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Abstract This paper concerns an Intel Xeon Phi implementation of the explicit fourth-
order Runge—Kutta method (RK4) for very sparse matrices with very short rows. Such
matrices arise during Markovian modeling of computer and telecommunication net-
works. In this work an implementation based on Intel Math Kernel Library (Intel MKL)
routines and the authors’ own implementation, both using the CSR storage scheme
and working on Intel Xeon Phi, were investigated. The implementation based on the
Intel MKL library uses the high-performance BLAS and Sparse BLAS routines. In our
application we focus on OpenMP style programming. We implement SpMV operation
and vector addition using the basic optimizing techniques and the vectorization. We
evaluate our approach in native and offload modes for various number of cores and
thread allocation affinities. Both implementations (based on Intel MKL and made by
the authors) were compared in respect of the time, the speedup and the performance.
The numerical experiments on Intel Xeon Phi show that the performance of authors’
implementation is very promising and gives a gain of up to two times compared to
the multithreaded implementation (based on Intel MKL) running on CPU (Intel Xeon
processor) and even three times in comparison with the application which uses Intel
MKL on Intel Xeon Phi.
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1 Introduction

In recent years HPC computers are increasingly equipped with computation acceler-
ators responsible for performing some operations in parallel. Accelerators based on
graphic processing units (GPU) [26] are characterized by a very specific architecture
and require specially designed programing tools and environments (like CUDA [12]
and/or OpenCL [32]). Another type of coprocessors is Intel Xeon Phi [21] which can
run the existing code without changes—only after recompilation.

Theoretically, thanks to such features, we could use Intel Xeon Phi for large scale
parallel processing without the necessity of redesigning codes, because these coproces-
sors support traditional programming models. However, practically, to make a full use
of the computational potential of massively parallel many-core systems we must quite
often put a big effort and apply a lot of different optimization techniques to take
advantage of the parallelism hidden in the code.

Modeling real complex systems with the use of Markov chains is a well-known and
recognized method giving good results [31]. Examples of complex systems considered
in this article are call centers [14,27,33] and wireless networks [3,8,9]. For large
matrices (and such matrices arise during modeling complex system), the methods
based on numerical solving of ordinal differential equations are the most useful [4,
17,28,31]. There exist one-step methods (such as Euler method, its modifications, as
well as Runge—Kutta methods) and multistep methods (like Adams method [31] or
BDF method [31]).

In the following paper we use one of the Runge—Kutta methods—the explicit fourth-
order Runge—Kutta method (RK4)—because of their accuracy and flexibility, and the
possibility of changing the integration step. However, these methods have a disad-
vantage, namely relatively long time of computation. The dominant operations of
the Runge—Kutta methods are SpMV (sparse matrix-vector multiplication) and vector
addition. Gaining a good performance of SpMV is difficult on almost each architec-
ture. We are going to perform multiplication of sparse matrix-vector (SpMV) on Intel
Xeon Phi to speedup computation.

In our previous works [5,7,10,22] we have considered the numerical solution of
Markov chains on different architectures: multi-core and GPUs. The novelty of this
paper is a research of parallel implementations of explicit fourth-order Runge—Kutta
method for sparse matrices arising from Markovian models on a new architecture,
namely Intel Xeon Phi.

The aim of this work is to shorten the computation time of the explicit fourth-order
Runge—Kutta methods for the matrices from Markovian models of complex systems
with the use of the massively parallel many-core architecture of Intel Xeon Phi. We
use the CSR format to represent sparse matrices. We present two implementations:
one based on Intel MKL which uses BLAS and Sparse BLAS routines and the second,
where SpMV operation was implemented by the authors. In this work, the time, the
speedup and the performance are analyzed.
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The paper is organized as follows. Section 2 presents related works. Section 3
introduces the Intel Xeon Phi architecture. In Sect. 4 the idea of the sparse matrix
storage in the CSR format is presented. Section 5 provides information about the
explicit fourth-order Runge—Kutta method and about the parallel algorithm for this
method and its implementation. Section 6 presents the results of our experiments. The
time, the speedup, the performance of two programming modes on the Intel Xeon Phi
are analyzed. Section 7 is a summary of our experiments.

