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1 Introduction

During the past few decades, numerous ideas to solve the hierarchy problem have been

put forth. The majority of these ideas require the introduction of new symmetries to

protect the Higgs mass. Such symmetries lead to the prediction of new degrees of freedom

at the electroweak (EW) scale, but none of them has yet been found in experiments. In

ref. [1], a new mechanism was proposed as an alternative solution to the hierarchy problem.

The proposal relies on an axion-like field, dubbed relaxion, coupled to the Higgs field in

an effective Lagrangian. The relaxion, during its cosmological evolution, scans the Higgs

mass, and finally settles on a local minimum where the Higgs has the observed mass,

which is parametrically smaller than the cutoff of the effective Lagrangian. The larger the

cutoff, the more successful the mechanism in addressing the hierarchy problem. Several

works [2–29] have elaborated on various aspects of this framework.

In the original proposal [1], the entire scanning takes place in the background of infla-

tion, which provides constant Hubble friction necessary for the relaxion to maintain slow

roll and eventually stop at the local minimum. This setup is rather constraining, rendering

the cutoff scale significantly below the Planck scale. A natural question to ask is: can

some of the restrictions be ameliorated by promoting the relaxion to play the role of the

inflaton itself? In this article, we answer this question positively, extending the discussion

presented in [30]. One pleasant consequence of this promotion is that we can indeed achieve

a higher cutoff compared to the previous proposal. The price to pay is that the dynamics

of the relaxion require a friction mechanism that can remain efficient after the reheating

process ends, preventing the overshooting of the EW minimum. Here we consider friction

from the tachyonic production of gauge bosons, due to the time-dependent background of

the rolling relaxion. Not only this slows down the field efficiently, but also provides an

interesting and novel mechanism for reheating. A possible issue related to such a friction

mechanism is that one risks overproducing the cosmological perturbations. We show there

is a region of parameter space where this is avoided.

The relaxion dynamics proceeds in three regimes. The first consists of a long period

of inflation, with standard slow roll due to the flatness of the potential. The second

corresponds to the last O(20) e-folds of inflation, where slow roll is due to dissipation via

gauge-boson production. At this stage, reheating takes place. The third is after reheating,

where the relaxion keeps rolling, the friction from gauge-boson production is still present

and sufficient to allow for the field to settle on the correct local minimum. Thus, the final

stage of relaxation of the EW scale occurs after the end of inflation. This is described with

detail in sections 3 and 4. The last two regimes share similarities with models of axion

inflation that have been studied previously in refs. [31–34]. The relevance of this type of

dissipation, in the context of relaxion models, has been also discussed in refs. [19, 24].

An important aspect of our work is the actual reheating mechanism, which, to the best

of our knowledge, has not been explored before.1 The photons that are produced in the

last stages of inflation have a large occupation number and very low momentum. This is a

1As we were finishing this work, another thermalization mechanism, involving scattering between the

inflaton and the gauge bosons, was presented in the context of axion-inflation models [35].
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coherent collection that is best described classically as an electromagnetic field. The electric

field within the horizon is constant, to a good approximation, and its strength can grow

to very large values. Eventually, this allows for vacuum creation of electron-positron pairs

through the Schwinger mechanism [36, 37]. In this way, the energy of the electromagnetic

field is transferred to relativistic particles (e+e−) which thermalize, reheating the universe.

We refer to this mechanism as “Schwinger reheating.” If the photons are those described

by the Standard Model (SM), however, it does not seem possible to reheat to a temperature

above the electron mass, which is too low for Big Bang Nucleosynthesis (BBN). A way to

circumvent the issue is to couple, instead, the relaxion to a massless dark photon, which in

turn has a small kinetic mixing with the SM photon. We show, in the second part of the

paper, that the latter scenario leads to successful reheating and relaxation of the EW scale.

The available parameter space for the above scenario, a-priori rather large, is reduced

by several theoretical constraints that force relations among the different parameters, and

by phenomenological bounds. These include the validity of the effective theory, the require-

ment for a relaxation at the correct scale, the suppression of cosmological perturbations,

and various limits from colliders, astrophysics, cosmology and 5th-force experiments. They

are discussed in section 8 and the results are presented in figure 3. We find that a cutoff

scale close to the Planck scale may be achieved in this relaxed inflation scenario.

2 Axion inflation and photon production

In this section we review some aspects of axion inflation that are relevant to our framework.

The inflaton will also play the role of the relaxion in the next section, but for now we are

only interested in the dissipation mechanism due to particle production. We couple Abelian

gauge fields to the inflaton, whose time evolution leads to the non-perturbative production

of gauge field quanta. This production has two important effects: (1) it backreacts on the

inflaton and slows it down, (2) it provides a mechanism to reheat the universe at the end

of inflation. Once a large number of coherent photons are produced, the reheating process

follows through the production of e+e− pairs via the Schwinger mechanism, and the subse-

quent thermalization of the system. After that happens, it is important to take into account

thermal effects in the gauge-boson production. We discuss Schwinger and thermal effects

in section 5 and in appendix C. Below, we summarize the main aspects of the gauge-field

production at zero temperature. The interested reader can find more details in refs. [31–34].

We consider a pseudo-scalar inflaton, φ, coupled to an Abelian gauge field, in a Fried-

mann Robertson Walker (FRW) metric,

ds2 ≡ gµνdxµdxν = −dt2 + a2(t)d~x2 = −a2(τ)(dτ2 − d~x2) , (2.1)

with t the cosmic time and τ the conformal time. The Lagrangian reads

L = −1

2
∂µφ∂

µφ− 1

4
FµνF

µν − cγ
φ

4f
FµνF̃

µν − V (φ) , (2.2)

where Fµν = ∂µAν − ∂νAµ, F̃µν = 1
2εµνσρF

σρ, with Aµ the gauge field, and ε0123 = 1√−g .

The potential V (φ) will be specified in the next section. The equation of motion for φ is

– 3 –



J
H
E
P
0
2
(
2
0
1
8
)
0
8
4

given by

φ̈+ 3Hφ̇+
∂V (φ)

∂φ
=
cγ
f
〈 ~E · ~B〉 , (2.3)

where the dot denotes a derivative with respect to cosmic time t and the mean field ap-

proximation is used for ~E · ~B. The inflaton φ is assumed to dominate the energy density,

with φ̇2 � V (φ), so the Hubble parameter is given by

H '
√
V (φ)√
3MPl

, (2.4)

where MPl is the reduced Planck mass.

The equations of motion for the gauge field are more conveniently written using the

conformal time τ ≡
∫ t
dt′/a(t′), which during inflation is τ ' −(aH)−1. Note that τ < 0.

Choosing the Coulomb gauge ~∇ · ~A = 0, we have A0 = 0 and2

(
∂2

∂τ2
−∇2 − cγ

φ′

f
~∇×
)
~A = 0 , (2.5)

where a prime denotes a derivative with respect to τ . We promote the classical field ~A(τ, ~x)

to an operator
~̂
A (τ, ~x) and decompose

~̂
A into annihilation and creation operators

~̂
A =

∑

λ=±

∫
d3k

(2π)3/2

[
~ελ(~k)A

~k
λ(τ) a

~k
λ e

i~k·~x + h.c.
]
, (2.6)

where the helicity vectors ~ε± are such that ~k · ~ε± = 0 and ~k × ~ε± = ∓i|~k|~ε±. Then, A±
must satisfy the equation

∂2A
~k
±(τ)

∂τ2
+

[
k2 ± 2 k

ξ

τ

]
A
~k
±(τ) = 0 , (2.7)

where we have defined

ξ ≡ cγ
φ̇

2 f H
. (2.8)

The parameter ξ is convenient because it stays almost constant when the term 〈 ~E · ~B〉 is the

dominant dissipative force in the inflaton dynamics [31]. To set our conventions, we will

assume φ rolls from positive to negative [i.e. V ′(φ) > 0], so φ̇ < 0 and ξ < 0. Furthermore,

τ < 0 by definition, and we take cγ > 0. Eq. (2.7) implies that low-momentum (long

wavelength) modes of the A− polarization, satisfying

Ω2 ≡ 2 k
ξ

τ
− k2 > 0 , (2.9)

develop a tachyonic instability and grow exponentially. This condition can be rewritten as

k−1 >
1

2|ξ| (aH)−1 . (2.10)

2Neglecting (∂iφ) and any additional source terms, the temporal and the Coulomb gauges are equivalent,

see e.g. ref. [38].
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Here k−1 is the comoving wavelength of the mode A−, while (aH)−1 is the comoving hori-

zon, which shrinks during inflation. We see that, as inflation proceeds, modes with shorter

and shorter wavelength become tachyonic. Since typically |ξ| . O(10), the comoving wave-

length of the exponentially enhanced modes has a typical size comparable to the comoving

horizon. Note that only one polarization of the photon experiences exponential enhance-

ment, a consequence of parity violation in the system. The signatures of parity violation

in the CMB power spectrum have been discussed in ref. [39].

Eq. (2.7) can be solved analytically. However, it is more illuminating to use an ap-

proximate solution, which can be derived from the WKB approximation,

A
~k
−(τ) ' 1√

2Ω(k, τ)
e
∫ τ dτ ′Ω(k,τ ′) , (2.11)

valid as long as
∣∣Ω′/Ω2

∣∣ � 1. The WKB solution for the tachyonic modes holds in the

range (8|ξ|)−1 < |kτ | < 2|ξ|, where it can be written as

A
~k
−(τ) ' 1√

2 k

(−kτ
2 |ξ|

)1/4

eπ |ξ|−2
√
−2|ξ| k τ , |ξ| > 1 , (2.12)

and the exponential enhancement is explicit. The modes A+ are not enhanced and we

ignore them in what follows.

With the explicit solutions to eq. (2.7), one can compute

〈 ~E · ~B〉 = − 1

4π2 a4

∫
dkk3 ∂

∂τ

(∣∣∣A~k+
∣∣∣
2
−
∣∣∣A~k−

∣∣∣
2
)
, (2.13)

and the photon energy density

ργ =
1

2
〈 ~E2 + ~B2〉 =

1

4π2 a4

∫
dkk2

(∣∣∣∣
∂

∂τ
A
~k
−

∣∣∣∣
2

+ k2
∣∣∣A~k−

∣∣∣
2
)
. (2.14)

In the last expression, we took A+ ' 0.

Using eq. (2.12), one finds [31]

〈 ~E · ~B〉 ' 7!

221π2

H4

|ξ|4 e
2π|ξ| ' 2.4× 10−4 H

4

|ξ|4 e
2π|ξ|, (2.15)

ργ '
6!

219π2

H4

|ξ|3 e
2π|ξ| ' 1.4× 10−4 H

4

|ξ|3 e
2π|ξ|. (2.16)

Incidentally, one can show that 〈 ~E2〉 ' 8
7 |ξ|2〈 ~B2〉, and therefore ργ is dominated by the

electric field contribution.

The evolution of the inflaton φ is dictated by the equation of motion (2.3), with the

φ̈ term typically negligible. In ref. [31], the authors considered the regime where the term
cγ
f 〈 ~E · ~B〉 balances the slope V ′, meaning that the dissipation mechanism that ensures

slow roll is due to gauge-boson production. In such a case, the backreaction of the gauge

quanta on the inflaton produces perturbations that are too large, and excluded by CMB

observations. On the other hand, in ref. [32], the authors considered the regime in which
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the term
cγ
f 〈 ~E · ~B〉 is negligible for most of the observable e-folds and slow-roll is solely due

to Hubble friction. They showed that even in this case the photon production can leave

imprints on the CMB that can be measured.

In the scenario we investigate in this paper, inflation proceeds in the following steps:

1. Initially, the photon production is negligible, |ξ| � 1, and φ slow-rolls because of a

nearly flat potential. In this regime, |φ̈| � H|φ̇| and the equation of motion is given by

3Hφ̇+
∂V (φ)

∂φ
' 0 , (2.17)

hence

φ̇ ' −V
′(φ)

3H
. (2.18)

Note that |φ̇| increases slowly since V ′(φ) is roughly constant and H decreases as φ

rolls down its potential.

