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Abstract With the increasing popularity of optimal design

in drug development it is important to understand how the

approximations and implementations of the Fisher infor-

mation matrix (FIM) affect the resulting optimal designs.

The aim of this work was to investigate the impact on

design performance when using two common approxima-

tions to the population model and the full or block-diagonal

FIM implementations for optimization of sampling points.

Sampling schedules for two example experiments based on

population models were optimized using the FO and FOCE

approximations and the full and block-diagonal FIM

implementations. The number of support points was com-

pared between the designs for each example experiment.

The performance of these designs based on simulation/es-

timations was investigated by computing bias of the

parameters as well as through the use of an empirical

D-criterion confidence interval. Simulations were per-

formed when the design was computed with the true

parameter values as well as with misspecified parameter

values. The FOCE approximation and the Full FIM

implementation yielded designs with more support points

and less clustering of sample points than designs optimized

with the FO approximation and the block-diagonal imple-

mentation. The D-criterion confidence intervals showed no

performance differences between the full and block diag-

onal FIM optimal designs when assuming true parameter

values. However, the FO approximated block-reduced FIM

designs had higher bias than the other designs. When

assuming parameter misspecification in the design evalu-

ation, the FO Full FIM optimal design was superior to the

FO block-diagonal FIM design in both of the examples.

Keywords Optimal design � Fisher information matrix �
Full FIM � Block-diagonal FIM � FO � FOCE

Introduction

Optimal design of clinical trials has become an increas-

ingly popular and important tool in drug development to

reduce the cost and increase informativeness of the study

[1]. By utilizing a nonlinear mixed effects model

(NLMEM) to describe the pharmacokinetic (PK) and

pharmacodynamic (PD) properties of the drug, the Fisher

information matrix (FIM) can be calculated for a set of

design variables [2]. Through the Cramer-Rao inequality,

the inverse of the FIM has been shown to give a lower

bound of the Variance–Covariance matrix of model

parameter estimates [3, 4]. By choosing design variables

that maximize the FIM, the expected parameter uncertainty

is minimized [5]. Different design criteria, which typically

use the FIM in the calculation of a single-valued objective

function may be used to compare and optimize the designs

[6]. One of the simplest and most common design criteria

is called D-Optimality which compares designs using the

determinant of the FIM under the assumption that all

estimated parameters are of equal importance.

The computation of the FIM is of high numerical

complexity and, with the lack of an analytical expression

for the likelihood in NLMEMs, the exact solution to the

FIM cannot be derived. Therefore, several approximations

of the FIM are available which can yield slightly different

results and affect the resulting optimal designs. Typically,
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first order approximations to the NLMEM are used in

computation of the FIM, which linearize the random effects

of the NLMEM around a mean of 0 (FO) or around indi-

vidual realizations of the random effects (FOCE) [7].

Furthermore, there are two implementations of the FIM

that are commonly used today; the full FIM and a block-

diagonal FIM, which is formed under the assumption that

the random effects components of an NLMEM are inde-

pendent of the typical values [8–10]. Previous work in

evaluating a specific design has shown that similar results

are achieved when using the same approximation in dif-

ferent optimal design software (PFIM, PopED, PopDes,

POPT and PkStaMP) [11]. It has also been shown that in

some cases the block-diagonal FIM is a better predictor

than the full FIM of the results gained from a design when

evaluated using Monte Carlo based methods [10, 11].

However, other work has shown that the full FIM is the

superior implementation [9]. Little work has been done to

compare these methods when using them in the optimiza-

tion of experimental designs (not just evaluation).

One common way to compare designs is through a FIM

evaluation, where a lower bound of the expected parameter

uncertainty can be assessed [11]. However, when com-

paring different approximations and implementations of

the FIM, this approach will not work, since the resulting

FIM will depend on the approximation used in the evalu-

ation. To objectively compare the different designs, this

work employs a Monte Carlo simulation/estimation based

procedure to generate the empirical variance–covariance

matrix (empCOV) and transform it to an empirical D-cri-

terion. There is however uncertainty in this calculation of

the empirical variance–covariance matrix, dependent on

the number of simulations and which has to be taken into

consideration when comparing designs. This work pro-

poses that this uncertainty can be addressed by computing

confidence intervals of the empirical D-criterion using

bootstrap methodology.