2 Related Works

The SpMV operation was studied on various architectures. Due to the popularity of
GPUs, sparse matrix formats and different optimization techniques was proposed to
improve the performance of SpMV on GPUs.

In the article [5] some computational aspects of GPU-accelerated sparse matrix-
vector multiplication were investigated. Particularly, sparse matrices appearing in
modeling with Markovian queuing models were considered. The efficiency of SpMV
with the use of a ready-to-use GPU-accelerated mathematical library, namely CUSP
[11] was studied. For the CUSP library, some data structures of sparse matrices and
their impact on the GPU were discussed. The SpMV routine from the CUSP library
was used for the implementation of the uniformization method. The uniformization
method is one of the methods for finding transient probabilities in Markovian models.
It was analyzed in the work [7] on a CPU-GPU architecture. Two parallel algorithms
of the uniformization method—the first one utilizing only a multicore machine (CPU)
and the second one, with the use of not only a multicore CPU, but also a graphical
processor unit (GPU) for the most time-consuming computations—were presented.
The uniformization method on a multi-GPU machines was considered in the work
[22].

New algorithms for performing SpMV on multicore and multinodal architectures
were presented in the paper [6]. A parallel version of the algorithm which can be
efficiently implemented on the contemporary multicore architectures was considered.
Next, a distributed version targeted at high performance clusters was shown. Both
versions were thoroughly tested using different architectures, compiler tools and sparse
matrices of different sizes. The performance of the algorithms was compared to the
performance of the SpMV routine from the widely known MKL library.

The problem of efficiency of the SpMV operation on Intel Xeon Phi was considered
in [13,25,30]. In paper [30], the performance of the Xeon Phi coprocessor for SpMV is
investigated. One of the researched aspect in that work is the vectorization of the CRS
format and showing that this approach is not suited for Intel Xeon Phi in particular
for very sparse matrix (with short rows). An efficient implementation of SpMV on the
Intel Xeon Phi coprocessor by using a specialized data structure with load balancing
is described in [25]. The use of OpenMP based parallelization on a MIC (Intel Many
Integrated Cores architecture) processor was evaluated in [13]. That work analyzed
the speedup, throughput, scalability of the OpenMP version of the CG (conjugate gra-
dients) kernel, which used the SpMV operation on Intel Xeon Phi and was application
oriented.
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3 Xeon Phi Architecture and Programming Models

Intel Xeon Phi [29] is a multicore coprocessor created on the basis of Intel MIC
(Many Integrated Cores) technology, where many redesigned Intel CPU cores are
connected by a bi-directional 512-bit ring bus. The cores are enriched with a 64-bit
service instruction and a cache memory L1 and L2. Additionally, the cores ensure
hardware support for FMA (Fused Multiply-Add) instruction and also have their own
vector processing unit (VPU), which together with 32,512-bit vector registers allows
to process many data with the use of one instruction (SIMD).

A single Intel Xeon Phi is made in 22 nm technology with the use of 3-DTri-
Gate transistors. It has 57-61 cores of 1056—-1238 GHz frequency and it serves 244
threads and communicates through PCI-Express 2.0. Advanced mechanisms of energy
management are implemented.

The Intel accelerators are characterized by a typical memory hierarchy. Depending
on a card model, the coprocessor has from 6 to 16 GB of main memory GDDRS5
(Graphic Double Data rate 5 v). The access to this memory is gained through 6-8
main memory controllers, each having two access channels enabling sending 2 x 8
bites. The access to the main memory is characterized by 240-352 GB/s. To maximize
the bandwidth, the memory data are organized in a specific way.

Intel Xeon Phi enables execution of applications written in C/C++ and Fortran lan-
guages. The Intel company offers a set of programming tools assisting programming
processes such as compilers, debuggers, libraries that allow creating parallel appli-
cations (e.g. OpenMP, MPI) and different kinds of mathematic libraries (e.g. Intel
MKL).

Intel Xeon Phi coprocessors cannot be used as independent computing units (they
require a general purpose processor), however, they can work in different executing
modes: native or offload mode.

