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ABSTRACT

A graph is (k, d)-colorable if one can color the vertices with k colors such that no vertex
is adjacent to more than d vertices of its same color. In this paper we investigate the
existence of such colorings in surfaces and the complexity of coloring problems. It is
shown that a toroidal graph is (3, 2)- and (5, 1)-colorable, and that a graph of genus γ is
(χγ/(d + 1) + 4, d)-colorable, where χγ is the maximum chromatic number of a graph
embeddable on the surface of genus γ. It is shown that the (2, k)-coloring, for k ≥ 1,
and the (3, 1)-coloring problems are NP-complete even for planar graphs. In general
graphs (k, d)-coloring is NP-complete for k ≥ 3, d ≥ 0. The tightness is considered.
Also, generalizations to defects of several algorithms for approximate (proper) coloring
are presented. c© 1997 John Wiley & Sons, Inc.

1. INTRODUCTION

We define a (k, d)-coloring of a graph as a coloring of the vertices with k colors such that each
vertex has at most d neighbors of its same color. For a graph G we define χd(G) as the minimum
k such that there is a (k, d)-coloring of G. So a (k, 0)-coloring is a proper coloring, and χ0(G)
is the usual vertex chromatic number of the graph.

Journal of Graph Theory Vol. 24, No. 3, 205 219 (1997)
c© 1997 John Wiley & Sons, Inc. CCC 0364-9024/97/030205-15



206 JOURNAL OF GRAPH THEORY

The parameter χd(G), also called the defective chromatic number of G, has been well-studied
for planar graphs (see, for example, [10, 13, 15, 19, 26, 32]). In this paper, we extend the study
of χd(G) to graphs embeddable on the torus, and surfaces of higher genera. We also consider
algorithmic issues for the construction of defective colorings in general graphs, planar graphs,
and graphs of bounded degree.

1.1. Previous Work

Defective coloring was introduced almost simultaneously by Burr and Jacobson (see [1]), Harary
and Jones [18] and Cowen, Cowen and Woodall [10], and has continued to be an active area of
research. Surveys of this and related colorings are given in [13] and [32]. Cowen, Cowen and
Woodall [10] focussed on graphs embedded on surfaces and gave a complete characterization of
all k and d such that every outerplanar graph is (k, d)-colorable, and a complete characterization
of all k and d such that every planar graph is (k, d)-colorable. Namely, every outerplanar graph
is 3-colorable, every outerplanar graph is (2, 2)-colorable, and there exist outerplanar graphs
which are not (2, 1)-colorable. There does not exist a d such that every planar graph is (1, d)- or
(2, d)-colorable; there exist planar graphs which are not (3, 1)-colorable, but every planar graph
is (3, 2)-colorable. Together with the (4, 0)-coloring implied by the 4-Color Theorem, this solves
defective chromatic number for the plane. Recently, Poh [26] and Goddard [15] showed that any
planar graph has a special (3, 2)-coloring in which each color class is a linear forest (thus each
color class is the disjoint union of paths), though this can in fact be read out of a more general
result of Woodall [32, Theorem 2.2]. The interested reader is also referred to the excellent recent
book of Jensen and Toft [19, cf. pages 40, 63.] for related problems and references.

For general surfaces, it was shown in [10] that for each genus g ≥ 0, there exists a k = k(g)
such that every graph on the surface of genus g is (4, k)-colorable. This was improved to (3, k)-
colorable by Archdeacon [2].

For general graphs, a result of Lovász from the 1960s [22], which has been rediscovered many
times since (cf. [4, 8, 21, 32]), provides an upper bound on the defective chromatic number of a
graph.

Theorem 1.1 (Lovász). For any k, any graph of maximum degree ∆ can be (k, b∆/kc)-colored.

Proof. Take a k-coloring that minimizes the number of monochromatic edges. This must be
the desired coloring, because if not, consider some vertex v with more than b∆/kc of its neighbors
self-colored. Since in any k-coloring of the vertices of G, there is always one color class with
at most b∆/kc members in the neighbor set of v, we can flip v's color to this color, thereby
decreasing the number of monochromatic edges and contradicting the minimality of the original
coloring.