For optimizations of sampling designs where there are

more samples per individual than model parameters, the

resulting optimal designs have been shown to include

clustering of samples on model parameter dependent sup-

port points [12]. The effect of this clustering of samples

may be beneficial if the model is true (in terms of structure

AND parameter values) since it adds additional informa-

tion for the parameters in the true model. However, if, in a

design calculation, the assumptions of model structure or

model parameter values are incorrect, then clustering of

samples will potentially occur at non-optimal points.

In this work the effect of using the approximation

methods FO and FOCE and the full and block-diagonal

FIM on D-optimal designs is investigated for two com-

monly used NLMEMs. The number of support points (and

thus the amount of clustering) for each FIM

implementation and approximation method is compared

and the effect of parameter misspecification in the design

stage on the design performance is evaluated. It is

hypothesized a D-optimal design with more support points

and less clustering will be more robust to parameter mis-

specification in the design calculations.

Background theory

Evaluation of the Fisher information matrix

The individual response, yi, given the individual design

vector, ni, can, for a NLMEM, be written as

yi ¼ f hi; nið Þ þ h hi; ni; eið Þ

where f(.) is the structural model, h(.) is the residual error

model and ei is the residual error vector. The individual

parameters are given by the vector hi ¼ g b; gið Þ which is

dependent on the fixed effects vector b, containing the

typical values of the parameters, and the vector of random

effects gi which describes the subject specific deviations

from the typical values. In this work, the j between subject

variability (BSV) terms and the k residual unexplained

variability (RUV) terms are assumed to be normally dis-

tributed with mean zero and respective covariance matrices

X and R of size (k, k) and (j, j).

The Fisher information matrix for the ith individual with

the vector of design variables ni and expected response

E(yi) and variance V(yi)can be written as [12]

FIMFULL
i H; nið Þ ¼ 1

2

A E yið Þ;V yið Þð Þ C V yið Þð Þ
C V yið Þð Þ B V yið Þð Þ

� �

A E yið Þ;V yið ÞÞð Þ ¼ 2 � oE yið Þ
ob

T

V yið Þ�1�oE yið Þ
ob

þ tr
oV yið Þ
ob

�V yið Þ�1�oV yið Þ
ob

�V yið Þ�1

� �

B V yið Þð Þ ¼ tr
oV yið Þ
ok

� V yið Þ�1� oV yið Þ
ok

� V yið Þ�1

� �

C V yið Þð Þ ¼ tr
oV yið Þ
ob

� V yið Þ�1� oV yið Þ
ob

� V yið Þ�1

� �

where H = [b, k] = [b, x1
2, …, xk

2, r1
2, …, rj

2] is the

vector of population parameters containing the fixed effects

parameters b and the variance/covariance terms in the X
and R matricies. By assuming that the variance of the

model V yið Þ is independent of the change in typical values

b, C V yið Þð Þ is zero and the Full FIM can be reduced to its

block-diagonal form [13]:

FIM
block�diag
i H;nið Þ ¼ 1

2

A E yið Þ;V yið Þð Þ 0

0 B E yið Þ;V yið Þð Þ

� �
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with the A block being reduced to

A E yið Þ;V yið Þð Þ ¼ 2 � oE yið Þ
ob

T

Var yið Þ�1� oE yið Þ
ob

The expected model response E yið Þ and variance V yið Þ
are approximated by linearizing the NLME model with

respect to the BSV, gi, and the RUV, ei, to guarantee

marginal normally distributed observations. One of the two

most common linearizations, which have been used in this

work, is the First Order (FO) linearization, which linearizes

each individual’s random effects around the typical values

hi;0 ¼ g b; gi ¼ 0ð Þ and ei = 0. This gives the individual

response function for a single occasion

yi � f hi;0; ni
� �

þ gi � Li hi;0; ni
� �

þ ei � Hi hi;0; ni; ei ¼ 0
� �

where Li hi;0; ni
� �

� of
og hi;0; ni
� �

and Hi hi;0; ni; ei ¼ 0
� �

�
oh
oe hi;0; ni; ei ¼ 0
� �

. Since gi = 0 and ei = 0 this gives the

expected response and variance

EFO yið Þ � f hi;0; ni
� �

VarFO yið Þ � Li hi;0; ni
� �

�X � LT
i hi;0; ni
� �

þ diag Hi hi;0; ni
� �

� R � HT
i hi;0; ni
� �� �

This approximation can, however, be inaccurate when

the BSV becomes large, is highly nonlinear or when the

interaction of the residual error and inter-individual ran-

dom effect is important. A better, but more time-consum-

ing approximation is the first order conditional estimate

(FOCE) linearization; this method linearizes the expecta-

tion of the model E yið Þ around individual samples of the

BSV taken from a normal distribution of ~gi �N 0;Xð Þ [14].
This gives the expected response and variance for a single