In the native mode the task is executed directly by the coprocessor, which makes
it a separate computing node. The compilation of the source code for the accelerator
architecture demands a so-called cross-compliling, which produces an executing file
on Intel Xeon Phi. The native application can be started by hand on the coprocessor or
by micnativeloadex tool which automatically copies the program together with
necessary files and then starts it.

The offload programming model allows designing programs in which only selected
segments of the code are executed by the coprocessors. The chosen part of the
code should be proceeded by a dedicated compiler directive #pragma offload
target (mic) that also indicates available coprocessors which will be used to do
calculations and send data between the coprocessor and the host. The program is com-
piled like a regular host application and is initiated on the host processor while the
code segments which will be done by the coprocessor are automatically copied during
the application performance and consequently started there.

Within a single core of the Intel MIC architecture it is possible to start maximum
up to 4 threads which share the same memory cache. Thus, the essential aspect is
to define the way in which processes or threads will be mapped on to a computing
unit cores (affinity). The optimal setting enables the reduction of reference numbers
to main memory consequently increasing the performance. In OpenMP standard it
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can be achieved by setting an environmental variable KMP_AFFINITY on one of the
options:

— compact — the successive core is filled in with threads after assigning 4 threads
to a former core,

— balanced — threads are placed equally between the available computing cores,

— scatter — threads are placed between the core based on round and robin
algorithm.

4 Storage of a Sparse Matrix

Matrices that are generated while solving Markovs models of complex systems are
very sparse, with a small number of entries in a row. In the literature [31], a lot of ways
which represent sparse matrices and enable their effective storage and processing have
been suggested. Generally, there is no single best way to represent sparse matrices as
different data structures depend on different types of sparse matrices and different
algorithms, and also some data structures turn out to be more susceptible to parallel
implementation than others.

One of the formats to store any sparse matrices is Compressed Sparse Row (CSR).
This format uses little space in the operational memory. Additionally, the operations on
matrices stored in this format are part of the Intel MKL library on the Intel MIC archi-
tecture [20]. In the CSR format, the information about matrix A, where A is a sparse
matrix of m x n size and nz nonzero elements, is stored in three one-dimentional
arrays:

— datal-], of nz size, stores values of nonzero elements (in increasing order of row
indices);

— col[-], of nz size, stores column indices of nonzero elements (in order conforming
to data array content);

— ptr[-], of m + 1 size, stores indices of beginnings of successive rows in data array
that is data[ ptr[i]] is the first nonzero element of ith row in data array, similary,
col[ptr[i]] is the column number of this element. Moreover, ptr array usually
stores an additional element that equals the number of nonzero elements in the
whole matrix at the end, which is incredibly useful for processing the CSR format.

5 Explicite Fourth-Order Runge-Kutta Method

In the case of computing transient probabilities in a continuous time Markov chain
(CTMC), numerical techniques are based on solving the system of ordinary differential
equations of order n:

dm (1)

AT
ar =Q'n() (1

where the coefficient matrix Q7 is transition rate matrix of order n (n is the number of
states of the Markov chain) and 7 (¢) is the state probability vector of CTMC at time
t.
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For the system of Eq. (1) there is analytical solution in the following form:
(1) = w(0)eQ"’ )
where 7 (0) is the initial condition and is the initial probability vector of CTMC.

. . T .
Computing expression ¢Q ? creates the problem for large sparse matrices. For
determining this expression, we expand exponential function in infinite Taylor series

T o T \k
RO Z (Qk‘l) 3)
k=0 :

The complication during determining the formula (3) is connected with computing
the k-th matrix power of Q”'; such an algorithm is numerically instable.

We consider the explicite fourth-order Runge—Kutta method for numerical solving
the ordinary differential Eq. (1) with the initial conditions (2).

5.1 Runge-Kutta Method

The most commonly used Runge—Kutta method is the explicit four order method. It
has a standard form expressed by the formulas:

h
Yit1 = yi + g(/q + 2ky + 2k3 + ka), 4
where

ki = f(, yi)s
P P L
2 = i 29)’1 ) ,

h hky
ks=f ti+§,yi+7 ,

kg = f(t; +h, yi + hk3).