2. Eventually, |φ̇| increases to the point where |ξ| grows large enough for the backre-

action of the photons to become important in eq. (2.3). This is when we enter the

second regime described by the equation of motion

∂V (φ)

∂φ
' cγ

f
〈 ~E · ~B〉 , (2.19)

with 〈 ~E · ~B〉 given by eq. (2.15). The approximate solution is

ξ ' − 1

2π
ln

[
V ′(φ)f

2.4× 10−4cγH4

]
, (2.20)

where we have neglected a factor of ξ4 inside the logarithm. We see that ξ is roughly

constant in this regime, and we have

φ̇ ' −fH
πcγ

ln

[
V ′(φ)f

2.4× 10−4cγH4

]
. (2.21)

Unlike the previous regime, |φ̇| now decreases with decreasing H. The produced

photons have an energy density that remains roughly constant3

ργ '
4|ξ|
7
〈 ~E · ~B〉 ' 4|ξ|

7

fV ′

cγ
. (2.22)

Here we have used eqs. (2.15), (2.16) and (2.19). When the potential of φ drops

below the value V (φ) ∼ ργ , the photon energy density becomes dominant, and we

exit inflation.

3We keep track the coefficient of 4/7 for the later discussion in section 7. Although we use the WKB

approximation here, we have checked that the full solution based on the Coulomb function reproduces this

coefficient with only 15% discrepancy.
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The problem with this scenario is that the produced photons have extremely long wave-

length and do not thermalize via perturbative scattering processes to reheat the universe.

From eq. (2.10) it follows that their typical physical momentum, qγ = k
a , is

qγ < |ξ|H . (2.23)

As we describe in more detail in later section, the relaxation mechanism requires values of

H �MeV close to the end of inflation, which in turn implies qγ �MeV. At the same time

these photons have a high occupation number in the Hubble volume ργ/qγH
3 � 1 due to

the large exponential e2π|ξ| in eq. (2.16). This system is best described classically as an

electromagnetic field. One can show that the photons add up coherently to form a constant

electric field within the horizon with magnitude | ~E| ∼ √ργ (see appendix D for further

discussion). This electric field grows strong enough to allow for vacuum e+e− production

via the Schwinger mechanism. This changes dramatically the picture in the second regime

described above. We discuss it in detail in section 5.

So far, we have described the generalities of φ playing the role of the inflaton. Our

main purpose is to use this inflaton to relax the electroweak scale and, to do so, we need

to add the relaxion ingredients, that come next. In the rest of the paper, we explain in

detail the whole cosmological evolution of the relaxion/inflaton field.

3 A relaxed inflation model

The first model we consider consists of an axion field on a very flat potential, Vroll, and

coupled to SM photons. This pseudoscalar dominates the energy density of the universe

during inflation and acts both as the inflaton and as the field that scans the Higgs mass.

Additionally, there is a periodic potential Vwig that plays a crucial role in setting the VEV

of the Higgs after reheating. The effective Lagrangian for our model is given by

L = −1

2
∂µφ∂

µφ− 1

4
FµνF

µν − cγ
φ

4f
FµνF̃

µν − V (H, φ) , (3.1)

with,

V (H, φ) = µ2(φ)H†H+ λ(H†H)2 + Vroll(φ) + Vwig(φ) + V0 , (3.2)

Vroll(φ) = mΛ2φ+
1

2
m2φ2 +

1

6

m3

Λ2
φ3 + · · · , (3.3)

Vwig(φ) = Λ4
wig cos

φ

f
. (3.4)

Here, H is the SM Higgs doublet, φ is the relaxion/inflaton field, and

µ2(φ) = ghmφ− Λ2 , (3.5)

is the φ-dependent squared mass parameter of the Higgs potential. The Higgs bare mass Λ

is the cutoff of the effective Lagrangian, gh is a dimensionless parameter of order one, and

m � Λ. We comment on the parameter Λwig at the end of this section. We omit terms
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with W± and Z for simplicity. In particular, there are (φ/f)ZµνF̃
µν and (φ/f)ZµνZ̃

µν

terms that are gauge invariant but the photon production is not affected by them because

their effect only appears from dimension 8 operators suppressed by m2
Zf

2 after integrating

out Z. Similarly, W terms do not affect the photon production.

The relaxion potential here is the same as in ref. [1] and our model inherits some of the

properties of that scenario. These include a trans-Planckian field range for φ, a nearly-flat

potential Vroll(φ), and the periodic (“wiggle”) potential Vwig(φ). On the other hand, there

are sharp differences that lead to stark contrast with the original proposal. First, in our case

the relaxion is the inflaton itself, which allows the energy density of the universe to be of the

same order as ∼ Λ4. Second, since the dynamics of inflation and relaxation end at almost

the same time, the classical rolling is automatically a good description when the electroweak

scale is settled. Finally, the relaxion stops after the end of inflation, and therefore we require

a form of dissipation distinct from the Hubble friction. The coupling to photons provides

this extra source of dissipation, and offers a novel opportunity for reheating.

The smallness of m is justified by the fact that as m → 0, the model possesses the

discrete shift symmetry φ→ φ+2πnf . A potential of this kind was first used by Abbott [40]

in an attempt to explain dynamically the smallness of the cosmological constant. Here,

following [1], we use it for the EW scale instead. As written, the model poses some

theoretical issues [5] that can be circumvented with a clockwork axion model [9, 10, 41],

which we present in appendix A, where we also show how to map its parameters to the

ones used in this section and in the rest of the paper.

For the given coordinate, a special point in field space is

φ0 ≡
Λ2

ghm
, (3.6)

where µ2(φ0) = 0. It separates the unbroken EW phase, φ > φ0, from the broken phase φ <

φ0. For field values of order φ0, the small m expansion in eq. (3.3) is not well defined, as each

term is of order ∼ Λ4 and generically order one corrections are expected. In what follows,

we will only keep the term linear in m and φ, a choice that is justified only once we consider

a UV completion of this model, such as the clockwork axion discussed in appendix A.

As most of the interesting dynamics happens near φ0, it is convenient to expand the

potential around this point. We define4

φ = φ0 + δφ , |δφ| � φ0 . (3.7)

We keep only the φ linear term in the potential (3.3) and expand around φ0. The potential

then reads

V (h, δφ) =
1

2
µ2(δφ) h2 +

1

4
λh4 +mΛ2(φ0 + δφ) + Λ4

wig cos
φ0 + δφ

f
+ V0 , (3.8)

where h is the radial mode of H and µ2(δφ) = ghmδφ. We choose V0 such that the

cosmological constant has the observed value V obs
cc ∼ meV4 once h and φ settle to their

4We stress that δφ is still a classical field, not a quantum fluctuation.
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VEVs:

〈h〉 = v =

√
−µ

2(δφEW)

λ
' mW√

λ
(3.9)

〈δφ〉 = δφEW ' −
m2
W

ghm
. (3.10)

We have then

V0 = −Λ4

gh
+
m2
WΛ2

gh
+
m4
W

4λ
+ V obs

cc . (3.11)

The contribution of V obs
cc to V0 is a lot smaller compared to the other two terms. In what

follows we take V obs
cc to be effectively zero.

The parameter Λwig can be written generically as

Λ4
wig ∼ (yv)nM4−n , (3.12)

with n > 0 and M some fixed mass scale. The fact that Λ4
wig depends on the Higgs VEV,

v, is crucial: as v grows, the amplitude of the wiggles becomes larger and larger up to the

point where they stop the rolling of δφ. This must happen when v attains the observed

value of 246 GeV. The case of the QCD axion corresponds to n = 1, y ∼ yu (the lightest

quark yukawa), and M ∼ fπ (the pion decay constant).5 This case is excluded [1] because

it results in θQCD ∼ 1 and thus is plagued by the strong CP problem. In the n = 2 case, the

sector responsible for generating Vwig does not break the electroweak symmetry, we have a

two-loop wiggle-potential [2, 5] also in the unbroken electroweak phase, and the relaxation

mechanism works, provided that M < v.

4 Dynamics

In this section, we discuss the cosmological evolution of the fields δφ, h, and Aµ. For the

purpose of our study, we can treat δφ as a homogeneous classical field, but we must treat

h and Aµ as quantum fields. The equations of motion are

δφ̈+ 3Hδφ̇+
∂V (h, δφ)

∂δφ
=
cγ
f
〈 ~E · ~B〉 , (4.1)

ḧ+ 3Hḣ+
∇2

a2
h+

∂V (h, δφ)

∂h
= 0 , (4.2)

∂2A
~k
±(τ)

∂τ2
+

[
k2 ± 2 k

ξ

τ

]
A
~k
±(τ) = 0 , (4.3)

Here, an overdot denotes a derivative with respect to cosmic time t, and H ≡ ȧ
a is the

Hubble parameter, with a the scale factor. Since inflation is driven by δφ and the energy

5In this case, Λ4
wig ∼ M3(mδφ)1/2, there is a singular term in the first derivative of the potential,

∂Λ4
wig/∂δφ, at δφ = 0. The singularity is evaded thanks to the quark condensate, 〈q̄LqR〉, which provides a

tadpole for the Higgs potential and results in a small, but non zero VEV even for µ2 > 0.
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photon-driven
dynamics

radiation 
dominates

slow roll

3 The model

We consider the following lagrangian

L =
1

2
@µ�@

µ�� 1

4
Fµ⌫F

µ⌫ � ↵
�

f
Fµ⌫F̃

µ⌫ � V (H,�) , (3.1)

V (H,�) = µ2(�)H†H+ �(H†H)2 + Vroll(�) + Vwig(�) + V0 , (3.2)

Vroll(�) = m⇤2�+
1

2
m2�2 + · · · , (3.3)

Vwig(�) = ⇤4
0 cos

�

f
. (3.4)

Here H is the SM Higgs doublet, � is the relaxion/inflaton field,

µ2(�) = ghm�� ⇤2 , (3.5)

is the �-dependent squared mass parameter of the Higgs potential.

The Higgs bare mass ⇤ is the cuto↵ for our model, we assume m ⌧ ⇤, and gh is a

dimensionless parameter. The goal is to generate dynamically a small µ2, that is |µ2| ⇠
m2

W ⌧ ⇤2, where we took the W mass, mW , as representative of the electroweak scale.

The larger the hierarchy between mW and ⇤, the more successful is this mechanism in

addressing the SM hierarchy problem.

The relaxion potential here is the same as the one used in Ref. [5], and the smallness

of m is justified by the fact that as m ! 0 the model possesses the discrete shift symmetry

� ! � + 2⇡ k f . As written the model poses some theoretical issues [6], that can be

circumvented with a clockwork axion model [7]. We present the clockwork model in the

Appendix and we show there how to map its parameters to the ones we use in this section

and in the rest of the paper.

A special point in field space is

�0 ⌘
⇤2

ghm
, (3.6)

where µ2 = 0. It separates the unbroken EW phase, � > �0, from the broken phase � < �0.

As most of the interesting dynamics happen near this point, it is convenient to expand the

potential around �0. We define1

� = �0 + �� , |��| ⌧ �0 . (3.7)

We write the Higgs doublet as

H =
1p
2
h ei

ha⌧a

v , (3.8)

where h is the real degree of freedom that eventually gets a vacuum expectation value

(VEV) equal to v = 246 GeV, while ha (a = 1, 2, 3) are the three goldstone modes that get

eaten by the W and Z gauge bosons. ⌧a are the Pauli matrices.

1We stress that �� is still a classical field, not a quantum fluctuation. Excuse the notation Jack.
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We keep only the linear term in (3.3), expand around �0 and absorb the constant terms

in V0. The potential then reads

V (h, ��) =
1

2
µ2(��) h2 +

1

4
�h4 +m⇤2��+ ⇤4

0 cos
�0 + ��

f
+ V0 , (3.9)

with µ2(��) = ghm ��. We choose V0 such that the cosmological constant is zero once h

and � settle to their VEVs:

hhi = v =

r
�µ2(��EW)

�
(3.10)

h��i = ��EW , (3.11)

with

µ2(��EW) ' �m2
W , ��EW ' �m2

W

ghm
. (3.12)

We have

V0 =
m2

W⇤2

gh
+

m4
W

4�
. (3.13)

Choosing this V0 corresponds to tuning the cosmological constant. This is crucial for the

success of the mechanism we describe in the rest of the paper.