Corollary.

χd(G) ≤
⌈

∆ + 1

d + 1

⌉
=

⌊
∆

d + 1

⌋
+ 1.

The papers [1, 13, 14] provide other bounds on the defective chromatic number in terms of other
parameters and in terms of other defective chromatic numbers.

The complexity of constructing defective colorings is less well-studied. However, R. Cowen
[11] showed that (2, 1)-coloring is NP-Complete for general graphs. We also remark that the proof
that any planar graph is (3, 2)-colorable in [10] is constructive, and gives a simple quadratic-time
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algorithm for (3, 2) coloring planar graphs (just as the proof of the 5-color theorem is constructive,
and immediately implies ann2 algorithm—improved by [9, 12, 24, 31] to a linear-time algorithm).

1.2. This Paper

In this paper, we first extend the results on the plane to the torus. First, we show that any graph
embeddable on the torus is (3, 2)-colorable. Then we show that any such graph is also (5, 1)-
colorable. In both cases, there exist quadratic time algorithms which construct the coloring. The
question of whether or not every toroidal graph is (4, 1)-colorable remains an open question.

Second, we consider defective colorings of graphs on arbitrary surfaces. For genus γ, let
χd(γ) be the maximum d-defect coloring number of all graphs embeddable on the surface Sγ .
We show that χd(γ) ≤ χ0(γ)/(d + 1) + 4. Also, Archdeacon [2] showed that every graph
embeddable on the surface Sγ is (3, 3γ + O(1))-colorable. We show that this is improveable to
(3, c

√
γ)-colorable, which shows that the maximum defect needed for 3-colorability is within a

constant factor of that needed for the maximum clique on that surface.
Finally, we consider complexity results and approximation algorithms for defective coloring.

We show, perhaps surprisingly, that determining if a graph is (2, 1)-colorable is NP-complete
for planar graphs, and this generalizes to (2, d)-coloring for d ≥ 1. We show that determining
if a planar graph is (3, 1)-colorable is also NP-Complete. And in general graphs we show that
(k, d)-coloring is NP-Complete for all k ≥ 3, and all d ≥ 0, as expected. A simple reduction
from proper coloring and the result of [23] shows that for any constant defect d, there exists an
ε > 0 such that χd cannot be approximated within a factor of nε unless P = NP.

These impossibility results for general graphs do not, of course, rule out good algorithms for
defective coloring of bounded-degree graphs. A simple greedy algorithm produces the Lovász
coloring cited above. We give polynomial-time approximation algorithms for defective coloring,
in the spirit of Wigderson [30], and others who improved his bounds [5, 17, 20]. We show how
to generalize both Wigderson's original algorithm, and the recent algorithms of Karger, Motwani
and Sudan [20] to defects, and achieve a tradeoff between the defect and number of colors used.

The paper concludes with some open problems.

2. DEFECTIVE COLORING ON THE TORUS

Since every planar graph embeds on the torus there does not exist a d such that every toroidal
graph is (2, d)-colorable. For 3 colors we need a result that is slightly stronger than, but whose
proof is strongly similar to the proofs of, Theorem 5 in [10] and Theorem 1 in [15].

Theorem 2.2. Every planar graph can be (3, 2)-colored such that any two specified vertices v1

and v2 receive specified colors and such that for i = 1, 2vi has no neighbor with the same color
(except for possibly v3−i).

Proof. We prove this by induction on the number of vertices.
First case: v1 and v2 are adjacent, and are required to be the same color. Then we contract

them to a single vertex, choose a second vertex arbitrarily, and then use the induction hypothesis
to (3, 2)-color the resultant graph so that the vertex v1v2 is given the specified color. When we
uncontract, v1 and v2 are properly colored in the resulting (3, 2)-coloring except for the edge
v1v2, as required.

Second Case: v1 and v2 are not adjacent. We may assume G is a maximal planar graph. So
there must be a cycle that separates v1 and v2 in G: let W be such a cycle of minimum length
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FIGURE 1. Cutting along minimum noncontractible cycle C making C1 and C2 yields a planar
graph; C1 and C2 are then contracted to single vertices.