When we apply the standard fourth-order explicit Runge—Kutta method to Eq. (1),
we obtain the following formulas:

h
Tit] =T; +g(k1 + 2k; + 2Kk3 + ky), (5)
where
ki = Q' m;,
hk
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Fig. 1 The explicite

fourth-order Runge—Kutta 1. p« mo;
method 2. Fork=1,...,t/h do:
(a) k1 — QTp

(b) k2 — QT (p + hk1/2)

(c) ks — QT (p + hk2/2)

(d) ka — QT (p + hks)

(e) p— p+ %(ki + 2ko + 2ks + ky)
T

3. (t) —p

hk
k3 = QT (7[1 + TZ)

ks = Q" (m; + hk3).

The algorithm to compute the vector 7 (¢) of transient probabilities in a given time
t from the formula (5) has been presented in Fig. 1. In the algorithm we have: the
matrix Q (the infinitesimal generator) and the initial condition x (0), the time ¢ and
the step 4.

Recommendation for Runge—Kutta method [23]: the method is very accurate and
most often applied. Its main advantage is the possibility to use a changeable integrate
step. On the negative side, the Runge—Kutta methods take comparatively long time
for computations and there are difficulties in error evaluation.

5.2 Parallel Runge—Kutta Algorithm

In the further part of this paper we will be dealing with the explicit fourth-order Runge—
Kutta method in a parallel version. Its general form is presented as Algorithm 1.

Algorithm 1 The parallel algorithm which determines the transient probabilities vec-
tor, where the operation * denotes the parallel sparse matrix-vector multiplication and
the operation + denotes the parallelized and vectorized vector addition

Require: Q7 —transition rate matrix, pio—initial probability vector, h—step, —time
Ensure: pi;—vector of transient probabilities in the time ¢
1:lk <t/h

2: piy < pig

3: for k = 1 to lk do

ki <~ QT * piy

ky < QT % (pir + 5 - k1)

ks < QT (pis + k)

kg < QT * (}lm, + hk3)

8. pir = pir + g - (k1 + 2ko +2k3 + kg)

9: end for

10: return pi;

RSN O

The total number of the floating point operations for the sparse matrix-vector mul-
tiplication is 2nz and for the Runge—Kutta method it is
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8nz + 13n (6)

5.3 Parallel Implementation

The first implementation was created on the basis of available functions in the Intel
MKL (Math Kernel Library) library of computing functions on Intel processors and
adapted to multithread parallel processing in multi-processor systems including Intel
Xeon Phi. As the Eq. (5) is a vector equation, it allows us to express Algorithm
1 in terms of BLAS [2] (Basic Linear Algebra Subprograms) [1,24]. One function
from Sparse BLAS package was used. Sparse BLAS [15,16] is a group of methods
performing linear algebra operations on sparse matrices. In our implementation, we
used BLAS package level 1 and one function from Sparse BLAS.

The matrix storage format in the memory was considered as the CSR format sup-
ported by the Intel MKL library. In the Intel MKL library the information about the
matrix in the CSR format is stored in 4 arrays:

values—the nonzero matrix elements’ array in a row order; its length equals the
number of nonzero elements of the stored matrix;

columns—the column index array of nonzero elements from the values array;
its length equals the length of the values array;

pointerB—the length of this array equals the number of rows of a stored matrix
and each of its elements (equal to the number of the matrix row) gives an element
index from the values array: the first nonzero element in a given row;
pointerE—this array also has the length equal to the number of rows in a stored
matrix and each of its elements gives an element index from the values array: it is
the first of nonzero elements in the next row.

Additionally, Intel MKL supports indexation both from zero and one in the
columns, pointerB, pointerE arrays. While calling a function from the Sparse
BLAS group, it is necessary to give all parameters describing the processed matrix.
Moreover, the matdescra parameter which is a six-element char array containing
additional information about the matrix, should be filled in.

matdescra [ 0]—information about the matrix structure (G for general matrix);
matdescra[l]—in case of a triangular matrix, the information about whether it
is upper or lower triangular;

matdescra [2]—the type of the main diagonal;

matdescra [ 3 ]—information about the indexation type (F from one, C from zero)
matdescral4], matdescral[5]—not used, reserved for the future.