For future convenience we rewrite the potential as

V (h, ��) =
1

2
ghm �� h2 +

1

4
�h4 +

m4
W

4�
+ Vroll(��) + Vwig(��) , (3.14)

Vroll(��) = m⇤2��+
m2

W⇤2

gh
, (3.15)

Vwig(��) = ⇤4
0 cos

�0 + ��

f
. (3.16)

The parameter ⇤0 can be written generically as

⇤4
0 ⇠ (yv)nM4�n , (3.17)

with n > 0 and M some fixed mass scale. The fact that ⇤4
0 depends on the Higgs VEV,

v, is crucial: as v grows the amplitude of the wiggles becomes larger and larger up to the

point where they stop the rolling of ��. This must happen when v attains the observed

value of 246 GeV. The case of the QCD axion corresponds to n = 1, y ⇠ yu (the lightest

quark yukawa), and M ⇠ f⇡ (the pion decay constant). This case is excluded [5] because

it results in ✓QCD ⇠ 1 and thus is plagued by the strong CP problem. In the n = 2 case

the sector responsible for generating Vwig does not break the electroweak symmetry, and

we have a two-loop wiggle-potential [6, 8] also in the unbroken electroweak phase. In this

case the relaxation mechanism works provided that M < 4⇡v.
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This is a regime of warm inflation, with constant photon temperature ⇠ ⇤0. Once

V (��RH) ' ⇢� =
⇠

↵
⇤4
0 , (4.32)

we reheat and the universe becomes radiation dominated.

Before reheating the slow-roll conditions are

1. 1
2
˙��
2 ⌧ V

˙��
2

2V
= 2

⇠2

↵2

f2H2

V
' 2

3

⇠2

↵2

f2

M2
Pl

⌧ 1 (4.33)

This is satisfied for

f ⌧ ↵

⇠
MPl . (4.34)

2. ✏ ⌧ 1

✏ ⌘ � Ḣ

H2
' 1

2M2
PlH

2

✓
˙��
2
+

4

3
⇢�

◆
(4.35)

' 2
⇠2

↵2

f2

M2
Pl

+
8

7

⇠

↵
f
V 0

V
. (4.36)

The first term is small due to (4.34), the second is small for

V � ⇠

↵
f V 0 ' ⇢� , (4.37)

that is until we exit inflation and reheat.

3. 3H ˙�� ⌧ V 0

3H ˙��

V 0 =
|⇠|
↵
f

V

V 0M2
Pl

⌧ 1 , (4.38)

satisfied for

V ⌧ Vslow2 '
↵

|⇠|
M2

Pl

f2
⇤4
0 . (4.39)

4. �̈� ⌧ V 0 From (4.29) we can compute

�̈� = 2
⇠

↵


�✏f

V

M2
Pl

+
f2

⇡↵M2
Pl

✓
V V 00

V 0 � 2V 0
◆�

. (4.40)

In our model V 00 ⇠ 0. Then
�����
�̈�

V 0

����� = 2
⇠

↵


✏

f V

V 0M2
Pl

+ 2
f2

⇡↵M2
Pl

�
⌧ 1 . (4.41)

Using the definition of ✏ above it is easy to very that this condition is again satisfied

given (4.34).
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Once

V (��RH) ' ⇢� =
⇠

↵
⇤4
0 , (4.23)

we reheat and the universe becomes radiation dominated.

Before reheating the slow-roll conditions are

1. 1
2
˙��
2 ⌧ V

˙��
2

2V
= 2

⇠2

↵2

f2H2

V
' 2

3

⇠2

↵2

f2

M2
Pl

⌧ 1 (4.24)

This is satisfied for

f ⌧ ↵

⇠
MPl . (4.25)

2. ✏ ⌧ 1

✏ ⌘ � Ḣ

H2
' 1

2M2
PlH

2

✓
˙��
2
+

4

3
⇢�

◆
(4.26)

' 2
⇠2

↵2

f2

M2
Pl

+
8

7

⇠

↵
f
V 0

V
. (4.27)

The first term is small due to (4.25), the second is small for

V � ⇠

↵
f V 0 ' ⇢� , (4.28)

that is until we exit inflation and reheat.

3. 3H ˙�� ⌧ V 0

3H ˙��

V 0 =
|⇠|
↵
f

V

V 0M2
Pl

⌧ 1 , (4.29)

satisfied for

V ⌧ ↵

|⇠|⇤
4
0

M2
Pl

f2
= Vswitch . (4.30)

4. �̈� ⌧ V 0

From (4.20) we can compute

�̈� = 2
⇠

↵


�✏f

V

M2
Pl

+
f2

⇡↵M2
Pl

✓
V V 00

V 0 � 2V 0
◆�

. (4.31)

In our model V 00 ⇠ 0. Then
�����
�̈�

V 0

����� = 2
⇠

↵


✏

f V

V 0M2
Pl

+ 2
f2

⇡↵M2
Pl

�
⌧ 1 . (4.32)

Using the definition of ✏ above it is easy to very that this condition is again satisfied

given (4.25).
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4 Inflationary dynamics

In this section we discuss the cosmological evolution of the fields ��, h and Aµ. For the

purpose of our study we can treat � as a classical field, but we must treat h and Aµ as

quantum fields. The equation of motion for �� is

�̈�+ 3H ˙��+
@V (h, ��)

@��
=

↵

f
h ~E · ~Bi . (4.1)

The equation for h is

ḧ+ 3Hḣ+
r2

a2
h+

@V (h, ��)

@h
= 0 . (4.2)

Here H ⌘ ȧ
a is the Hubble parameter, with a the scale factor. As inflation is driven by ��

we have

H(��) '
p

Vroll(��)p
3MPl

. (4.3)

In the equations above an overdot denotes a derivative with respect to cosmic time t. The

equation of motion for the photon is given in (2.6).

A qualitative overview of the dynamics, shown in the cartoon of Fig. , goes as follows.

The inflaton field starts rolling from a point ��i > 0, in the unbroken electroweak phase.

In the first regime the slow roll is due to the smallness of the slope m and the photon

production is negligible. The motion is described by (2.16) and (2.17), with a velocity

that increases as the field rolls. We stay in this regime for a very large number of efolds

(N > 1030), all the way into the broken EW phase (�� < 0). When the parameter |⇠|,
defined in (2.7), grows larger than one, we smoothly switch into the second regime, which is

dominated by photon production and described by (2.18) and (2.19). We enter this regime

when �� is already very close to the end of its run, ��EW, and we stay only for the last

few e-folds. When the inflaton potential reaches ⇠ ⇤4
0 the energy density of the produced

photons becomes dominant and we reheat to a temperature just slightly above ⇤0. What

follows is a period of radiation domination in which the wiggles at first disappear and the

relaxion keeps rolling. As the universe cools down, the wiggles reappear and the relaxion

finally stops at the point in which it sets the correct electroweak scale.

In the next subsections we are going to give the quantitative details of this picture.

4.1 Conditions on the slope m

At the end of the rolling the relaxion/inflaton must stop on the wiggles. This implies two

conditions on the slope.

1. We must have at least one wiggle between �� = 0 and ��EW:

m <
m2

W

f
. (4.4)

2. We stop, as long as the kinetic is small enough, when the condition |V 0
roll(��)| ⇠

|V 0
wig(��)| is satisfied, that is

m⇤2 ⇠ ⇤4
0

f
. (4.5)
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We keep only the linear term in (3.3), expand around �0 and absorb the constant terms

in V0. The potential then reads

V (h, ��) =
1

2
µ2(��) h2 +

1

4
�h4 +m⇤2��+ ⇤4

0 cos
�0 + ��

f
+ V0 , (3.9)

with µ2(��) = ghm ��. We choose V0 such that the cosmological constant is zero once h

and � settle to their VEVs:

hhi = v =

r
�µ2(��EW)

�
(3.10)

h��i = ��EW , (3.11)

with

µ2(��EW) ' �m2
W , ��EW ' �m2

W

ghm
. (3.12)

We have

V0 =
m2

W⇤2

gh
+

m4
W

4�
. (3.13)

Choosing this V0 corresponds to tuning the cosmological constant. This is crucial for the

success of the mechanism we describe in the rest of the paper.

For future convenience we rewrite the potential as

V (h, ��) =
1

2
ghm �� h2 +

1

4
�h4 +

m4
W

4�
+ Vroll(��) + Vwig(��) , (3.14)

Vroll(��) = m⇤2��+
m2

W⇤2

gh
, (3.15)

Vwig(��) = ⇤4
0 cos

�0 + ��

f
. (3.16)

The parameter ⇤0 can be written generically as

⇤4
0 ⇠ (yv)nM4�n , (3.17)

with n > 0 and M some fixed mass scale. The fact that ⇤4
0 depends on the Higgs VEV,

v, is crucial: as v grows the amplitude of the wiggles becomes larger and larger up to the

point where they stop the rolling of ��. This must happen when v attains the observed

value of 246 GeV. The case of the QCD axion corresponds to n = 1, y ⇠ yu (the lightest

quark yukawa), and M ⇠ f⇡ (the pion decay constant). This case is excluded [5] because

it results in ✓QCD ⇠ 1 and thus is plagued by the strong CP problem. In the n = 2 case

the sector responsible for generating Vwig does not break the electroweak symmetry, and

we have a two-loop wiggle-potential [6, 8] also in the unbroken electroweak phase. In this

case the relaxation mechanism works provided that M < 4⇡v.
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ḧ+ 3Hḣ+
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regime 2

regime 1

The smallness of m is justified by the fact that as m ! 0, the model possesses the

discrete shift symmetry � ! �+2⇡nf . A potential of this kind was first used by Abbott [37]

in an attempt to explain dynamically the smallness of the cosmological constant. Here we

follow [1] and use it instead for the EW scale. As written, the model poses some theoretical

issues [5] that can be circumvented with a clockwork axion model [9, 10, 38]. We present

the clockwork model in Appendix A, where we show how to map its parameters to the ones

used in this section and in the rest of the paper.

For the given coordinate, a special point in field space is

�0 ⌘
⇤2

ghm
, (3.6)

where µ2(�0) = 0. It separates the unbroken EW phase, � > �0, from the broken phase

� < �0. For field values of order �0, the small m expansion in (3.3) is not well defined,

as each term is of order ⇠ ⇤4 and generically order one corrections are expected. In what

follows, we will only keep the term linear in m and �, a choice that is well justified only

once we consider a UV completion of this model, such as the clockwork axion discussed in

Appendix A.

As most of the interesting dynamics happens near �0, it is convenient to expand the

potential around this point. We define3

� = �0 + �� , |��| ⌧ �0 . (3.7)

We keep only the � linear term in the potential (3.3) and expand around �0. The potential

then reads

V (h, ��) =
1

2
µ2(��) h2 +

1

4
�h4 +m⇤2(�0 + ��) + ⇤4

wig cos
�0 + ��

f
+ V0 , (3.8)

where h is the radial mode of H and µ2(��) = ghm��. We choose V0 such that the

cosmological constant is to be the observed value V obs
cc ⇠ meV4 once h and � settle to their

VEVs:

hhi = v =

r
�µ2(��EW)

�
' mWp

�
(3.9)

h��i = ��EW ' �m2
W

ghm
, (3.10)

We have then

V0 = �⇤4

gh
+

m2
W⇤2

gh
+

m4
W

4�
+ V obs

cc . (3.11)

[TV: Changed V0. Check! Agree?] Choosing this V0 corresponds to tuning the cosmological

constant. This is crucial for the success of the mechanism we describe in the rest of the

paper. We discuss this tuning further in Section 9. The contribution of V obs
cc to V0 is a lot

smaller compared to the other two terms. In what follows we take V obs
cc to be e↵ectively

zero.
3We stress that �� is still a classical field, not a quantum fluctuation.
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Figure 1. Sketch of the different stages in our relaxation mechanism. The first (black) is the

standard slow-roll regime, as described in subsection 4.2. In the second (blue), the photons are

responsible for the dissipation in the inflaton/relaxion dynamics, which is discussed in subsection 4.3.

Finally, the last stage of relaxation occurs after reheating (red), with the photons still providing

dissipation and allowing the relaxion to get trapped in the wiggle potential (see subsection 4.4).

density of the universe is dominated by V (h, δφ), the Friedmann equation yields

H(h, δφ) '
√
V (h, δφ)√

3MPl

. (4.4)

The qualitative overview of the dynamics is similar to that described in section 2

and is illustrated in the cartoon of figure 1. The inflaton field starts rolling from a point

δφi > 0, in the unbroken electroweak phase. In the first regime, the slow roll is due to the

smallness of the slope m and the photon production is negligible. The motion is described

by δφ̇ ' −V ′(φ)/3H, with a speed |δφ̇| that increases as the field rolls. We stay in this

regime for a very large number of efolds (N > 1030), all the way into the broken EW

phase (δφ < 0). Eventually, the parameter |ξ| = |cγδφ̇/2fH| grows larger than one and

we smoothly switch into the second regime, which is dominated by photon production and

described by V ′ ' cγ〈E · B〉/f . We enter this regime when δφ is already very close to

the end of its run, δφEW, and we remain there only for the last O(20) e-folds. When the

inflaton potential reaches ∼ |ξ|Λ4
wig/cγ , with ξ roughly constant, the energy density of the

produced photons becomes dominant and we exit inflation. What follows is a period of

radiation domination in which the relaxion keeps slowing down due to photon dissipation,

until it stops on the growing wiggles to set the observed electroweak scale.