(so W is chord-free). Let G1(G2) consist of v1(v2) and all the other vertices and edges inside
(outside) W . Let G′

1(G
′
2) be obtained from G1(G2) by contracting W into a single new vertex

w. These are both planar graphs with fewer vertices than G. Now by induction, color G′
1(G

′
2)

with the requisite specified color for v1(v2) and w specified to get a color distinct from either
the color specified for v1 or v2 (possible, since there are three colors), and the vertices v1, v2 and
w each without defect. We now transfer these colors back to G, giving all the vertices of W the
color assigned to w.

Third case: v1 and v2 are adjacent and required to be different colors. Then we insert a new
vertex on the edge between them, and without violating planarity add edges if necessary, to make
G again a maximal planar graph. We then proceed as in the second case.

Theorem 2.3. Every toroidal graph can be (3, 2)-colored.

Proof. Without loss of generality we may assume that G is a maximal toroidal graph. Let
C be a minimal noncontractible cycle of G. Then cut down the middle of C: split every vertex
and every edge of C into two parts yielding G′ with two copies C1 and C2 of the cycle. For each
edge linking a vertex v in C to a vertex w outside C that edge remains linking w and one of the
copies of v as indicated. See Figure 1. At the same time this cut turns the torus into a sphere with
the graph G′ embedded on the sphere such that C1 and C2 are the boundaries of regions.

Form graph G′′ from G′ by contracting C1 and C2 each to a single vertex v1 and v2. Since
G′′ is planar, by the above theorem we can 3-color the vertices of G′′ such that each color class
has maximum degree two, and v1 and v2 both receive color 1 while none of their neighbors have
color 1.

This yields immediately a coloring of G where all the vertices of C receive color 1. This is
the desired (3, 2)-coloring.

Note that this coloring can be found in quadratic time. In using Theorem 2.2, a total of at most
a linear number of cycles are found, and a suitable cycle can be found in linear time. Concerning
the complexity of transforming the toroidal graph to the plane, a combinatorial embedding of the
graph on the torus can be found in linear time by the work of Mohar [25]. One way to then find
a noncontractible cycle is to consider a breath-first search tree, and all the elementary cycles that
contain an edge outside the tree. One of these cycles must be noncontractible (as every cycle in
the graph is a combination of these elementary cycles). There are a linear number of elementary
cycles. To test whether a cycle is suitable, one may use the embedding of the original graph, and
then determine the genus of the two subgraphs by counting the vertices, edges, and faces and
using Euler's formula.

We turn next to colorings with defect 1.
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Lemma 2.1. If H is planar and u and v are vertices of H, then H can be (5, 1)-colored such
that the induced graph 〈N(u) ∪N(v) − {u, v}〉 is 3-colored.

Proof. Find a maximal collection P of internally disjoint (u, v)-paths of length 3. Construct
H ′ by, for each path uaibiv in P, contracting the edge aibi. The resultant graph H ′ is planar.

So by the 4-color theorem, we can 4-color the graph H ′. If we uncontract to get H we have a
(4, 1)-coloring of H, since all vertices are properly colored, save those pairs of vertices that were
contracted, which are adjacent with the same color and so have defect 1. If u and v receive the
same color in this coloring, we are done.

Otherwise, suppose u receives color 1 and v receives color 2. Then any common neighbor is
colored 3 or 4. In particular, all the internal vertices of the paths inP receive color 3 or 4, and color
classes 1 and 2 are both independent sets. Now re-color every vertex in 〈N(u)∪N(v)−{u, v}〉
that has color 1 or 2 with a new color, color 5. Trivially 〈N(u) ∪N(v) − {u, v}〉 is 3-colored.