None of the matrices tested here has a characteristic structure, hence
matdescral[0] == G, matdescra[l] and matdescra([2] are ignored and
indexation starts from zero, so matdescra[4] == C.

For the implementation of the operation * (that is a sparse matrix-vector multipli-
cation) a function from Sparse BLAS 2 package was used:

— mkl_dcsrmv:y < o -A*xx+ 8-y, wherea =1,8 =0,
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while the vectorized vector addition (that is the operation +) was needed in the fol-
lowing form

X<a - -X+y

and was implemented with a combination of the following functions:

— cblas_dcopy:y <X,
— cblas_dscal: X < a -X,
— cblas_daxpy:y <—a -x+Yy.

The headers of the functions described here are the same on different Intel archi-
tectures.

Next, we consider our implementations of the SpMV operation and the vector
addition. The matrix Q is represented in CRS. We use the OpenMP standard and
the for directives to parallelize all operations. We use a static scheduler for the
distribution of the matrix rows and the values of the vector.

In the SpMV operation we can assign some consecutive rows of the matrix to a
single thread in a parallel execution. One of the limitations in the SpMV implemen-
tation without optimization option is that only a single nonzero element is processed
at a time. To change it, we should switch on the —03 compiler option for the auto-
matic vectorization. The automatic vectorization is able to change (if it is safe) scalar
instructions into vector ones during compilation of the source code.

The idea of vectorization is to process all the nonzero elements in a row at once.
Since the Intel Xeon Phi architecture has 32,512-bit registers, the matrices should have
at least 8 values in each row to fully utilize the register. For one-row blocks we do
not use a SIMD kernel, because the test matrices have very short rows’ lengths (about
5 values per row) and the matrix-vector multiplication using our CSR kernel usually
uses only a part of the SIMD slot. Thus, the low SIMD efficiency is a problem for
CSR for matrices with short rows (see [13,25,30]).

In the algorithm we used the operation of the vector addition x < alpha
* x + vy. For this operation we applied the strip-mining technique—division of
the loop into two loops nested, allowing to separate the multithread and the vectoriza-
tion. The outer loop is parallelized using the pragma: #pragma omp parallel
for schedule(static). The #pragma simd pragma enables vectorization
of the inner loop. In addition, the information about the data independence is passed
by #pragma ivdep.

6 Numerical Experiment

In this section we tested the time, the performance and the speedup of the explicit
fourth-order Runge—Kutta method. The programs were implemented in C++ language
and two implementations of this algorithm were created:

the MKL-CSR it is a version using parallelism and vectorization offered by the
version function of the Intel MKL library in the version of the Intel MIC
architecture, where the sparse matrix was stored in the CSR format.
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Table 1 The properties of the

tested matrices Lp. Name " - %
1. CCl1 335,421 1,996,701 5.95
2. cc2 937,728 5,588,932 5.56
3. WF1 962,336 4,434,326 4.61
4. WEF2 1,034,273 4,660,479 4.51

the CSR version itis a version, where the sparse matrix was stored in the CSR format;
all vector and matrix operations were implemented by the authors.

The tests were conducted in different configurations:

— The impact of the program execution mode (native and offload) was tested.
— The impact of mapping the number of threads to the core (various settings of
environmental variable KMP_AFFINITY) were analyzed.

For each version, the program was compiled by using the Intel C++ compiler (icc)
with the compiler flag -03, which resulted in the automatic vectorization. In every
case, alignment of the memory data was used as vectorization support; the data were
aligned with 64 bytes limit, which was recommended by the documentation.

The -mk1 option was also used, which allowed to introduce parallelism in the
MKL-CSR version. The Intel MKL library was applied to measure the elapsed time.
The application of a const qualifier and the reference to array elements instead of
indices were the additional optimization elements applied to multithread processing.
The elapsed time of the algorithm was measured along with the data allocation in the
memory while all computations were done in double precision.