We now give some quantitative details of each stage in this simplified picture. In this

section we neglect thermal effects, with the aim of keeping the discussion clearer. As we
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will see, these effects have significant implications which require a careful treatment, that

we postpone to section 5.

4.1 Conditions on the slope m

At the end of the rolling, the relaxion must stop on the wiggles. This implies two conditions

on the parameters of the model:

1. At least one wiggle between δφ = 0 and δφEW must exist,

m <
m2
W

f
. (4.5)

2. Assuming significant dissipation, the inflaton must halt when the condition

|V ′roll(δφ)| ' |V ′wig(δφ)| is satisfied. Consequently, the relation

mΛ2 ∼
Λ4

wig

f
(4.6)

is implied. As we mention below eq. (3.12), Λwig can never exceed mW , thus

m <
m4
W

Λ2 f
. (4.7)

For Λ & mW , this bound is stronger than (4.5).

4.2 Regime 1: slow-roll on a gentle slope

We assume that the rolling starts from δφi > 0. In this first regime δφ̇ is small, |ξ| � 1, and

we can ignore the photon production, dropping the term
cγ
f 〈 ~E· ~B〉 in eq. (4.1). Then we have

δφ̈+ 3Hδφ̇+mΛ2 +
1

2
ghm〈h2〉 = 0 . (4.8)

We can also safely drop the last term: for δφ > 0, 〈h2〉 is zero, while for δφ < 0 it never

grows larger than m2
W , which is much smaller than Λ2.

During the slow-roll we also have φ̈� 3Hφ̇ and therefore

δφ̇ ' − mΛ2

3H(δφ)
. (4.9)

As the field rolls down the potential, H decreases so |δφ̇| increases. We can introduce as

usual the slow-roll parameters

ε(δφ) ≡ − Ḣ

H2
' M2

Pl

16π

(
V ′(δφ)

V (δφ)

)2

, (4.10)

η(δφ) ≡ ε(δφ)− δ̈φ

H ˙δφ
. (4.11)

One slow-roll condition, ε(δφ) < 1, is satisfied so long as

V (δφ) & Vexit1 ≡
1

4
√
π
MPlV

′
roll(δφ). (4.12)
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The second condition, |η(δφ)| < 1, is also satisfied when ε(δφ) < 1, as we show in ap-

pendix B.

Once δφ crosses 0, an important phenomenon happens: the Higgs field experiences an

instability, known as tachyonic or spinodal instability [42–45], that eventually results in

the spontaneous breaking of the EW symmetry. The instability develops fast and drives

the field to the minimum of its mexican hat potential, while δφ has not moved much from

δφ = 0. From that point the dynamics of the Higgs are well captured by the evolution of its

zero mode, which oscillates around the minimum. Meanwhile, the minimum grows deeper,

as δφ rolls to more negative values. The energy density associated with Higgs oscillations

grows at the expense of the relaxion energy density. One might wonder if in the end we

store enough energy in the Higgs to allow for reheating via its decays into SM particles.

The answer is negative: the relaxion dissipates most of its energy via Hubble friction, and

at the end of the run the energy density of the Higgs is still several orders of magnitude

smaller than Λ4
wig, insufficient to reheat above the BBN temperature.

Another consequence of the instability at δφ = 0 is that the exponential production of

tachyonic modes of the Higgs field happens at the expense of the relaxion kinetic energy,

and provides another source of friction for the relaxion. This friction is active for a very

short time because, as we mentioned above, the Higgs is quickly driven to the minimum of

its potential, at which point the tachyonic production, and therefore the friction, switches

off. The energy dissipated by the relaxion via this mechanism is absolutely negligible

compared to the potential energy available at that point, that is ∼ m2
WΛ2, so it does not

affect the dynamics.

The slow-roll motion described by eq. (4.9) continues into the broken EW phase, δφ <

0, until |ξ| =
cγ
2
|δφ̇|
Hf grows larger than one. At that point photon production becomes

important. Neglecting thermal effects, we enter a second regime of slow-roll, where the

dissipation is provided by photon production rather than Hubble friction. We describe the

associated dynamics next.

4.3 Regime 2: slow-roll via photon production

We switch from the first to the second regime of inflation when |ξ| becomes larger than

one and the increasing |δφ̇| ' V ′roll/3H from eq. (4.9) matches the |δφ̇| derived assuming

the photon-driven friction, eq. (2.21),

V ′roll

3H(δφγ)
' −fH(δφγ)

πcγ
ln

[
V ′rollf

2.4× 10−4cγH4

]
. (4.13)

This happens when the potential is

Vswitch ≡ 3M2
PlH

2(δφγ) ' 1

2|ξ|
cγ
f
M2

Pl V
′

roll ∼
1

2|ξ|
cγM

2
Pl

f2
Λ4

wig , (4.14)

where ξ, from eq. (2.20), is roughly constant. In the last equality we have used eq. (4.6).

If we compare eqs. (4.14) and (4.12), we obtain

Vexit1

Vswitch
' |ξ|

2
√
π

f

cγMPl
< 1 . (4.15)
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The inequality is dictated by the condition (4.17) below, and implies that we switch to the

second regime while we are still slow-rolling from the first (ε < 1).

In the second regime, the dissipation from photon production is important and the

equation of motion, eq. (4.1), becomes

V ′roll(δφ) ' cγ
f
〈 ~E · ~B〉 . (4.16)

One can show that the conditions |3Hδφ̇| � V ′ and |δφ̈| � V ′, leading to eq. (4.16), are

satisfied for
f

cγ
<
MPl

|ξ| . (4.17)

Checking these conditions comes with some subtleties which are explained in appendix B.

At this stage, the energy density is still dominated by the inflaton potential. From

eq. (4.16), using eqs. (2.15) and (4.4), we find

ξ ' − 1

2π
ln

[
ξ4

2.4× 10−4

fV ′roll(δφ)

cγ

9M4
Pl

V 2(δφ)

]
. (4.18)

The dependence on ξ is largely through ln[V 2(δφ)], and therefore ξ varies little from the

beginning to the exit of the second regime. To be more accurate, we find this value (≡ ξ2)

by using the potential (4.14) in eq. (4.18):

ξ2 ' −
1

2π
ln

[
105 ξ6

2

c3
γ

f4

Λ4
wig

]
. (4.19)

ξ2 is given by the parameters of the model cγ , f, and Λwig, and is typically O(20) in the

parameter space of our interest.

4.4 Inflation exit and relaxation

From eqs. (4.16) and (2.16), we obtain that the energy density of the produced photons is

ργ '
4|ξ2|

7

f

cγ
V ′roll ∼

|ξ2|
cγ

Λ4
wig , (4.20)

where we have used eq. (4.6) for the last expression. The photon energy density remains

roughly constant (up to a logarithmic variation of |ξ|) as the result of the approximate

balance between the exponential production of photons and the Hubble dilution of this

radiation. Once the potential of the inflaton drops below the value

VRH = ργ , (4.21)

the energy density is no longer dominated by φ, we exit inflation and enter a radiation

dominated universe. However, the photons have very low momentum and are not ther-

malized, hence we cannot talk about a reheat temperature yet. We address the reheating

mechanism in the next section.

The motion of δφ is still described by eq. (4.16), so |δφ̇| keeps decreasing as the relaxion

rolls. When the increasing amplitude of the wiggle potential reaches Λ4
wig with the correct
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value of the EW VEV, the slope of the wiggles counterbalances the linear slope of Vroll(δφ)

and the relaxion stops at

− δφEW

f
∼ m2

WΛ2

Λ4
wig

. (4.22)

From the end of inflation to this point, δφ has changed approximately

δφRH − δφEW

f
∼ |ξ2|

cγ
. (4.23)

Given that δφ̇ ' ξ2Hf/cγ , this implies that about one Hubble time has elapsed and the

energy density ργ has only changed by an order-one amount.

Note this is an important difference with respect to the initial proposal of ref. [1].

In that work, the relaxation of the EW scale occurs during inflation, while in ours φ

settles down after the end of inflation. For this reason the friction provided by gauge-

boson production is crucial in this last stage. Without it, the kinetic energy 1
2δφ̇

2 would

inevitably grow larger than Λ4
wig and the relaxion would overshoot the EW minimum,

causing the whole mechanism to fail.

5 Schwinger reheating

The picture described in the previous section is good for a successful dynamical relaxation

of the EW scale, but fails to reheat the universe. Each produced photon carries very little

energy and the system cannot be thermalized via perturbative scattering processes. The

large occupation number of the photons implies that they form a classical electromagnetic

field, as we explained in section 2. In order to discuss thermalization in this case, we have

to take into account an important non-perturbative phenomenon: the Schwinger effect.

We discuss it in this section and proceed to point out a problem that arises when trying to

reheat via SM photons. In the next section we propose a resolution with a dark photon.

Quantum electrodynamics predicts that a strong electric field, e| ~E| & m2
e, can create

electron-positron pairs, provided that the characteristic wavelength of the photons is larger

than the Compton wavelength of the electron m−1
e . The virtual pairs, produced in the

vacuum polarization of the photon, can be accelerated apart and become real asymptotic

states if they can borrow enough energy from the electric field itself. This is known as the

Schwinger effect [36, 37]. In the presence of a constant electric field, the number of pairs

produced per unit volume per unit time is [46]

Γe+e−

V
=
e| ~E|
4π3

e
−πm

2
e

e|~E|

∫
d2k⊥e

−πk
2
⊥

e|~E| =
(e| ~E|)2

4π3
exp

(
−πm2

e

e| ~E|

)
, (5.1)

where ~k is the electron (or positron) momentum, and ~k⊥ is the component orthogonal to ~E.

In axion inflation scenarios, like ours, one typically has very strong electric fields e| ~E| �
m2
e. So, in a Hubble time, a large number of pairs per unit volume ∼ (e| ~E|)2/4π3H

is produced. In the model we consider, close to the end of the first regime, with 1 <

|ξ| . 10, the electric field grows exponentially and reaches e〈 ~E〉 ∼ πm2
e, prompting the
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pair production.6 These electrons and positrons inherit an energy of order (e| ~E|)1/2
, so the

energy density transferred to the e+e− pairs per unit time via the Schwinger effect is roughly

(e| ~E|)5/2
. This is a very efficient process: an order one fraction of the electric field energy

density is transferred to e+e−. The thermalization of the produced e+e− pairs proceeds

via annihilations, e+e− → γγ, and inverse Compton scatterings on the long-wavelength

photons, eγ → eγ. The rate of such processes is faster than the Hubble expansion.

Consequently, the electrons and positrons thermalize very fast and the temperature

quickly reaches T ∼ me.

The finite temperature changes the dispersion relation of the photon, due to in-medium

effects, and the tachyonic instability is suppressed, especially when the Debye mass, mD =

eT/
√

6, is larger than the characteristic momentum of the instability, mD & k
a ∼ |ξ|H.

Accounting for these thermal effects, we arrive at different expressions for the electric and

magnetic fields (see appendix C for details),

1

2
〈 ~E2〉 ' 1

2π4

H4

m4
D

H4|ξ|9e
4
π2

H4

m4
D

ξ6

, (5.2)

〈 ~E · ~B〉 ' 1

2π3

H2

m2
D

H4|ξ|7e
4
π2

H4

m4
D

ξ6

. (5.3)

Here mD � H, and thus a big suppression of order H4/m4
D in the exponent is present when

compared to the zero temperature case. This tells us that the intensity of the electric field

cannot go much above | ~E| ∼ m2
e/e because, once this threshold is crossed, the temperature

reaches T ∼ me through the Schwinger effect, and thermal effect suppress the photon

production. On top of that, since the size of the backreaction 〈 ~E · ~B〉 is correlated with 〈 ~E2〉,
the photon friction does not grow enough, unless |ξ| reaches the very large value (mD/H)2/3.

Now we have two issues: (1) because of the suppressed backreaction, the relaxion does

not slow down enough and does not stop on the wiggles (its kinetic energy at the end is

larger than the height of the barriers, 1
2δφ̇

2 > Λ4
wig), (2) the reheat temperature would

be of order me, which is below BBN temperature. One way to fix both problems is to

introduce a dark photon, as we describe in the next section.