occasion

EFOCE yið Þ � ~hi; ni
� 	

� ~gT
i � Li

~hi; ni
� 	

VarFOCE yið Þ � Li
~hi; ni
� 	

�X � LT
i

~hi; ni
� 	

þ diag Hi
~hi; ni
� 	

� R � HT
i

~hi; ni
� 	� 	

where ~hi ¼ g b; ~gið Þ. A more detailed description of dif-

ferent linearizations and the derivation of the FIM is

reported in Nyberg et al. and Retout and Mentré [12, 14].

Methods

Two representative pharmacometric models and their ini-

tial designs were optimized using the FO or FOCE model

linearization and the full FIM calculation or the block-

diagonal FIM approximation. Evaluation of these four

different designs per example were then performed using

stochastic simulation and estimation assuming either that

the optimal designs were computed with the correct model

parameter values or misspecified model parameter values.

Example 1: warfarin PK

The Warfarin PK model and design was previously uti-

lized by Nyberg et al. [11] and Bazzoli et al. [15] in

optimal design evaluations. The model is one compartment

with linear absorption, log-normal BSV on all parameters

and an additive and proportional RUV. That is, for the ith

individual with response yi, the set of individual parame-

ters hi and individual sampling times vector ti we have:

yi ti; hið Þ ¼
Doseka;i

Cli
Vi

Cli ka;i � Cli
Vi

� 	� 	 e
�Cli

Vi
ti � e�ka;i ti

� 	
1þ eprop;i
� �

þ eadd;i mg=Lð Þ
Cli ¼ bCL � egCL;i L=hð Þ
Vi ¼ bV � egV;i Lð Þ

ka;i ¼ bKa � egKa;iðh�1Þ

The initial study design fromNyberg et al. consisted of 32

individuals in one group after a single fixed dose of 70 mg

and sampling schedule tinit ¼ 0:5; 2; 3; 6; 24; 36; 72; 120ð Þ
hours. All model parameters are listed in Table 1.

The Warfarin model used by Nyberg et al. has only a

proportional residual variability. The model used here has

an additional fixed additive component representing an

assumed, known, assay error. This extra error term will

help avoid optimal samples at very low concentrations that

would be practically below the quantification limit [16].

Example 2: PD—sigmoidal EMAX model

The second example is a sigmoidal EMAX model with the

dose of a drug as the independent variable, implemented

as:

yi Di; hið Þ ¼ D
c
i Emaxi

ED50
c
i þ D

c
ið Þ 1þ eprop;i
� �

þ eadd;i

Emaxi ¼ bEmax � egEmax;i

ED50i ¼ bED50 � egED50;i

Table 1 Parameter values of the warfarin example model

Fixed effects Random effects

bCL (L/h) 0.15 x2
Cl

0.07

bV (L) 8 x2
V

0.02

bKa (h-1) 1 x2
Ka

0.6

Covariates r2prop 0.1

Dose (mg) 70 FIX r2add mg=L½ � 0.01 FIX
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ci ¼ bc � egc;i

A combined additive and proportional residual vari-

ability was chosen so that the total maximum magnitude of

residual variability was 10% of the maximum model

response. The initial design was 100 individuals in one

group with 8 sampling events between 0 and 50 dose units

(d.u), and the initial sampling schedule Dinit ¼
1; 5; 10; 15; 20; 30; 40; 50ð Þ d.u. All the model parameter

values can be found in Table 2. As in example 1, a fixed

additive error was used to avoid optimal doses that would

lead to effect measurements below the quantitative limit.

Design optimization

The sampling schedule for both example models, was

optimized using D-optimality in PopED 2.13 for MATLAB

[12, 17]. Four optimal designs were generated per example

by using the FO and FOCE model linearizations to

approximate the full and the block-diagonal FIM. The

default optimization settings were used and the FOCE

approximation had 4000 conditional samples. The FO

optimizations using the full and block-diagonal FIM were

replicated in PFIM 3.2.2 [15] with the default optimization

search settings for comparison of the optimal designs

generated with PopED.