6.1 The Test Models

We tested the implementations on two models. The matrices generated while modeling
real systems with the use of Markov chains were applied in the test. Markov chains
can be used for modeling telecommunication networks and computer and network
systems. As an example of telecommunication network, a model of a call-center was
considered, while in case of computer and network systems we investigated a DCF
mechanism model (ang. distributed coordination function). It is a part of IEEE [18]
used to avoid collisions in wireless networks. Sparse matrices, which are used to carry
out tests, were generated and written to files. Each file contains the size of the matrix
in the first row and the number of nonzero elements (nz) in the second row while
the information about nonzero elements’ placement (row, column, value) is put in
successive nz rows. In Table 1, the properties of matrices used during the test are
given: WF1, WF2 describe wireless networks, CC1, CC2 describe call-centers.

All the tested matrices have very short rows; the mean number of elements in a row is
between 4.51 and 5.95 elements. In both computing models the number of computing
steps was the same and was equal 2000. However, due to the specific quality of each
model it generated different step sizes, as the basic time units in the Q matrix were
different for both models.
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The parameters of the Algorithm 1 for wireless network models were the following:

— initial condition pip = [1,0, ..., 0],
— step h = 0.001,
— time r = 2.

The parameters for the call center models were as follows:

— initial condition pip = [1,0,...,0],
— step & = 0.000001,
— time r = 0.002.

In the call center model 1h was a time unit, thus t = 0.002 denoted about 7 s. In
the wireless network model 1 ms was a time unit, thus ¢t = 2 denoted 2 ms.

6.2 The Test Environment

The tests were carried out using computing node of the following parameters:

Platform Serwer Actina Solar 220 X5 (Intel R2208GZAGC Grizzly Pass)

CPU 2x Intel Xeon E5-2695 v2 (2 x 12 cores, 2.4 GHz)

Memory 128GB DDR3 ECC Registred 1866MHz (16 x 8 GB)

Network card 2x InfiniBand: Mellanox MCB191A-FCAT(Connect-IB, FDR
56Gb/s)

Coprocessor 2x Intel Intel Xeon Phi Coprocessor 7120P (16GB, 1.238 GHz, 61
cores)

Software Intel Parallel Studio XE 2015 Cluster Edition for Linux (Intel C++ Com-
piler, Intel Math Kernel Library, Intel OpenMP)

6.3 Methodology

We use three metrics to compare the computing performance: time-to-solution,
speedup and performance. Time-to-solution is the time spent to reach a solution of the
explicit fourth-order Runge—Kutta method (RK4). Speedups (called relative speedups)
are calculated by dividing the time-to-solution of RK4 with a single thread on a single
core on Intel Xeon Phi by time-to-solution of RK4 with n threads on Intel Xeon Phi.
The performance [Gflops] is calculated by dividing the total number of the floating
point operation (6) by the best time-to-solution.

In our tests we use 60 cores in native and offload mode. In case of native execution
model, when application is started directly on Xeon Phi card, we can use all available
61 cores, but when we execute our code in offload mode the last physical core (with all
4 threads on it) is used to run the services required to support data transfer for offload
[19].

6.4 Affinity

The impact of mapping the number of threads to the core by different settings of the
environmental variable KMP_AFFINITY for chosen matrices were analyzed both
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Table 2 Thread-to-core mapping [time in seconds], native mode for MKL-CSR version

Matrix Number of threads No affinity KMP_AFFINITY
Compact Balanced Scatter

CC1 60 Threads 34 53 33 34

120 Threads 39 44 165 40

180 Threads 45 49 228 49

240 Threads 53 63 279 60
WF1 60 Threads 80 129 80 80

120 Threads 66 84 65 71

180 Threads 65 67 60 68

240 Threads 86 74 332 86

Table 3 Thread-to-core mapping [time in seconds], offload mode for MKL-CSR version

Matrix Number of threads No affinity KMP_AFFINITY
Compact Balanced Scatter

CC1 60 Threads 35 54 36 37

120 Threads 38 45 124 40

180 Threads 46 47 199 47

240 Threads 53 53 423 74
WF1 60 Threads 82 145 85 91

120 Threads 63 92 64 71

180 Threads 60 70 62 76

240 Threads 75 81 482 134

for the MKL-CSR implementation and the CSR version. Regarding the fact that
there is a possible increase in performance accompanying thread-to-core mapping,
the tests were carried out with different settings of the KMP_AFFINITY variable
(compact/balanced/scatter), and also without a particular setting of this vari-
able value. Tables 2 and 3 present the results of control check of thread-to-core mapping
in the MKL-CSR version for the native and the offload modes respectively. The results
suggest that when using a function from the optimized Intel MKL library the best solu-
tion is to avoid checking thread-to-core mapping so consequently the most optimal
way to load resources is chosen.