6 A model with a dark photon

We have seen that the scenario where the relaxion couples to the SM photon is not viable

due to thermal effects. In this section we show that by coupling, instead, the relaxion to a

dark photon, we can avoid those issues and successfully achieve relaxation of the EW scale

and reheating. We consider the following Lagrangian

L = −1

2
∂µφ∂

µφ− 1

4
FµνF

µν − 1

4
FD,µνF

µν
D −

κ

2
FD,µνF

µν − cγD
φ

4f
FD,µνF̃

µν
D

+ eAµψ̄eγ
µψe − V (H, φ) , (6.1)

6When pair production starts, the Higgs VEV is almost at its final value. For this reason, it is a good

approximation here to use me = 0.51 MeV for the electron mass.
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where the index D denotes the massless dark photon. Here, ψe is the visible electron, and

we assume there is no light matter content in the dark sector besides the dark photon. The

field redefinition Aµ → Aµ− κADµ removes the kinetic mixing and introduces a coupling of

the dark photon to the visible electrons, eκADµ ψ̄eγ
µψe. Note that the coupling of the dark

photon to φ distinguishes it from the visible photon. Since during the cosmic evolution

only dark photons are produced in the time-dependent φ background, our choice of shifting

only the visible photon in order to remove the mixing proves convenient.

The relevance of the photons being dark clarifies when describing the end of inflation

and reheating. They are produced in the same fashion as described in the first part of the

paper, and give rise to a constant dark electric field | ~ED| ∼ √ργD . The equations derived

in sections 2 and 4 can be used for this model simply with the replacements: cγ → cγD ,

e→ κe. In particular, because the coupling to electrons is suppressed by κ, the Schwinger

production rate is now

Γe+e−

V
=

(κe| ~ED|)2

4π3
exp

(
−πm2

e

κe| ~ED|

)
. (6.2)

It becomes effective at larger values of | ~ED|, compared to the SM photon case, when

κe| ~ED| > πm2
e. (6.3)

The maximum value the dark electric field can achieve is given by | ~Emax
D | ∼

(
|ξ2|
cγD

)1/2
Λ2

wig

(see eqs. (2.16), (4.6) and (4.16)) and consequently,

κe &
m2
e

Λ2
wig

(
cγD
|ξ2|

)1/2

. (6.4)

To avoid the complication we encountered with the suppressed tachyonic production of

visible photons, we wish to ensure that there is no thermal mass associated with the dark

photon. To do so, we require the dark photon to be sufficiently weakly coupled as to stay

out of thermal equilibrium. Equivalently, the dark photon’s mean free path, `m.f.p., must be

larger than the Hubble radius, and therefore it cannot be refracted. Such a condition reads

`m.f.p. ≡
1

neσeγD→eγ
∼ 1

κ2α2 T
>

1

H
, (6.5)

and needs to hold until the relaxion settles down. This is satisfied as long as

κe .

(
Λwig

αMPl

)1/2( |ξ2|
cγD

)1/8

. (6.6)

In eq. (6.5), we took the electrons to be relativistic and in thermal equilibrium at a tem-

perature T > me, so that their number density ne scales as T 3. We considered the cross

section σeγD→eγ ∼ κ2α2

T 2 , rather than σeγD→eγD ∼ κ4α2

T 2 , since the latter is suppressed by

two extra powers of κ. Also, we took H ∼ T 2

MPl
and used the reheating temperature

T ∼ (|ξ2|/cγD)1/4 Λwig, since it changes only by an order-one amount between reheating
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and the end of relaxation, as explained in section 4.4 . Note that with these choices the

bound (6.6) is conservative.

The absence of a thermal mass for the dark photons implies that we keep producing

efficiently the dark electric field as we enter the second regime of slow roll for the relaxion,

described in section 4, where the main friction force arises from dark photon production.

We saw that in this regime the amount of energy available in the dark electric field is

ργD ∼
|ξ2|
cγD

Λ4
wig. (6.7)

The energy transfer from the dark electric field to e+e− directly by the Schwinger effect is

inefficient, unlike in the SM photon case. In a Hubble time this can be estimated as

∆ρSchwinger

ργD
∼ (κe| ~ED|)5/2H−1

| ~ED|2
∼ (κe)5/2MPl

| ~ED|1/2
.

1

α

(
cγD
α|ξ2|

Λwig

MPl

)1/4

� 1 , (6.8)

where the typical e± energy is (κe| ~ED|)1/2, and we used eq. (6.6) in the inequality.

However, the electric field can transfer an amount (κe| ~ED|)d of energy to each electron,

by accelerating it over a distance d. Shortly after Schwinger creation, the number density

of electrons is ne =
Γe+e−
V ∆t ∼ (κe| ~ED|)2H−1. Thus, the energy density transferred can

be estimated as

ne · (κe| ~ED|)d
ργD

∼ (κe)3

(
MPl

Λwig

)2 d

H−1
. α−3/2

(
MPl

Λwig

)1/2 d

H−1
∼ 1011 d

H−1
, (6.9)

where we took H2 ∼ ργD/M
2
Pl ∼ Λ4

wig/M
2
Pl, with Λwig = 100 GeV, and we again used

eq. (6.6). This is very efficient, provided that

κe >

(
Λwig

MPl

)2/3

, (6.10)

and implies that an order one fraction of ργD can be quickly transferred to the SM radiation,

so the reheating temperature can reach

TRH ∼
( |ξ2|
cγD

)1/4

Λwig. (6.11)

One can show that for values of the kinetic mixing bounded by eqs. (6.4) and (6.6),

the dark photons never reach thermal equilibrium with the visible sector, after reheating of

the latter, and remain cold. So far we have assumed a massless dark photon to maximize

its production via the relaxion. However, one can give it a small mass. Its mass would

have to be small enough in order not to suppress significantly its production, otherwise the

relaxation mechanism could be spoiled.

7 Cosmological perturbations

Our model is similar to those of natural inflation, where the axion field couples to Abelian

gauge bosons. The associated cosmological perturbations have been largely investigated
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in the literature [31–34, 38, 47–49]. The coupling φFF̃ leads to several features, which

include the generation of curvature perturbations and nongaussianities, the production of

gravitational waves, and the formation of primordial black holes (PBH). See ref. [34] for a

review of these topics.

In most models of natural inflation the Hubble scale is of order 1013 GeV, and the

number of e-folds is roughly 60. The important difference in our model is that the potential

is much shallower. At the beginning we can also have H ∼ 1013 GeV, but then inflation

proceeds for more than 1030 e-folds and most of the potential energy initially stored in the

scalar field is dissipated. The energy density V∗ available close to the end of inflation is of

order Λ4
wig < m4

W . For this reason, our model should be regarded as a low-scale inflation

model. The number of observable e-folds is given by [50]

N(k) = 62− ln
k

a0H0
− ln

1016 GeV

V
1/4
∗

+ ln
V

1/4
∗

V
1/4

end

− 1

3
ln
V

1/4
end

ρ
1/4
RH

, (7.1)

where V∗ is the energy density when the mode k left the horizon, Vend the energy density

at the end of inflation, ρRH the energy density at reheating, and the subscript 0 refers to

today’s value. In our case we have V∗ ∼ Vend ∼ ρRH ∼ Λ4
wig. Taking the highest value for

Λwig, that is Λwig ∼ mW , we have ln 1016 GeV

V
1/4
∗

' 32, while the other logarithms in eq. (7.1)

are roughly zero. Therefore the observable number of observable e-folds in our model is

N(k) ' 30.

We have two sources for curvature perturbations: one is from vacuum quantum fluctu-

ations δϕ of the inflaton, proportional to H, the other is from fluctuations induced by the

inverse decay of photons [32], δA+ δA→ δϕ. The first one gives a power spectrum which,

as we show in appendix E, is largely insufficient to explain the observed perturbations:

P =
H4

4π2φ̇2
< 10−48mW

f
� PCOBE = 2.5× 10−9 . (7.2)

The smallness of P here is a consequence of low-scale H, combined with a very shallow

potential. Including the second contribution in regime 1, we have [32]

Pζ(k) = P
(
k

k0

)ns−1 [
1 + Pf2(ξ)e4π|ξ|

]
' P2f2(ξ)e4π|ξ| (regime 1) (7.3)

where k0 = 0.002 Mpc−1 and f2(ξ) ' 10−4/ξ6. The second equality in (7.3) holds for

large |ξ|, and for the sake of the estimate we took ns ' 1. As |ξ| increases, the power

spectrum (7.3) increases exponentially. When we enter regime 2, ξ remains quasi-constant

with value ξ2 [see (4.19)], and the power spectrum saturates to [31, 33]

Pζ(k) ' 1

(2πξ2)2
∼ 5× 10−5 � PCOBE (regime 2) (7.4)

This allows, in principle, to have a period around 30 e-folds from the end of inflation

where we are still in regime 1, but with a large |ξ| such that, thanks to the exponen-

tial in (7.3), we match the observed power spectrum for curvature perturbations, Pζ(k) ∼
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Figure 2. We show the power spectrum as a function of the number of e-folds from the end of

inflation. We have fixed Λwig = 10 GeV, and f = 1016 GeV. The three curves correspond to values

of the axion-photon coupling, cγD , so that the number of e-folds in regime 2 [see eq. (8.6)] is 5, 15,

and 25, respectively. The curves are flat in regime 2 [see eq. (7.4)], and fall exponentially in regime

1 [eq. (7.3)]. On the horizontal axis, time increases from right to left. The gray region shows the

bound from PBH, computed following refs. [33, 49]. Such a bound is typically very stringent for

natural inflation models, but here it is easily evaded due to the significantly lower inflation scale.

Note that while it is numerically possible to explain the observed Pζ = PCOBE around Ne = 30, we

see that the lines fall very steeply, due to the exponent in eq. (7.3). This indicates that it is difficult

for the model as it stands to predict the observed curvature perturbations.

PCOBE. In practice, it still does not mean that this model is agreement with CMB observa-

tions, unfortunately. The same exponential implies, as we see in figure 2, that Pζ changes

by many orders of magnitude within a couple of e-folds, which is in contradiction with CMB

measurements of higher multipoles. Therefore, we need to roughly have less than 25 e-folds

in regime 2 to comply with CMB bounds, the consequence being that we do not produce

the observed amount of curvature perturbations in the model as it stands. We note that the

addition of another field, like a curvaton, can help in matching the CMB power spectrum.

Our current estimate does not take into account the modulation effects due to the

wiggles [51]. Naively they are negligible, because P is so small, but a conclusive statement

requires a dedicated study, beyond the scope of this paper. We leave a more detailed study

of the parameter space in relation to CMB constraints, and a possible extension of this

model, to future study.

8 Constraints and relevant scales

We are now in the position of summarizing the constraints on the model with the dark pho-

ton. A summary plot is given in figure 3. The independent parameters in our construction

are

m, Λ, gh, Λwig, f, cγD , κ. (8.1)
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The first 3 parameters are related to the shallow rolling potential, Λwig and f are related

to the wiggle potential, cγD and κ to the hidden photon coupling to φ and the visible sector

respectively. For the sake of simplicity, we take gh = O(1). Since φ is the Goldstone of a

global symmetry spontaneously broken at the scale f , we must impose that the scale Λ,

which explicitly breaks the symmetry, be smaller than f ,

Λ . f . (8.2)

This implies a lower bound on m from eq. (4.6). We also require the presence of many

wiggles between δφ = 0 and δφEW, that is we impose |δφEW| > f . This implies an upper

bound on m. The two conditions together give the window

Λ4
wig

f3
. m <

m2
W

f
, (8.3)

with Λwig < mW , as discussed at the end of section 3.

The combination f/cγD is constrained to the window

0.1

|ξ2|
MPl .

f

cγD
<

1

|ξ2|
MPl . (8.4)

The upper bound comes from the requirement that we enter the photon-dominated slow-

roll regime, while the lower bound comes from asking that such a regime does not last more

than the last 25 e-folds, see figure 2.

The number of e-folds in regime 2 is

N2 =

∫ tRH

tswitch

Hdt =

∫ VRH

Vswitch

H

δφ̇V ′
dV =

∫ VRH

Vswitch

cγD
2ξfV ′

dV , (8.5)

with Vswitch given by eq. (4.14) and VRH by eq. (4.21). Requiring this to last for 25 e-folds

at most, and treating ξ as a constant, gives

N2 '
cγD

2ξ2fV ′

∫ VRH

Vswitch

dV '
c2
γD

4|ξ2|2f2
M2

Pl −
2

7
< 25 , (8.6)

from which we obtain the lower bound of (8.4). Incidentally, in this window we have

Vswitch/VRH ∼
c2γD
f2

M2
Pl

|ξ2|2 ∼ O(10), which confirms, following eq. (4.18), that ξ varies very

little during this regime. We stress that since cγD is a free parameter, this rather narrow

window leaves a significant viable parameter space, nonetheless.

