

ce −→ co
co −→ −ce ,

{

de −→ (de + do)/
√
2

do −→ (do − de)/
√
2

. (2.4)
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When photodetector D2 reveals one photon after the polarizing beam splitter, one is
guaranteed that two photons have been created in the type-II crystal and that the
photon impinging on crystal B has been split. This occurs with probability PΦ =
η2(γ

2 sin2 χ)/(1 + 2γ2), η2 being the quantum efficiency of photodetector D2. The
corresponding reduced state |Φ〉 writes

|Φ〉 =
1√
2
[cosχ(|1fe 1co〉 − ei(ϕ1+ϕB)|1fo 1ce〉)

+ sinχ(|1ao 1bo 1co〉 − ei(ϕ1+ϕA+ϕB)|1ae 1be 1ce〉)] . (2.5)

Photodetector D1 in the upper part of the scheme monitors the splitting of the photon
impinging on crystal A. When such detector, characterized by quantum efficiency η1,
reveals the lack of the “pumping” photon, the resulting output state finally reads as
the following mixture

ˆ̺ =











1√
2
(|1ao 1bo 1co〉 − ei(ϕ1+ϕA+ϕB)|1ae 1be 1ce〉) p1 = sin2 χ

1−η1 cos2 χ

|1co〉 p2 = (1−η1) cos2 χ
2(1−η1 cos2 χ)

|1ce〉 p3 = p2

(2.6)

The overall probability P̺ of generating the mixture in Eq. (2.6) is given by P̺ =
PΦ(1 − η1 cos

2 χ). One easily recognizes in the first component of the mixed state
in Eq. (2.6) the GHZ state for a suitable arrangement of the phases, namely for
ϕ1 + ϕA + ϕB = π.

3 Multi-mode tomographic measurement

Quantum homodyne tomography is the first quantitative technique for measuring the
matrix elements of the radiation density operator [5, 6], which is now used in optical labs
[7]. Single-mode homodyne tomography can be generalized to any number of modes.
However, such a simple generalization needs a separate measurement for each mode,
which cannot be achieved when modes are not spatially separated. For this reason, in
Ref. [8] it has been proposed a general method for measuring an arbitrary observable
of a multi-mode electromagnetic field, using homodyne detection with a single local
oscillator. Such method is a natural application of a recent group-theoretical approach
to quantum tomography [9]. In the following we recall the main results, providing
the rule to evaluate the “unbiased estimator” for a generic (M+1)-mode operator.
The quantum expectation value of the operator can be obtained for any unknown
state of radiation through an average of such estimator over homodyne outcomes that
are collected using a single local oscillator by scanning different linear combinations of
modes on it. The quadrature operator to be measured is given by X̂(θ, ψ) = [Â†(θ, ψ)+

Â(θ, ψ)]/2 with Â(θ, ψ) =
∑M

l=0 e
−iψlul(θ)al. The vector ~u(θ) represents a point on the

Poincaré hyper-sphere (for the explicit parametrization see Ref. [8]). By scanning the
values of ψl ∈ [0, π] and θl ∈ [0, π/2], all possible linear combinations of modes described
by annihilation operators al, with l = 0, . . . ,M , are obtained. The homodyne outcomes
for X̂(θ, ψ) can be obtained using a single local oscillator prepared in the multi-mode
coherent state ⊗Ml=0|γl〉 with |γl〉 = eiψlul(θ)K/2, where K ≫ 1. The expectation value

for a given operator Ô is evaluated as follows

〈Ô〉 =
∫

dµ[ψ]

∫

dµ[θ]

∫ +∞

−∞
dx pη(x; θ, ψ) Eη [Ô](x; θ, ψ) , (3.7)



Quantum tomography of the GHZ state 4

where pη(x; θ, ψ) denotes the homodyne probability distribution of the quadrature

X̂(θ, ψ) for quantum efficiency η, and the function Eη[Ô](x; θ, ψ) of x, {θl}, {ψl} has
the following analytic expression

Eη[Ô](x; θ, ψ) =
κM+1

M !

∫ +∞

0

dt e−t+2i
√
κtx tM Tr{Ô: exp[−2i

√
κtX̂(θ, ψ)]:} , (3.8)

with κ = 2η/(2η − 1). In Eq. (3.8) we used the notation

∫

dµ[ψ]
.
=

M
∏

l=0

∫ 2π

0

dψl
2π

,

∫

dµ[θ]
.
= 2MM !

M
∏

l=1

∫ π/2

0

dθl sin
2(M−l)+1 θl cos θl .(3.9)

For any given operator Ô Eq. (3.8) provides the “unbiased estimator” to be averaged

over all homodyne outcomes for the quadrature X̂(θ, ψ) of all modes in order to ob-

tain the ensemble average 〈Ô〉 for any unknown state of radiation. Eq. (3.7) can be

specialized to the matrix element 〈{nl}|R̂|{ml}〉 of the full joint density matrix. This
will be obtained by averaging the following estimator [8]

Eη[|{ml}〉〈{nl}|](x; θ, ψ) = e−i
∑

M

l=0
(nl−ml)ψl

κM+1

M !

M
∏

l=0

{

[−i
√
κul(θ)]

µl−νl

√

νl!

µl!

}

×
∫ +∞

0

dt e−t+2i
√
κtx tM+

∑

M

l=0
(µl−νl)/2

M
∏

l=0

Lµl−νl
νl [κu2l (θ)t] , (3.10)

where µl = max(ml, nl), νl = min(ml, nl), and L
α
n(z) denotes the customary general-

ized Laguerre polynomial of variable z.

4 Numerical results

The tomographic measurement on the state in Eq. (2.6) can be suitably performed
by varying randomly the phases and the polarizations for the couples of modes ao,e,
bo,e and co,e and then collecting homodyne outcomes by using three local oscillators.
Such an experimental arrangement represents an intermediate way of using the multi-
mode tomographic method of Sect. 3, and the usual method based on the product
of single-mode estimators. By using the estimator in Eq. (3.10) one can measure
tomographically the expectation value of the projector |φ〉〈φ| with

|φ〉 ≡ 1√
2

(

|1ao 1bo 1co〉+ eiφ|1ae 1be 1ce〉
)

on the state ˆ̺ in Eq. (2.6) and compare the result with the theoretical value, namely

C(φ) ≡ 〈φ| ˆ̺|φ〉 = 1

2
p1 [1− cos(φ − ϕ)] (4.11)

We report in Fig. 2 the results of some Monte-Carlo simulations of the tomographic
measurement of C(φ) in Eq. (4.11).
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Figure 2: Tomographic measurement of C(φ) in Eq. (4.11) for ϕ = 0. On the left: η = 0.85, χ = 0.3π,

N = 6 × 106. On the right: η = 0.9, χ = 0.4π, N = 1.7 × 107.

In the simulations the quantum efficiency of detectors D1 and D2 is η1 = η2 = 30%
and the phase ϕ in the state (2.6) is ϕ = 0. The values of the quantum efficiency η of
homodyne detectors, the coupling χ of type-I downconvertors, and the number N of
simulated homodyne data are reported in the caption of the figures. The results of the
simulations show that for homodyne detectors with quantum efficiency η = 85% one
needs about 107 data to reconstruct the state with relatively small statistical error. The
experimental values compare very well with the theoretical ones. The bars represent
the statistical error, whereas the solid line is the theoretical value of C(φ). In each plot,
all points are obtained by the same sample of data which causes the evident correlation
between the statistical deviations.
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