Similar tests were carried out for the application in the CSR version. Tables 4 and
5 present the results for the native and offload modes respectively. In this version
differences between settings of KMP_AFFINITY variable are not so clear. However,
one can notice that the KMP_AFFINITY=balanced gives the best results.
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Table 4 Thread-to-core mapping [time in seconds], native mode for CSR version

Matrix Number of threads No affinity KMP_AFFINITY
Compact Balanced Scatter

CC1 60 Threads 16 21 15 16

120 Threads 14 14 12 14

180 Threads 12 11 11 13

240 Threads 12 10 10 13
WF1 60 Threads 43 70 43 39

120 Threads 37 44 35 36

180 Threads 38 33 32 38

240 Threads 39 29 31 37

Table 5 Thread-to-core mapping [time in seconds], offload mode for CSR version

Matrix Number of threads No affinity KMP_AFFINITY
Compact Balanced Scatter

CCl 60 Threads 18 25 18 17

120 Threads 15 16 14 14

180 Threads 13 13 13 13

240 Threads 13 11 11 12
WF1 60 Threads 40 61 38 39

120 Threads 33 41 31 32

180 Threads 30 34 30 30

240 Threads 30 32 29 30

6.5 Results

Figures 2, 3, 4 and 5 represent the elapsed time of the algorithm in the MKL-CSR
and CSR versions for each of the test matrices. For every algorithm version, the tests
were carried out with the most advantageous affinity setting: lack of affinity defining
for MKL-CSR and KMP_ AFFINITY=balanced for CSR.

Basing on the achieved results it can be concluded that the suggested implemen-
tation of the CSR format makes use of Intel MIC architecture better for very sparse
matrices than the CSR format from Intel MKL library. It is clear that for all matrices,
even with a very small n in CC1, the runtime decreases along with the increase in the
number of threads, what does not happen with the MKL—CSR version.

Figure 6 presents the speedup of RK4 in the native and offload modes on Intel Xeon
Phi. This figure shows that our algorithm is scalable (as in ‘scalable parallelization’,
see [29]—that is, the algorithm’s ability to scale to all the cores and/or threads) when
we increase the number of threads on the Intel Xeon Phi coprocessor. Our algorithm
scales well up to 120 threads. Increasing the number of threads to 180 or 240 results in
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Fig. 2 Runtime of explicit fourth-order Runge—Kutta method on Intel Xeon Phi for the CC1 matrix

CC2 - time

4096 Pl T b T i cdR-native —a— 3
2048 : : : : : : MKL-CSR-offload ——
g R R CSR-native-balanced —»— 7

1024

w
-
N

256

=
w o N
N B~ 0

Time [s] - logarythmic scale

fay
(o)}
T

i i i i i i

©

1 20 40 60 80 100 120 140 160 180 200 220 240
# Threads

Fig. 3 Runtime of explicit fourth-order Runge—Kutta method on Intel Xeon Phi for the CC2 matrix

a modest speedup improvement due to the thread management overhead. We achieve
the bigger speedup gain with the increase of the number of threads for the denser
matrices (in our case they are the call-center model matrices).

The highest speedups are achieved during tests with 4 threads per core in the offload
mode. The maximal speedup (of 45) is achieved for the matrix CC2 and 240 threads.

Figure 7 compares the performance of the Runge—Kutta fourth-order method using
our CSR implementation for Intel Xeon Phi with Intel MKL implementation of CSR
for Intel Xeon Phi with its multithreaded CPU implementation. The MKL source code
is strictly the same on CPU and Intel Xeon Phi.