The goal of the whole mechanism is to achieve a cutoff Λ as large as possible. As

Λ . f , the cutoff is only limited by the upper bound on f from eq. (8.4). We have seen

that |ξ| varies only logarithmically in the short photon-dominated regime, and its value is

typically |ξ2| ∼ O(20). To increase the allowed value of f one would like a value of cγD as

big as possible. Large values of cγD can possibly be achieved in the clockwork framework,

see appendix A, but for now we restrict our attention to the case cγD < 10. Note that once

we fix cγD we get directly an upper bound on f and on the cutoff Λ, independently of the

other parameters of the model.
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Finally, as discussed in section 6, we need to ensure that the dark photons create

e+e− pairs, eq. (6.4), while not acquiring thermal mass, eq. (6.6). We also impose that

the dark electric field transfers sufficient energy to the e+e−, eq. (6.10). Together, these

requirements contrain κe to the window,

max

[
m2
e

Λ2
wig

(
cγD
|ξ2|

)1/2

,

(
Λwig

MPl

)2/3
]
. κe .

(
Λwig

αMPl

)1/2( |ξ2|
cγD

)1/8

(8.7)

Any value of κ in this range will be equally good for reheating. At the same time, they

yield a lower bound on Λwig,

Λwig >
(
αMPlm

4
e

)1/5
(
cγD
|ξ2|

)1/4

. (8.8)

The reheating temperature we get is (see eq. (6.7))

TRH ∼
( |ξ2|
cγD

)1/4

Λwig. (8.9)

We provide a benchmark point to give an idea of the scales and numbers involved.

First, we fix f/cγD = 0.2MPl/|ξ2|, Λ = 0.1f (which means m ∼ 100Λ4
wig/f

3), and take for

instance, Λwig = 1 GeV and f = 1011 GeV. Thus, we have

gh = O(1) , Λwig = 1 GeV , f = 1011 GeV , Λ = 1010 GeV ,

cγD ' 10−5 , m ∼ 10−31 GeV , 10−10 . κ . 10−9 ,

|ξ2| ' 24 , TRH ∼ 26 GeV. (8.10)

More generically, we show in figure 3 the allowed (white) region on the plane f vs Λwig.

Note that for Λwig ∼ 10 GeV, values of f very close to MPl are allowed, which in turn can

accommodate a cutoff as high as 1016 GeV.

The relaxion mass and its mixing angle with the Higgs are given by

m2
φ ∼

Λ4
wig

f2
, θ ∼

Λ4
wig

fm3
W

, (8.11)

Here the contributions from Vroll are negligible: they are small because they break the

discrete shift symmetry. For high values of f , say above 1010 GeV, the relaxion mass is

smaller than 1 keV, and its couplings to matter, suppressed by θ . 10−8, are tiny. In this

range it is hard to detect it experimentally as a particle. However, via its mixing with the

Higgs, it can be the mediator of a long-range force. Experimental tests for fifth force [22, 52]

(blue in figure 3), provide interesting bounds for high f . To cover the whole region with

f > 1014 GeV their sensitivity would have to improve by a few orders of magnitude. For

f . 109 GeV, the mass of the relaxion is above 10 keV. In this region of parameter space, the

relaxion can be probed via cosmological and astrophysical processes, or in the laboratories,

and there are various constraints studied in refs. [21, 22] (orange in figure 3).

Concerning the dark photon, there are almost no experimental constraints in our sce-

nario. This is because the dark photon has to be massless or extremely light, mγD <
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Figure 3. Summary of constraints on our model. We fix f/cγD = 0.2MPl/|ξ2|. The range of |ξ2|
in this plot is from 19 to 26. The dashed red contours show the values of cγD that were chosen to

saturate the lower bound in eq. (8.4). The dashed blue contours depict the reheating temperature

given in eq. (8.9). The blue region is excluded by 5th force constraints, while the orange region

corresponds to a set of constraints from astrophysics, cosmology, beam dump experiments, and

colliders; these are explained in detail in [22]. The dark gray area corresponds to values of Λwig >

mW and is excluded as it implies an unacceptable electroweak breaking scale. The light gray region

is defined by the bound eq. (8.8), combined with eq. (8.4). In such a region there is no viable value of

the mixing κ to allow at the same time for reheating via the Schwinger effect and for the dark photon

to avoid a thermal mass. Note that of the dimensionful parameters listed in (8.1), Λ, is fixed by

eq. (4.6), and m does not need to be specified as long as eq. (8.3) is satisfied, which is always the case.

10−14 GeV, and the mixing very small, κ < 10−8 (see e.g. [53] for bounds that extend to

this region of parameter space).

CMB observables represent perhaps the most interesting arena for testing this frame-

work. The dark photon production can lead to the generation of nongaussianities, pri-

mordial black holes and gravitational waves, while the wiggles of the relaxion potential

can produce measurable modulations. These features deserve a dedicated study, which is

beyond the scope of the current work.

In this relaxed inflation scenario, we can achieve a higher cutoff than in ref. [1]. The

limiting factors in the original model were the conditions:

1. that the vacuum energy be dominated by the inflaton,

2. that the evolution of the relaxion be dominated by classical rolling rather than quan-

tum fluctuations,
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3. that the Hubble parameter during inflation be smaller than Λwig for the wiggles to

appear.

In the framework presented in this paper, these three conditions are not relevant, so we can

achieve a cutoff Λ ∼ 1016 GeV. It is obvious why condition 1 does not apply, as in our case

the relaxion is the inflaton itself. Condition 2 is not necessary since δφ settles down when

the universe is not de Sitter anymore but radiation dominated. Condition 3 is not necessary

either, as our wiggles reappear after reheating once the temperature drops below Λwig.

9 Summary

We have investigated a model in which the relaxion, originally proposed in ref. [1], is also

the inflaton. Two key ingredients of the original proposal were a very shallow slope of

the potential and the presence of a periodic potential (wiggles), with amplitude growing

proportionally to the Higgs VEV. The wiggles provide the backreaction necessary to stop

the motion of the relaxion and set the observed EW scale. A shallow slope suggests

that the relaxion itself could be the inflaton, as it automatically satisfies the slow-roll

conditions. The EW scale must be set after the end of inflation and to avoid overshooting

it is necessary to introduce an additional dissipation mechanism. We have shown that

this can be accomplished by coupling the relaxion to gauge bosons. In the last stages of

inflation, the gauge-boson production becomes significant, slowing down the relaxion and

allowing for a new reheating mechanism.

The reheating process is an important novelty of this work. It first starts with the

production of very strong electric and magnetic fields, which allow for vacuum electron-

positron pair production via the Schwinger mechanism. The e+e− pairs quickly thermalize,

reheating the universe. To achieve a sufficiently high reheat temperature, the produced

gauge bosons cannot be coupled strongly to the thermal bath, as thermal effects quickly

shut off the non-perturbative photon production. Here we considered the production of

dark photons which are only weakly coupled to the visible sector. We find that this allows to

reheat safely above BBN temperature, while the unsuppressed production of dark photons

provides enough dissipation for the relaxion, which slows down and settles on the correct

EW minimum. A detailed study of this reheating mechanism is under study and will be

presented in future work.

We have studied the phenomenologically viable parameter space, and showed that while

our scenario can evade CMB constraints from primordial black hole formation, typically

quite stringent, it is difficult to generate the observed amount of curvature perturbations.

An extra ingredient, like a curvaton field, is likely needed to match the measured power

spectrum. We find that the promotion of the relaxion to an inflaton can accommodate a

cutoff close to the Planck scale, significantly above the one found in the original proposal [1].
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A A clockwork model

A possible UV completion for the model presented in section 3 is provided by the clockwork

mechanism [9, 10](see also refs. [41, 54–62]). The construction relies on the potential [10]

V (Φ) =

N+1∑

j=1

(
−µ2

ΦΦ†jΦj +
λΦ

4
|Φ†jΦj |2

)
+

N∑

j=1

(
εΦΦ†jΦ

3
j+1 + h.c.

)
, (A.1)

where Φj ’s are complex scalar fields. The terms in the first sum respect a global U(1)N+1

symmetry, while the second sum explicitly breaks it to a U(1). The fields Φj have charges

Q = 1, 1
3 ,

1
9 , . . . ,

1
3N

under the unbroken U(1). As µ2
Φ > 0, all the U(1)’s are spontaneously

broken at a scale f =
√

(2µ2
Φ)/λΦ. The corresponding Nambu-Goldstone bosons (NGB)

obtain a mass proportional to
√
εΦf , due to the terms with εΦ � 1 in eq. (A.1), except for

that associated with the U(1) which is not explicitly broken. The latter NGB (massless

at this stage) is given by the combination φ = N
(
1 1

3
1
9 . . . 1

3N

)
, which we identify with

the relaxion. Here N is a normalization factor. The relaxion has exponentially suppressed

overlap with the operators ΦN+1 couple to.

We couple Φ1 to fermions charged under a non-Abelian gauge group that confines at the

scale Λwig. Via the one-loop triangle diagram the relaxion obtains the coupling α1
8π

φ
fG1G̃1,

which gives rise to the periodic wiggle potential. We couple ΦN+1 to fermions charged under

another gauge group with confining scale ΛN � Λwig. Because of the suppressed overlap

of the relaxion with the N + 1 field, the operator leads to the coupling αN
8π

φ
FGN+1G̃N+1,

with F = 3Nf � f . Below the confining scale, the potential Λ4
N cos φ

F , responsible for the

rolling, emerges. By controlling which of the scalars couple to the dark photon, one may

control the strength of the photon coupling to the relaxion, namely one can set the value

of cγ(D)
over a large range [63]. For example, by charging the fermions at the (j+ 1)th site

under the Abelian gauge symmetry, the relaxion-photon coupling would be cγ(D)
∼ α(D)

2π 3−j .
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The full clockwork-inspired Lagrangian for the relaxion that we consider is then

−L(h, φ) =
1

2
Λ2

(
1− gh cos

φ

F

)
h2 +

1

4
λh4 +

m4
W

4λ
+ Vroll(φ) + Vwig(φ)

+cγ(D)

φ

4f
F(D)F̃(D) , (A.2)

Vroll(φ) = Λ4
N

(
αcc − cos

φ

F

)
, (A.3)

Vwig(φ) = Λ4
wig cos

φ

f
. (A.4)

Here, αcc is a dimensionless constant that we use to tune the cosmological constant to zero.

To make sense of the notion of pNGB, all the scales corresponding to explicit breaking have

to be smaller than the spontaneous breaking scale, so we have the following hierarchy7

Λwig � Λ ∼ ΛN � f � F . (A.5)

The dimensionless parameter gh > 1 determines the point at which we switch from the

unbroken to the broken EW phase:

cos
φ

F
>

1

gh
broken phase . (A.6)

With these conventions, we imagine that the rolling starts from φ/F between 0 and π and

rolls down to the left. We define φ0 as the point where mh = 0:

cos
φ0

F
=

1

gh
. (A.7)

Expanding around this point, φ = φ0 + δφ, we have

µ2(δφ) ' ghΛ2 sin
φ0

F

δφ

F
. (A.8)

Setting µ2(δφEW) ' −m2
W we find

δφEW

F
' −m

2
W

Λ2

1

gh sin φ0

F

. (A.9)

We want to tune the cosmological constant at this point:

Vroll(φ) = Λ4
N

[
cos

φ0 + δφEW

F
− cos

φ

F

]
, (A.10)

which after expanding around φ0 reads

Vroll(δφ) ' Λ4
N sin

φ0

F

[
δφ

F
− δφEW

F

]
. (A.11)

7In the absence of tuning, the scale ΛN is expected to be of order Λ (up to a loop factor), as the h2 term

is going to generate ghΛ4

16π2 cos φ
F

anyway.
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Putting all the pieces together we have

V (h, δφ) =
1

2
gh

Λ2

F
sin

φ0

F
δφ h2 +

1

4
λh4 +

m4
W

4λ
+ Vroll(δφ) + Vwig(δφ) , (A.12)

Vroll(δφ) =
Λ4
N

F
sin

φ0

F
(δφ− δφEW) , (A.13)

Vwig(δφ) = Λ4
wig cos

φ0 + δφ

f
. (A.14)

We see that, by identifying

m ≡ Λ2

F
sin

φ0

F
∼ Λ2

N

F
sin

φ0

F
, (A.15)

we can match this potential to the one given at the end of section 3.