To prove the theorem we need to show that the new coloring is a (5, 1)-coloring. For this it is
sufficient to show that the vertices with color 5 form an independent set. But suppose that there
are vertices a and b which are adjacent and colored 5. Then in the original coloring of H they
must have had different colors. Say vertex a had color 2 and vertex b had color 1. Then vertex a
cannot be adjacent to vertex v and so must be adjacent to vertex u. Similarly, vertex b must be
adjacent to vertex v. This yields a path uabv of length 3 in H . Since neither a nor b received
color 3 or 4, this is a path internally disjoint from the ones in P–-a contradiction.

The time to algorithmically construct the coloring of Lemma 2.3 is dominated by the time to
4-color the graph, which is quadratic by the forbidden minors algorithm of Robertson, Sanders,
Seymour and Thomas [28]. The next theorem shows how to transform the toroidal graph to the
required planar graph, and this can also be done in quadratic time, by the method discussed above
for finding a minimal non-contractable cycle.

Theorem 2.4 . One can (5, 1)-color any graph embedded in the torus.

Proof. Let G be embedded in the torus. Then there exists a minimal noncontractible cycle
C that is an induced cycle. Construct a planar graph H by cutting along the edges of C, to form
two copies of C, and contracting the two cycles to two single vertices u and v. By the above
lemma we can (5, 1)-color H so that the neighbors of u and v are 3-colored. This translates to
a (5, 1)-coloring of G − C where the neighbors of C are 3-colored. Since there are two colors
which we may use for C, we obtain the desired conclusion.

Actually we obtain the conclusion with at least one of the color classes being an independent
set. But we are unable to resolve the following question.

Question 2.5. Is every graph on the torus (4, 1)-colorable?

3. GENERAL GENERA

To prove upper bounds for graphs on general surfaces it helps to have the following upper bound
on the defective chromatic number of dense graphs.

Theorem 3.6. For all d and for all graphs with q edges it holds that χd <
√

2q/(d + 1) + 2.

Proof. Suppose that χd = k. Label the vertices of G v1, v2, . . . , vn such that vi has the
maximum degree ∆i in the graph Gi = G − {v1, v2, . . . , vi−1}. (Note that ∆1 ≥ ∆2 ≥ · · · ≥
∆n.) Then by Lovász (Theorem 1.1) ∆1 ≥ (k − 1)(d + 1). Similarly ∆d+2 ≥ (k − 2)(d + 1),
else one can color v1, v2, . . . , vd+1 with one color and Gd+2 with k − 2 colors. In general,
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∆j(d+1)+1 ≥ (k − j − 1)(d + 1) for 0 ≤ j ≤ k − 2. It follows that

q =

n∑
i=1

∆i ≥ (k − 1)(d + 1) +

k−2∑
j=1

(k − j − 1)(d + 1)2

= (d + 1)(k − 1)(dk + k − 2d)/2. (1)

In particular, 2q > (d + 1)2(k − 2)2, whence the result.
One can extract a sharper bound form Inequality (1) that is best possible for d = 0 and d = 1.

If d = 0 it follows that q ≥ k(k − 1)/2, while the clique Kk has the fewest edges for a graph
with χ0 = k. If d = 1 it follows that q ≥ 2(k − 1)2. This is best possible because the graph
constructed by taking K2k−1 and removing the edges of a maximum matching has 2(k − 1)2

edges but is not (k − 1, 1)-colorable. (It cannot have three vertices of the same color.)

Theorem 3.7. For genus γ, letχd(γ) be the maximum d-defect chromatic number of all graphs
embeddable on the surface Sγ . Then:

χd(γ) < χ0(γ)/(d + 1) + 4.

Proof. Recall that χ0 =
√

12γ+ 7
2 +o(1), and the extremal graph is the complete graph (see

[27]). We show that χd <
√

12γ + 7.
Suppose first thatn ≤ (d+1)

√
12γ. Recall that in a graph of genus γ it holds that q ≤ 3n+6γ.

So 2q ≤ 6(d + 1)
√

12γ + 12γ. Thus by Theorem 3.6

χd(G) <
√

2q/(d + 1) + 2 < (
√

12γ + 3(d + 1))/(d + 1) + 2 =
√

12γ/(d + 1) + 5.