Design evaluation without parameter

misspecification

To evaluate the different designs, stochastic simulation and

estimations (SSE) were run using Pearl speaks NONMEM

(PsN) [18]. The example models were used to simulate

3000 datasets for each optimized design using the same

parameters used in the design optimization (Tables 1, 2).

The model parameters were then re-estimated to fit the

simulated data (All parameter estimation was done using

the FOCEI approximation in NONMEM 7.3 [19]), which

generated 3000 estimated parameter vectors per SSE.

These parameter vectors were then used to derive an

empirical variance–covariance matrix (COV) and the

empirical D-criterion:

D� CriterionEmp: ¼
1

COV

� �1=p

where p is the number of estimated parameters. However,

as demonstrated in Fig. 1, the calculation of the empirical

D-criterion from these parameter vectors is dependent on

the number of simulations and estimated parameter vectors

included in the calculation. This variability, caused by the

nature of Monte-Carlo simulations, makes it possible for

two SSEs for the same design and model to give different

empirical D-criterion. This could in practice lead to false

conclusions when comparing the empirical D-criteria of

two candidate designs. To find the ‘‘true’’ Empirical

D-criterion the number of simulated datasets would have to

approach infinity. To counteract the risk of false conclu-

sions, 95% confidence intervals of the D-criterion were

generated using a case-resampling bootstrap with 10,000

iterations [20].

In addition, for each SSE, the absolute relative bias and

relative estimation error (REE) for each parameter was

calculated:

relative bias Hið Þ ¼ abs
1

N

XN
j

Ĥi;j �HiÞ
Hi

 ! !

REE Hið Þ ¼ Ĥi;j �Hi

Hi

Table 2 Parameter values of the EMAX example model

Fixed effects Random effects

bEMAX 100 x2
EMAX

0.0625

bED50 20 x2
ED50

0.0625

bc 4.5 x2
c

0.0625

r2prop 0.0025

r2add 25 FIX

1800

2000

2200

2400

2600

100 250 500 1000 2000 3000
Number of Simulated Datasets

Empirical 
D-Criterion

Fig. 1 95% confidence intervals of the empirical D-criterion for the

initial design in the Warfarin example as the number of simulated

datasets and estimated parameter vectors increase. The confidence

intervals are generated by a 1000 iteration bootstrap of COV-matrix

calculations from the SSE parameter vectors based on 100–3000

simulated datasets. The lower and upper lines represent the 5th and

95th percentiles respectively. The dot represents the empirical

D-criterion calculated without bootstrap
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where Ĥi;j is the jth estimate of parameter i, from N re-

estimations of the true parameter Hi used in the dataset

simulation.

Design evaluation with parameter misspecification

Design robustness was evaluated by emulating parameter

misspecification in the design stage. The example models

were used to simulate 3000 datasets for each optimized

design using a range of parameter vectors that were dif-

ferent than those used in the design optimization (design

calculations were always based on the parameters in

Tables 1, 2). The simulation parameters were generated by

randomly perturbing all model parameters using a uniform

distribution of 50–200% of the value used in the design

optimization. The model parameters were then re-esti-

mated to fit the simulated data.

Thus, for each SSE in this design evaluation with

parameter misspecification, the true parameter values used

for simulation were different for each parameter vector.

This increased the variability between the parameter vec-

tors, which would inflate the empirical variance–covari-

ance matrix (COV) and the empirical D-criterion.

Therefore, the following correction was applied to the re-

estimated parameters, when computing the empirical D-

criterion intervals:

Ĥi;j ¼ ĤSSE;j þ H�HSSE;j

� �
where Ĥc;j is the jth corrected parameter vector,ĤSSE;j is

the re-estimated parameter vector based on simulation j,H
is the parameter vector used for design optimization and

HSSE,j is the perturbed and true parameter vector that was

used for simulation of dataset j. The absolute relative bias

and REE were computed as in the previous section with the

uncorrected parameter values.

Results

For both investigated models, the optimizations using the

full FIM implementation increased the number of support

points and reduced sample clustering when compared to

the block-diagonal FIM implementations. Further, the

optimizations using the FOCE approximation increased the

number of support points and reduced sample clustering

when compared to the FO approximation.