B Slow roll conditions

B.1 Regime 1

In section 4.2, we discussed the slow-roll conditions in regime 1, where the barriers from

the wiggles are not yet large, namely the condition V ′roll +V ′wig > 0 is satisfied. We saw that

the parameter ε(δφ) = −Ḣ/H2 remains smaller than 1 for values of the potential down to

V ∼MPlV
′

roll. In this appendix, we discuss in detail the other slow-roll parameter:

η(δφ) ≡ ε(δφ)− δφ̈

Hδφ̇
' − δφ̈

Hδφ̇
. (B.1)

The last equality holds as long as ε < 1.

We start from the equation of motion

δφ̈+ 3Hδφ̇+ V ′roll + V ′wig = 0 , (B.2)

and define the small parameter

ϑ ≡
∣∣∣∣∣
V ′wig

V ′roll

∣∣∣∣∣ . (B.3)

In regime 1, ϑ typically does not grow larger than 0.1. We expand δφ̇ as

δφ̇ = δφ̇(0) + ϑδφ̇(1) +O(ϑ2) . (B.4)

At zeroth order in ϑ, the equation of motion reads

3Hδφ̇(0) + V ′roll = 0 , (B.5)

where we dropped δφ̈(0) because η(0) ' M2
PlV

′′
roll/Vroll = 0. With the boundary conditions

δφ = 0 and δφ̇ = φ̇0 ≡ −V ′roll/3H at t = 0, and treating H as roughly constant, we have

δφ(0)(t) = φ̇0t+O(ε) . (B.6)

– 26 –



J
H
E
P
0
2
(
2
0
1
8
)
0
8
4

At first order in ϑ, the equation of motion is

ϑδφ̈(1) + 3Hϑδφ̇(1) + V ′wig = 0 . (B.7)

Substituting the zeroth order solution (B.6) into eq. (B.7), we get

ϑδφ̈(1) + 3Hϑδφ̇(1) −
Λ4

wig

f
sin

φ0 + φ̇0t

f
= 0 , (B.8)

which can be solved analytically:

ϑδφ̇(1) =
−Λ4

wig

{
φ̇0

[
cos φ0+φ̇0t

f −e−3Ht cos φ0

f

]
−3Hf

[
sin φ0+φ̇0t

f −e−3Ht sin φ0

f

]}

φ̇2
0 +(3Hf)2

, (B.9)

ϑδφ̈(1) =
Λ4

wig

f

φ̇2
0 sin φ0+φ̇0t

f +3Hfφ̇0 cos φ0+φ̇0t
f −e−3Ht{3Hfφ̇0 cos φ0

f −(3Hf)2 sin φ0

f }
φ̇2

0 +(3Hf)2
.

(B.10)

There are two limits to study:

1. 3Hf � |φ̇0|.
This corresponds to the beginning of regime 1, when V ∼ m2

WΛ2. We have

ϑδφ̈(1) '
Λ4

wig

f

φ̇0

3Hf
cos

φ0 + φ̇0t

f
, (B.11)

and

η ' − δφ̈

Hδφ̇
' − ϑδφ̈

(1)

Hδφ̇(0)
∼ ϑ φ̇0

Hf
cos

φ0 + φ̇0t

f
. (B.12)

Thus |η| � 1, and δφ̇ is constant to a very good approximation.

2. 3Hf � |φ̇0|.
This is the more interesting limit, which corresponds to the end of regime 1. We have

ϑδφ̈(1) '
Λ4

wig

f
sin

φ0 + φ̇0t

f
, (B.13)

and

η ' − δφ̈

Hδφ̇
' − ϑδφ̈

(1)

Hδφ̇(0)
' −

V ′wig

V ′roll

∼ ϑ . (B.14)

This proves that |η| < 1 also in this limit. Note that δφ̇ stays roughly constant because

the relaxion does not gain net kinetic energy from the wiggles. Indeed, the maximum

deviation from δφ̇ = φ̇0 can be estimated by taking one period tf = 2πf/φ̇0,

∣∣∣∣∣
ϑδφ̈(1)tf

φ̇0

∣∣∣∣∣ < ϑ
2πHf

φ̇0

� 1 . (B.15)
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B.2 Regime 2

Let us rewrite the full EOM as

δφ̈+ 3Hδφ̇+ V ′ =
C0

fγ

H4

(δφ̇/2fγH)4
e
− πδφ̇
Hfγ , (B.16)

where we have defined fγ ≡ f
cγ

, and C0 ' 2.4×10−4. Recall that in our conventions V ′ > 0

and δφ̇ < 0. In section 4.3 we claimed that in regime 2 the EOM is well approximated by

V ′roll(δφ) ' C0

fγ

H4

(δφ̇/2fγH)4
e
− πδφ̇
Hfγ =

C0

fγ

H4

ξ4
e−πξ , (B.17)

with the slow-roll conditions satisfied when fγ <
MPl
|ξ| . In what follows we justify these

statements.

First, note that in eq. (B.17) we are keeping only the rolling potential and neglecting

the wiggles. We check later what happens when we include the wiggles. The solution to

eq. (B.17) is obtained by

ξ ' − 1

π
ln

[
ξ4fγV

′
roll

C0H4

]
∼ const. , δφ̇ ' −Hfγ

π
ln

[
ξ4fγV

′
roll

C0H4

]
. (B.18)

With this we check the following conditions:

• The kinetic energy is smaller than the potential

1
2δφ̇

2

V
'

1
2 (2ξHfγ)2

V
=

2

3

f2

c2
γ

ξ2

M2
Pl

< 1 , (B.19)

• H is slowly varying, that is ε = − Ḣ
H2 < 1. Using the Friedmann equations we can

bring ε to the form [31]

ε =
1

2M2
PlH

2

[
δφ̇2 +

4

3
ργ

]
' 2

(
ξ2f2

γ

M2
Pl

+
ργ
V

)
. (B.20)

The second term in parentheses is smaller than one for V > 2ργ = 2VRH, that is

roughly until reheating. Then for the first term we have to impose

fγ �
MPl

|ξ| . (B.21)

• The term 3Hδφ̇ in eq. (B.16) is negligible. We have

|3Hδφ̇|
V ′roll

' 2|ξ|V fγ
M2

PlV
′

roll

< 1 , (B.22)

due to V < Vswitch =
M2

PlV
′
roll

2|ξ|fγ , see eq. (4.14).
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• The term δφ̈ is negligible. Taking the time derivative of eq. (B.18) we find

|δφ̈|
V ′roll

' 2|ξ|
3

∣∣∣∣∣−ε
fγV

M2
PlV

′
roll

−
f2
γ

πM2
Pl

(
V V ′′roll

V ′2roll

− 2

)∣∣∣∣∣ < 1 . (B.23)

Here, the first term is smaller than one for V < Vswitch, the second vanishes as

V ′′roll = 0, the third is small as long as eq. (B.21) is satisfied.

We see that the condition of eq. (B.21) is enough to guarantee slow-roll in this approxima-

tion. Next we examine what happens when we take into account also the wiggles, the main

worry being that δφ̈ could grow larger than V ′ because of the nonzero V ′′wig. We proceed

as in the previous section, by defining the small parameter ϑ =
∣∣∣V
′
wig

V ′roll

∣∣∣ and expanding δφ̇

as in eq. (B.4). We have already solved the zeroth order EOM, that is eq. (B.17). At first

order in ϑ the EOM is

ϑδφ̈(1) + 3Hϑδφ̇(1) + V ′wig = 24H8f3
γ

(
e−π(δφ̇(0)+ϑδφ̇(1))/Hfγ

(δφ̇(0) + ϑδφ̇(1))4
− e−πδφ̇

(0)/Hfγ

(δφ̇(0))4

)

' V ′roll

(
−4− πδφ̇(0)

Hfγ

)
ϑδφ̇(1)

δφ̇(0)
. (B.24)

We linearized the equation in the second line assuming
πcγϑδφ̇(1)

fH is another small parameter.

One can check this assumption is correct after finding the solution. Now the photon friction

is just a modification of the Hubble friction term, and the EOM reduces to eq. (B.7) with

the replacements

φ̇0 → δφ̇(0) = 2ξHfγ , (B.25)

H → Heff ≡ H +
V ′roll

3δφ̇(0)

(
4 +

πδφ̇(0)

Hfγ

)
' 2π|ξ|H. (B.26)

The solution then is that of eq. (B.9). It is easy to verify that ϑδφ̇(1)

δφ̇(0)
< 1 and πϑδφ̇(1)

Hfγ
< 1,

which confirms the consistency of our expansion in eq. (B.24). Again we can check what

happens to the acceleration ϑδφ̈(1) in two limits:

1. 3Hefff � |δφ̇(0)|.
Here we have

|ϑδφ̈(1)| '
Λ4

wig

f

δφ̇(0)

3Hefff
cos

φ0 + δφ̇(0)t

f
� V ′ . (B.27)

2. 3Hefff � |δφ̇(0)|.
Here we have

|ϑδφ̈(1)|
V ′

' 1

V ′
Λ4

wig

f
sin

φ0 + δφ̇(0)t

f
'
V ′wig

V ′roll

= ϑ < 1 . (B.28)
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We conclude that even when taking into account the wiggle potential, the acceleration δφ̈

in eq. (B.16) remains negligible.

So far we have checked the self-consistency conditions, |3Hδφ̇|V ′ , |δφ̈|V ′ < 1, based on the

solution of eq. (B.18). At last, we examine a possible O(ϑ0) correction to |δφ̈|V ′ . This is

because one could worry that δφ̈ is large when we transition from regime 1 to 2, and perhaps

it is not a good approximation to neglect it in the EOM. We show that even if δφ̈ is large at

the beginning of regime 2, the solution quickly converges to the one of eq. (B.18). Keeping

the δφ̈ term in the EOM introduces extra time-dependence of δφ̇(0) leading to a different

contribution to |δφ̈|V ′ . To see this effect, we consider the following differential equation

δφ̈+ V ′roll =
C0

fγ

H4

ξ4
e
− πδφ̇
Hfγ . (B.29)

For simplicity we drop the 3Hδφ̇ term, and neglect again the time-dependence of the

prefactor on the r.h.s. , keeping only the stronger time-dependence in the exponent. The

solution is

δφ̇(t) =
Hfγ
π

ln

[
C0H

4

ξ4fγV ′roll

+ e
−πV

′
roll

fγH
t
(
e−2π|ξ0| − C0H

4

ξ4fγV ′roll

)]
(B.30)

=
Hfγ
π

ln

[
C0H

4

ξ4fγV ′roll

(
1− δφ̈(0)

δφ̈(0) + V ′roll

e
−πV

′
roll

fγH
t

)]
, (B.31)

δφ̈(t) =
δφ̈(0)

(
δφ̈(0)
V ′roll

+ 1
)
e
πV ′

roll
fγH

t − δφ̈(0)
V ′roll

(B.32)

where t = 0 corresponds to the time of transition from regime 1 to 2, and ξ0 ≡ δφ̇(0)
2fγH

< 0. At

the transition the acceleration could be sizable, |δφ̈|V ′ = O(1). The contribution of eq. (B.32)

is not included in eq. (B.23). However, |δφ̈|V ′ quickly becomes small because the exponential

damping factor is much larger than H,

πV ′roll

fγH
∼ 6π|ξ|H . (B.33)

Here we used eq. (4.14). Despite regime 2 only lasts O(20) e-foldings, eq. (B.33) implies

that |δφ̈|V ′ becomes negligible sooner than one e-fold after the transition (t & 1
6π|ξ|H ).