For graphs with n > (d + 1)
√

12γ, the proof is by induction on n. Such a graph has a vertex
v of degree at most (6n + 12γ)/n < 6 +

√
12γ/(d + 1). So one can remove vertex v, color the

graph G− v by the induction hypothesis, and then re-insert vertex v and properly color it.
The above theorem shows that the number of colors needed is only a few more than those

needed for the maximum clique on that surface. For fixed number of colors, namely 3, Archdea-
con [2] showed that a graph is approximately (3, 3γ)-colorable. The next theorem shows that
this is improveable to (3, c

√
γ)-colorable, which shows that the maximum defect needed for 3-

colorability is within a constant factor of that needed for the maximum clique on that surface. We
use virtually the same approach that Archdeacon used.

Lemma 3.2. Let t > 12, and supposeG is a graph with minimum degree at least 3, the vertices
of G of degree less than t form an independent set, and G has a 2-cell embedding on the surface
of genus γ. Then the number of vertices of degree at least t is at most 24(γ − 1)/(t− 12).

Proof. Let S denote the set of vertices of degree less than t and T the vertices of degree at
least t. Now, in each region that is not a triangle add edges between vertices of T . One way to do
this is, if v1, . . . , v4 are four consecutive vertices on the boundary of the region with v1 ∈ T, then
if v3 ∈ T then join v1 and v3 by an edge inside the region, otherwise join v2 and v4, and repeat
as necessary. The result is a triangulation of a multigraph H which has minimum degree at least
3, and in which the vertices S of degree less than t still form an independent set. (Multiple edges
can arise between two vertices x and y with several common neighbors, when edges are added
between them in each region.)

Letα denote the number of edges between S and T, and β denote the number of edges between
vertices of T . Let vi denote the number of vertices of degree i. Since S is an independent set, it
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follows that α =
∑

i<t ivi and α + 2β =
∑

i≥t ivi. Since the embedding is a triangulation, it
also follows that α ≤ 2β. Hence

(t/2 − 6)|T | = (t/2 − 6)
∑
i≥t

vi

≤
∑

3≤i<t

(2i− 6)vi +
∑
i≥t

(i/2 − 6)vi

=
∑
i<t

(i− 6)vi + α +
∑
i≥t

(i/2 − 6)vi

≤
∑
i<t

(i− 6)vi + (α/2 + β) +
∑
i≥t

(i/2 − 6)vi

=
∑
i

(i− 6)vi

= 12γ − 12,

where the last equality is Euler's formula for triangulations.

Theorem 3.8. A graph of genus γ is (3,max(12,
√

12γ + 6))-colorable.

Proof. Let t = max(13,
√

12γ + 7). The proof proceeds by induction on the number of
edges. If G contains a vertex v of degree at most 2 then we easily obtain a suitable coloring of G
from a coloring of G− v. Furthermore, if there is an edge e that joins two vertices of degree less
than t then remove the edge, induct and conclude. Therefore we may assume that the minimum
degree is at least 3 and that the vertices of degree less than t form an independent set S.

By the above lemma it follows that T = V (G)−S has at most 24(γ − 1)/(t− 12) members.
We form a 3-coloring by making all the members of S the first color, and then half the members
of T receive the second color and half the third color. The defect is at most |T |/2 and so this
gives the desired bound.

4. HARDNESS RESULTS

We show in this section that determining whether or not a graph is (2, d)-colorable is NP-complete
even for planar graphs. This extends a result of R. Cowen [11] who showed that (2, 1)-coloring
is NP-complete in general graphs. We show that determining if a planar graph is (3, 1)-colorable
is also NP-complete.

We also show that determining whether a graph of maximum degree 4 is (2, 1)-colorable is
NP-complete, and in general so is determining whether a graph of maximum degree 2(d + 1) is
(2, d)-colorable for d ≥ 1. Thus there is no simple characterization of graphs for which equality
holds in Theorem 1.1 and thus there is no equivalent of Brooks' theorem in general for defective
colorings.