For the Warfarin model, when using the FO approxi-

mation and the full FIM for optimization, the optimal

sampling schedule was shown to have 5 support points with

the optimal sampling schedule tFOfull ¼ 0:14; 2:18; 2:18;ð
2:18; 8:97; 8:97; 53:1; 120Þ:Optimizations using the

block-diagonal FIM yielded 3 support points and the

sampling schedule tFOblock�diag: ¼ 0:26; 6:33; 6:33; 6:33;ð

6:33; 6:33; 6:33; 120Þ:Optimizing using the FOCE

approximation and the full FIM gave designs with 8 sup-

port points and the optimal sampling schedule tFOCEFull ¼
0:05; 0:36; 1:13; 4:65; 6:73; 19:6; 41:7; 120ð Þ:Using the

block-diagonal FOCE FIM yielded 7 support points and the

optimal sampling schedule tFOCEblock�diag: ¼ 0:04; 0:29; 0:70;ð
5:73; 5:74; 13:7; 27:8; 120Þ:

For the EMAX example, the optimal sampling schedules

optimized using the FO approximation were DFO
Full ¼ 12:8;ð

12:8; 19:4; 28:0; 28:0; 50:0; 50:0; 50:0Þ with 4 support

points for the full FIM and DFO
block�diag: ¼ 13:8; 13:8; 25:4;ð

25:4; 50:0; 50:0; 50:0; 50:0Þ with 3 support points for the

block diagonal FIM. When using the FOCE approximation

the optimal sampling schedules were DFOCE
Full ¼ 11:6;ð

15:4; 19:9; 24:6; 30:0; 37:2; 50:0; 50:0Þ and DFOCE
block�diag: ¼

12:2; 16:4; 21:4; 26:5; 35:3; 50; 50:0; 50:0ð Þ with 7 and 6

support points for the full and block-diagonal FIMs

respectively.

The optimizations performed with PopED agreed well

with the results from PFIM and gave final designs that were

identical to the third significant digit when optimizing with

the block diagonal and full FO FIM.

When evaluating the D-optimal designs using SSEs and

assuming no parameter misspecification in the design phase,

no significant differences in D-criterion between the optimal

designs of the full and block-diagonal FIM implementations

was observed for these examples. Furthermore, there was no

significant advantage in the FOCE designs over the FO

designs according to the empirical D-criterion (left plot in

Figs. 2, 3). The FO block-diagonal design had, however, a

slightly higher D-criterion than the FOCE Full FIM design

in the warfarin example. In both examples, the design using

the block-diagonal FIM and the FO approximation resulted

in a slightly higher bias for the fixed effect and BSV

parameter estimates (top plot in Figs. 4, 5) compared to the

Full FIM designs. These differences were less noticeable

when the FOCE approximation was used, which for some

parameters increased the bias.

With Parameter misspecification included in the evalu-

ation of the D-optimal designs, the FO designs based on the

full FIM were superior (higher D-criterion, more infor-

mation, less parameter variability) to the FO block diago-

nal designs in both examples (right plot in Figs. 2, 3). For

the EMAX example, the FOCE optimal designs both

resulted in a higher D-criterion than the FO designs. Fur-

ther, in both examples, the design based on the block-di-

agonal FIM using the FO approximation resulted in the

parameter with the largest relative bias (bottom plot in

Figs. 4, 5). The bias of parameter estimates was reduced

for the block-diagonal FIM design when the FOCE

approximation was used.
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Boxplots of relative estimation error for the parameters

are available as supplementary figures (Figs. 6, 7, 8, 9) in

the Appendix.

Discussion

This work compares how the full and block-diagonal Fisher

information matrices and two common FIM linearizations

affect the optimal design when optimizing sampling

schedules for two different example models. These

examples reveal that optimizing with the full FIM and the

FOCE approximation could increase the number of support

points and yield reduced clustering in the optimal designs

compared to designs optimized with the FO approximation

and block-diagonal FIM. The designs effect on estimated

parameter accuracy and precision were evaluated by

stochastic simulations and re-estimations, which is gener-

ally considered the gold standard in design evaluation.