C Thermal effects on gauge-field production

At zero temperature, the equation of motion (EOM) for the polarization that gets expo-

nentially enhanced reads

∂2A−
∂τ2

+

(
k2 + akcγ

φ̇

f

)
A− = 0 . (C.1)
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Here τ is the conformal time, defined as adτ = dt, with t the cosmic time. An overdot

denotes a derivative with respect to t. In our conventions φ̇ < 0. Written in terms of t, the

EOM is

Ä− +HȦ− +

(
k2

a2
+
k

a
cγ
φ̇

f

)
A− = 0 , (C.2)

from which we can read off explicitly the dispersion relation

ω2

a2
=
k2

a2
+
k

a
cγ
φ̇

f
. (C.3)

The mode A− experiences tachyonic enhancement when ω2 < 0. The easiest way to find

A− that solves eq. (C.1) is via the WKB approximation:

A−(k, τ) ' 1√
2Ω(k, τ)

e
∫ τ dτ ′Ω(k,τ ′) , (C.4)

where, Ω ≡ iω. This approximation holds as long as we satisfy the adiabatic condition

∣∣∣∣
∂Ω

∂τ

1

Ω2

∣∣∣∣� 1 . (C.5)

Then one can compute

〈 ~E · ~B〉 =
1

4π2a4

∫
dkk3 ∂

∂τ
|A−(k, τ)|2 , (C.6)

1

2
〈 ~E2〉 =

1

4π2a4

∫
dkk2

∣∣∣∣
∂

∂τ
A−(k, τ)

∣∣∣∣
2

, (C.7)

1

2
〈 ~B2〉 =

1

4π2a4

∫
dkk2k2|A−(k, τ)|2 . (C.8)

At finite temperature, in the long wavelength limit, the dispersion relation (C.3) is

modified to [64]

ω2

a2
− k2

a2
− k

a
cγ
φ̇

f
= m2

D

ω

k

[
ω

k
+

1

2

(
1− ω2

k2

)
ln
ω + k

ω − k

]
,

k

a
� mD , (C.9)

while in the short wavelength limit it is

ω2

a2
− k2

a2
− k

a
cγ
φ̇

f
= m2

D ,
k

a
� mD . (C.10)

In these expressions

m2
D =

g2T 2

6
, (C.11)

with g the U(1) gauge coupling. We want to find tachyonic solutions, Ω = iω > 0, of the

equations above.
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C.1 Long wavelength

Let’s consider eq. (C.9) first.

• Ω� k

The r.h.s. of eq. (C.9) reduces to ' 2
3m

2
D, and the dispersion relation to

Ω2

a2
+
k2

a2
+
k

a
cγ
φ̇

f
+

2

3
m2
D = 0 . (C.12)

Given k
a � mD, we see there is no real and positive solution (no tachyonic modes)

for Ω in this limit. Therefore we turn to the opposite limit:

• Ω� k

The right hand side term in eq. (C.9) reduces to

m2
D

ω

k

1

2
ln(−1) =

π

2
m2
D

iω

k
=
π

2
m2
D

Ω

k
, (C.13)

so the dispersion relation becomes

Ω2

a2
+
k2

a2
+
k

a
cγ
φ̇

f
+
π

2
m2
D

Ω

k
= 0 . (C.14)

Using the dimensionless variables ξ = cγ
φ̇

2Hf < 0 and x = −kτ > 0 this equation is

Ω2 + k2 + k2 2ξ

x
+ k

π

2

m2
D

H2

Ω

x2
= 0 , (C.15)

with solution

Ω =
k

4x2

(√
π2
m4
D

H4
− 16x4 + 32x3|ξ| − πm

2
D

H2

)
. (C.16)

In the cases we are interested in, we have mD � H. In this limit the solution

simplifies to

Ω =
2

π

H2

m2
D

kx(2|ξ| − x) . (C.17)

Ω is positive (we have tachyonic modes) as long as x < 2|ξ|.
The adiabatic condition is

∣∣∣∣
∂Ω

∂τ

1

Ω2

∣∣∣∣ =

∣∣∣∣π
m2
D

H2

|ξ| − x
x2(2|ξ| − x)2

∣∣∣∣ < 1 . (C.18)

This is satisfied only in a very narrow range of x close to |ξ|:

|ξ| − ξ4

π

H2

m2
D

< x < |ξ|+ ξ4

π

H2

m2
D

. (C.19)

Now that we have Ω we can get A− using again the WKB approximation. We have

∫
dτΩ =

1

k

∫ xmax

xmin

dxΩ ' 4

π2

H4

m4
D

ξ6 . (C.20)
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In the denominator of eq. (C.4) we can approximate Ω with Ω(x = |ξ|). Then the

WKB solution is

A−(k, x) '
√

π

4k

mD

H

1

|ξ|e
4
π2

H4

m4
D

ξ6

. (C.21)

With this, we can compute the E and B fields using eqs. (C.6), (C.7), (C.8). Since the

WKB approximation is valid in a very narrow range (C.19), we estimate the integrals

as follows. We first change variable from k to x. We estimate dx ' 2 ξ
4

π
H2

m2
D

, the width

of the interval (C.19), and we substitute x = |ξ|. The results are

〈 ~E · ~B〉 ' 1

2π3

H2

m2
D

H4|ξ|7e
4
π2

H4

m4
D

ξ6

, (C.22)

1

2
〈 ~E2〉 ' 1

2π4

H4

m4
D

H4|ξ|9e
4
π2

H4

m4
D

ξ6

, (C.23)

1

2
〈 ~B2〉 ' 1

8π2
H4|ξ|5e

4
π2

H4

m4
D

ξ6

. (C.24)

Note the E field is suppressed compared to the B field at finite temperature.

If
cγ
f 〈 ~E · ~B〉 grows large enough to become comparable to V ′, the equation of motion

of the inflaton becomes

V ′ ' cγ
f
〈 ~E · ~B〉 . (C.25)

In this regime at finite T we have

4

π2

H4

m4
D

|ξ|6 = ln

[
2π3m

2
D

H2

fV ′

cγH4

1

|ξ|7
]
, (C.26)

from which we find

|φ̇| = 2Hf

cγ

(mD

H

)2/3
(
π2

4
ln

[
2π3m

2
D

H2

fV ′

cγH4

1

|ξ|7
])1/6

. (C.27)

Compared to the zero temperature case, where |φ̇| ∝ fH, we see that at finite temperature

the velocity is enhanced by a factor of
(
mD
H

)2/3
. We derived this result assuming inflation,

but it holds also in the radiation dominated (R.D.) era. Indeed during R.D. we have

a(t) =

(
t

t0

)1/2

, H =
1

2t
, τ =

∫
dt

a
=

a

H0
=

1

aH
, (C.28)

and one can check that we get again eq. (C.17), with x now defined without the minus

sign, x ≡ kτ , because τ is positive in R.D. The rest of the derivation then follows.

C.2 Short wavelength

In the short wavelength limit, mD � k
a , we can treat mD as a small perturbation in

eq. (C.10). We then find ourselves in a situation similar to the zero temperature case.
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D Electric field

We discuss here some properties of the classical electric field formed by the exponential

number of photons.

D.1 Coherence

The comoving momentum of photons with the largest tachyonic enhancement is k∗ =

−|ξ|/τ (the physical momentum is qγ∗ = |ξ|H). The occupation number is given by the

number of photons in the coherent volume (within the de Broglie wavelentgh), Vcoh ∼
(|ξ|aH)−3,

Vcoh

(aH)−3
ωk∗

∣∣∣∣
∂

∂τ
A
~k∗
−

∣∣∣∣
2

∼ e2π|ξ|

|ξ|3 � 1 . (D.1)

This number is significantly larger than 1, implying that the photons are coherent and form

a classical field.

D.2 Size and direction

Even if numerous photons are produced, one might wonder if their random directions

result in a zero net electric field. Randomized photons in a microscopic scale must have

high momentum, but we have seen that those produced exponentially in our model have low

momentum, k∗, instead. Thus, at a comoving scale larger than k−1
∗ , roughly, we expect zero

electric field, but we will have a non-zero field when we zoom into scales smaller than k−1
∗ .

We can make these statements more explicit by using an averaged electric field within

a radius R,8

~ER(t, ~x) ≡
∫

VR

d3x1

VR
~E(t, ~x+~x1) =

−1

a2

∑

λ

∫

VR

d3x1

VR

∫
d3k

(2π)3/2

[
~ε
λ,~k

∂A
~k
λ

∂τ
a
~k
λ e

i~k·(~x+~x1) + h.c.

]

(D.2)

where VR is volume inside a sphere with the radius R from ~x. We study the dispersion of

the averaged electric field,

〈 ~E2
R(t,~x)〉=

∫
d3x

V
〈0| ~E2

R(x)|0〉 (D.3)

=
1

a4

∑

λ

∫

VR

d3x1

VR

d3x2

VR

∫
d3k

(2π)3

∣∣∣∣∣
∂A

~k
−

∂τ

∣∣∣∣∣

2

ei
~k·~x1−i~k·~x2 =

1

a4

∫
d3k

(2π)3

∣∣∣∣∣
∂A

~k
−

∂τ

∣∣∣∣∣

2

fR(k)

(D.4)

where fR(k) ≡
(∫

VR
d3x
VR
ei
~k·~x
)2

= 9 [sin(kR)− kR cos(kR)]2/(kR)6. Since fR(k) is a func-

tion damping quickly for k � R−1, for simplicity we treat it as a step function, fR(k) →
Θ(R−1 − k). Also, we approximate

∣∣∣∂A~k−/∂τ
∣∣∣
2

as

∣∣∣∣∣
∂A

~k
−

∂τ

∣∣∣∣∣

2

' Θ(|~k| − kIR)Θ(2k∗ − |~k|)ρ(k) , (D.5)

8We thank Masahiro Takimoto for suggesting this quantity.
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because the production of non-tachyonic photons, with momentum k > 2k∗, is negligible.

The IR cutoff is needed because there are no zero momentum photons. We examine two

cases, with microscopic and macroscopic scales R,

〈 ~E2
R(t, ~x)〉 ' 1

a4

∫
d3k

(2π)3 Θ(|~k| − kIR)Θ(kUV − |~k|)ρ(k)fR(k) '
{

0 (R > k−1
IR),

〈E2〉 (R < (2k∗)−1).

(D.6)

Averaging over large scales (R > k−1
IR), there is no net electric field, while at small scales

(R < (2k∗)−1), there is a strong electric field 〈 ~E2〉 ∼ ργ , as given in eq. (2.16). The

transition from 〈 ~E2〉 to zero, going from small to large scales, is expected to be smooth.

The direction of the electric field can appear as a consequence of quantum fluctuations

which grow exponentially. Our analytic approach is limited to estimating quadratic quanti-

ties, such as 〈 ~E2〉, but cannot probe directions. In order to observe the direction, one needs

a lattice simulation, which is beyond the scope of this paper. For a similar situation of

tachyonic instability, simulations were performed in refs. [42, 43]. They studied a potential

V = λ
4 (φ2 − v2)2 with a homogenous initial condition in the symmetric phase (φ = 0) and

initial quantum fluctuations. Then a tachyonic instability drives the inhomogeneity: some

patches have φ = v and other patches have φ = −v. The appearance of a direction of the

electric field is analogous to this inhomogeneity.

E Estimate of curvature perturbations

The power spectrum from the usual vacuum fluctuations of the inflaton, neglecting the

contribution from gauge fields, is

P =
H4

4π2φ̇2
. (E.1)

We want to check if at 30 e-folds from the end of inflation P can match the observed one,

PCOBE = 2.5× 10−9. First ,we need to estimate H and φ̇ at that time. We are in regime

1, with

φ̇ = − V
′

3H
, H2 =

V

3M2
P

. (E.2)

The number of e-folds N1 in this regime, before we switch to the one dominated by photon

backreaction, is

N1 =

∫ V1

Vswitch

dV
H

V ′φ̇
=

1

M2
PV
′2

∫ V1

Vswitch

dV V =
1

2M2
PV
′2 (V 2

1 − V 2
switch) , (E.3)

where Vswitch = 1
2|ξ2|

cγ
f M

2
PV
′ is the potential when we switch to regime 2. Hence we have

the potential as a function of N1:

V 2
1 = V 2

switch + 2M2
PV
′2N1 . (E.4)

With this and eq. (E.2) we can estimate

P ' 10−2 V 3
C

M6
PV
′2 ' 10−3 V

′

M3
P

[
1

ξ2
2

(
cγMPl

f

)2

+ 8N1

]3/2

. (E.5)
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From the bound of eq. (8.4) we have 1
|ξ2|

cγMPl

f < 10. Also, we consider N1 ∼ O(10), so the

number inside the squared parentheses is of order 100. Then, considering only the linear

slope, we have V ′ ' mΛ2 ' Λ4
wig

f , with the conditions Λwig < mW < f < MP . Thus

P ' 10−3[102]3/2
Λ3

wig

M3
P

Λwig

f
<
m3
W

M3
P

mW

f
' 10−48mW

f
� PCOBE . (E.6)

The curvature perturbations generated only by the linear slope in our model are many

orders of magnitude below what is measured.
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