The application with our implementation of CSR achieves more than 3 GFlops,
which gives more than double increase of the performance compared to the MKL
implementation of CSR on Intel Xeon Phi. For the matrix CC1, the performance is
even 4.05 GFlops, which is more the three times better than MKL-CSR.
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Fig. 5
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The Intel Xeon Phi has a peak performance of more than 1 Tflops and it is about 20
times faster than an Intel multicore CPU. In our experiments the performance is only
3—4 Gflops and a speedup of about 2. The poor performance and speedup was caused
by noneffective vectorization due to sparsity, overhead due to irregular memory access
in the CSR format and load-imbalance due to the non-uniform matrix structure—such
problems were also indicated in [25].

We can also notice that for smaller matrices (like CC1) a bigger performance is
achieved in the native mode, but for bigger sizes (CC2, WF1, WF2) the offload mode
is faster.

@ Springer



1088 Int J Parallel Prog (2017) 45:1073-1090

Speedup - CSR

T T, T T T T T T
CC1-CSR-native : : : : : :

—
45~ CC1l-CSR-offload mmssm - .
CC2-CSR-native mm—m
40~ CC2-CSR-offload mmmmmm .
35| WF1-CSR-native ) i
WF1-CSR-offload
o 30} WF2-CSR-native mmm n
_g WF2-CSR-offload s
D 25 [
g
n 20
15
10
5
0
2 4 8 16 32 60 120 180 240
# Threads

Fig. 6 Speedup of explicit fourth-order Runge—Kutta method on Intel Xeon Phi with respect to a sequential
version running on one thread Intel Xeon Phi with the balanced thread affinity mode
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Fig. 7 The performance of the fourth-order Runge—Kutta method on Intel Xeon Phi in both modes and
CPU

7 Conclusions and Future Work

In this article we have presented an approach for accelerating explicit fourth-order
Runge—Kutta method using the Intel Xeon Phi. Our approach exploits the thread-level
parallelism for SpMV operation and the thread-level parallelism and vectorization for
the vector addition.

Based on the conducted experiments and Figs. 2, 3, 4 and 5 we can clearly state
that the use of BLAS and Sparse BLAS routines available in MKL for the Intel MIC
architecture performed worse than our own CSR implementation.

The MKL version of CSR achieves poor results (compared to ours) because there
are a lot of barriers—that is, there is a barrier after each call of an Intel MKL function
(e.g.: after axpy, after matrix-vector multiplication etc.). Moreover, the details of the
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MKL version of the CSR format is hidden in the Intel MKL functions what makes its
analysis harder.

In each implementation the difference between performances in the native and
offload modes are very small (as in the work [13]). It results from the fact that send-
ing data from the host to the coprocessor was hidden behind quite a big amount of
computation and from the fact that the overhead of the offload pragma is quite low.

In the MKL version of CSR for the MIC architecture we achieve the best results
with the use of 60 cores and two threads per core. In this version we can see that
for 1, 2, 3 threads per core, we achieve the best results without any explicit setting
the KMP_AFFINITY environment variable compared to any value of this variable.
We can also see that for more than 3 threads per core the algorithm saturated the
capabilities of the architecture—that is, the bigger number of threads do not increase
the performance (and it can even decrease the performance).

Our implementation with the use of the CSR format is definitely better for every
type and size of the matrix. It also gives the chance of the better usage of the new
architecture—the figures imply that increasing the number of threads enables to
achieve even better speedup.

In our implementation of the CSR it is worth to use 4 threads per core. We can also
see here some differences dependent on the choice of the value of the KMP_ AFFINITY
environment variable. In most cases the best time is ensured by the value balanced.
However, in the call center model (with somewhat denser matrices) we can see bigger
differences for various choices of this variable’s values (that is, for various thread-
to-core assignments) but in the other model (with sparser matrices) the differences
become blurred.

In future works the basic Intel MKL routines for the MIC architectures should be
analyzed to understand their use of the Intel Xeon Phi coprocessor. Another possibility
to enhance the CSR result is the use of a hybrid algorithm—small tasks would be
launched on a multicore CPU and big tasks—on a MIC architecture.
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