When model parameters were correctly specified in the

example design calculations, then all designs generally

performed equally well. When model parameters were

Fig. 2 Comparison of empirical D-criterion for the 8-point design in

the warfarin example, optimized using the FO and FOCE algorithms

and using the full and block diagonal FIMs. The median and the 5th

and 95th percentiles of the empirical D-criterions were calculated

from a bootstrap of estimated parameter vectors from an SSE with

3000 datasets with (left panel) and without (right panel) misspeci-

fication in the design calculations. The dot represents the bootstrap

median while the top and bottom lines represents the 95th and 5th

percentiles respectively

Fig. 3 Comparison of Empirical D-criterion for the 8-point design in

the EMAX example, optimized using the FO and FOCE algorithms

and using the full and block-diagonal FIMs. The median and the 5th

and 95th percentiles of the empirical D-criterions were calculated

from a bootstrap of estimated parameter vectors from an SSE with

3000 datasets with (left panel) and without (right panel) misspeci-

fication in the design calculations. The dot represents the bootstrap

median while the top and bottom lines represents the 95th and 5th

percentiles respectively
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misspecified in the example design calculations, the

designs from the most commonly used FO, block-diagonal

FIM (the designs with the lowest number of support points)

perform worse than the designs from the FO, full FIM

designs. Use of the, considerably more time consuming,

FOCE approximation was beneficial in one of the examples

but not the other.

For models without between-subject variability, where

the FIM has an analytic solution, the expected number of

optimal design support points should be equal to the number

of estimated fixed effects parameters [21]. For nonlinear

mixed effects models, the number of support points can

depend on the underlying model structure as well as

parameters [22], but it may be reasonable to assume that the

number of support points should be between the number of

fixed effect parameters and the total number of fixed and

random effect parameters. For all examples in this work, the

number of support points was never less than the number of

fixed effect parameters. However, the number of support

points did exceed the total number of estimated parameters

(both fixed and random) in the FOCE, full FIM design for

example 1 with 8 support points for 7 estimated parameters.

To test that this design was not a local maximum, the 8-point

design was manually validated by iteratively reducing the

final design by moving all samples on one support point to

another support point and then re-running the optimizations.

The optimization algorithm converged upon the same

8-point design regardless of initial design.

In this work we see that the number of support points in a

design will depend on the approximations used in the FIM

calculation. For both examples, the designs optimized using

the FO approximated FIMs had fewer support points and

more clustered samples than the designs based on the FOCE

FIMs. In addition, using the Full FIM in the optimization

resulted in more support points and less clustering compared

to when the block-diagonal FIM was utilized. These results

may be explained by examining the approximations used in

each calculation. When optimizing the designs using the FO

approximation, the individual response is linearized around

themean of the random effects, whichmay be reflected in the

lower number of support points since the information

regarding the BSV is for this linearization is gained at the

sampling points where the most information regarding the

fixed effect parameters are found. By using the FOCE

approximation, additional information regarding the BSV

Fig. 4 The absolute mean relative bias for the warfarin model

parameters for four different designs optimized using the FO and

FOCE approximations and the full and block-diagonal FIMs. The

designs were evaluated using SSEs with 3000 simulated datasets

where parameter misspecification was included for the bottom panel

Fig. 5 The absolute mean relative bias for the EMAX model

parameters for four different designs optimized using the FO and

FOCE approximations and the Full and Block-Diagonal FIMs. The

designs were evaluated using SSEs with 3000 simulated datasets

where parameter misspecification in the design calculation was

included for the bottom panel
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parameters are required since FOCE linearizes around

individual samples of the response. This may increase the

number of support points in the FOCE designs relative to

the FO designs, and may increase the support points

beyond the number needed for population parameter

estimation in favor of individual parameter estimation.

Additionally, when BSV and RUV parameters are inclu-

ded in the model such that the variance of the model is

dependent on fixed effect parameters (for example, with

log-normal BSV parameters or proportional RUV

parameters) then the block-diagonal FIM will ignore this

information potentially resulting in fewer support points

compared to the full FIM.

When the designs were evaluated via SSE experiments

without parameter misspecification in the design calcu-

lations, there were no differences in D-criterion between

the full and block-diagonal FIM designs. In addition,

there were no differences in D-criterion between the FO

and FOCE designs, given the same matrix block

assumptions. However, when the designs were evaluated

via SSE experiments with parameter misspecification in

the design calculations, the FO Full FIM design was

superior to the FO block-diagonal design in both exam-

ples. In addition, the FO block-diagonal design in the

warfarin example was no longer superior to the FOCE

full FIM design, and the FOCE designs were superior to

the FO block-diagonal design in the EMAX example.

This could be due to the higher number of support points

in the Full FIM and FOCE designs which made the

designs less sensitive to parameter misspecification in the

design stage. Additionally, the parameter with highest

bias occurred, in both examples, for the FO block-diag-

onal design when the designs were optimized with

parameter misspecification.

Clearly, the clustering of samples at support points is

also of practical concern. It requires multiple samples taken

simultaneously which is not always possible. This work

indicates that the full FIM approximation may increase the

number of support points in a D-optimal design. There are

other methods that could be used in combination with the

full FIM to avoid clustering of samples. One could apply

sampling windows around the optimal sampling times in

which samples may be taken at an accepted loss of design

efficiency [23]. A second approach is to reduce the clus-

tering is to include information about residual error auto-

correlation in the model [24, 25]. A third approach is to

incorporate information about parameter uncertainty in the

design calculation using E-family design calculations,

which have been shown to be more robust to parameter

misspecification in the design stage [26].

It should be noted that the FOCE approximation used

in these examples differs from the implementation of

FOCE used by NONMEM where the model is linearized

around the mode of the joint density function for each

subject based on the observed data for each individual.

In this work we assume that the model is linearized

around normally-distributed individual parameter esti-

mates assuming these estimates come from the popula-

tion distribution without shrinkage. An updated FOCE

approximation, FOCEMode, which linearizes around the

Empirical Bayes Estimate (EBE) for each individual

could be used [12]. However, in this work, the design

was rich, thus the shrinkage of individual parameter

estimates should be minimal and the approximations

should be similar.

Finally, when comparing designs for models with many

parameters, it can sometimes be difficult to determine the

overall best design. The empirical D-criterion from

stochastic simulation and estimation facilitated a quick

overview of design performance that was independent of

the approximation method and FIM implementation used

in the design stage. Despite the high number of simulations

and estimations, there was still uncertainty in the calcula-

tion of this empirical D-criterion due to the simulation and

estimation approach. Therefore, comparing the designs

based on a single estimate of the empirical D-criterion

would have led to false conclusions regarding differences

in design performance. For instance, tblock-diag.
FO would have

seemed superior to tFull
FO when the designs were calculated

without model parameter misspecification. By comparing

95% confidence intervals of the empirical D-criterion, false

differences between designs caused by this uncertainty

were reduced, and actual differences could be observed at a

95% level of confidence. To fully evaluate the designs

however, standard metrics such as parameter bias and

standard errors are still recommended to use as a comple-

ment to the empirical D-criterion intervals. In particular,

for scenarios where certain parameters in the model are the

main interest.

Conclusions

Using the full rather than the block-diagonal FIM and

FOCE instead of FO for design optimization could increase

the number of support points and reduce clustering of

sampling times in a design. The Full FIM can increase the

design robustness and thus be less sensitive to parameter

misspecification in the design stage compared to block-

diagonal FIM designs.

Confidence intervals of the D-criterion reduce the risk of

false conclusions caused by the uncertainty in the vari-

ance–covariance matrix calculations, and may be useful as
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an initial design diagnostic and complement to the standard

parameter precision metrics.

Although it has been previously shown that the block-

diagonal FIM may, in some examples, more accurately

predict the empirical covariance matrix compared to the full

FIM [10], this work has demonstrated that it may still be

advantageous to use the full FIM for designs optimizations.
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Appendix

See Figs. 6, 7, 8, and 9.

Fig. 6 Standard boxplots of

relative estimation error of the

Warfarin model parameters for

four different designs optimized

using the FO and FOCE

approximations and the full and

block-diagonal FIM

implementations. The

estimation error was calculated

from parameter vectors

generated by stochastic

simulations and estimations

with 3000 simulated datasets

Fig. 7 Standard boxplots of

relative estimation error of the

EMAX model parameters for

four different designs optimized

using the FO and FOCE

approximations and the full and

block-diagonal FIM

implementations. The

estimation error was calculated

from parameter vectors

generated by stochastic

simulations and estimations

with 3000 simulated datasets
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