Not surprisingly, (k, d)-coloring is NP-complete in general graphs for all k ≥ 3, and all d ≥ 0.
A simple reduction from proper coloring and the result of [23] shows that for any constant defect
k, there exists an ε > 0 such that χd cannot be approximated within a factor of nε unless P = NP.
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FIGURE 2. A regulator: x and y must have the same color in a (2, 1)-coloring.

4.1. Defective Coloring in the Plane

It is easy to (2, 0)-color any (planar) graph in linear time if such a coloring exists. Determining
whether a planar graph is 3-colorable is NP-complete. We remarked earlier that the 4-color
theorem gives a quadratic time algorithm for 4-coloring planar graphs (although the constants are
terrible). Since, as was remarked in the introduction, the theorem in [10] provides a quadratic-
time algorithm to (3, 2)-color any planar graph, together with the results of this section, this
characterizes the complexity of defective coloring in the plane.

Theorem 4.9. To determine whether or not a graph is (2, 1)-colorable is NP-complete even
for graphs of maximum degree 4 and for planar graphs.

Proof. We first show that (2, 1)-colorability is NP-hard for graphs of maximum degree 4 by
reduction from 3-SAT, and then use an idea similar to that used in [29] to planarize the structure.
We will show that for any 3-CNF φ, there exists a graph Gφ of maximum degree 4 constructible
in polynomial time such that φ is satisfiable if and only if Gφ is (2, 1)-colorable.

We define a ‘‘regulator’’ as a gadget between two vertices x and y which forces them to have
the same color but they have no defect within the gadget. One regulator consists of vertices
u1, u2, . . . , u6 such that u1 and u2 are both adjacent to all four other vertices and u3u4 and u5u6

are edges. See Figure 2. When we connect x to u3 and y to u6, the only (2, 1)-coloring of this
subgraph has {u1, u2, x, y} as one color-class.

We need a vertex-gadget: a large subgraph that has a unique (2, 1)-coloring up to interchanging
the names of the colors. One way to form a vertex-gadget is to string a series of vertices together
with regulators, and use a K2,3 as a ‘‘oppositer’’ as depicted in Figure 3. We use a double line to
indicate a regulator.

Now for an or-gate we use a 5-cycle. Say it's labelled v1v2v3v4v5v1. Two neighboring
vertices v1 and v2 of the 5-cycle are joined by regulators to the vertices corresponding to the
desired literals. Then the vertex v4 at distance 2 from them must receive one of the colors that
they do. We can join the output vertex by a regulator to another or-gate and thus simulate an or
of three literals. Finally we joint the output vertex from all the second or-gates by regulators.
The subgraph associated with the clause p ∨ q ∨ r is shown in Figure 4. The graph that results is
Gφ and has degree at most 4. The number of vertices in Gφ is linear in the number m of literals
in φ; so this reduction is polynomial.

FIGURE 3. A vertex-gadget: x and ¬x receive opposite colors.
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FIGURE 4. z can be colored 1 iff at least one of p, q or r is colored 1.

Suppose we have a (2, 1)-coloring of Gφ. Without loss of generality, assume that the output
of each clause is colored 1. By construction, at least one of the inputs to each clause is colored 1
also. If we associate 1 with true and 2 with false, this coloring yields a satisfying assignment
for φ. Conversely, if φ is satisfiable, then the truth assignment yields a (2, 1)-coloring for Gφ as
follows: color the vertices associated with true variables with color 1 and the others with color 2.
Then for each or, if there is one 1-input, color the graph appropriately. It is easy to see that this
is a (2, 1)-coloring, so we are done.

The graph constructed for the reduction above is unlikely to be planar. However, it can be
made planar as follows. We can arrange the vertex-gadgets and the clauses so that the only edges
that can cross are ones joining vertex-gadgets to or-gates. Then, whenever two edges cross, we
can uncross them as shown in Figure 5. It is easy to argue that x′ must receive the same color
as x, and y′ must receive the same color as y. The number of times we might need to use the
uncrosser is at most the number of pairs of edges in Gφ, so the resulting graph would have O(m4)
vertices–-still polynomial.

Notice that the planarizing structure in this construction increases the maximum degree of the
graph to 5. We have been unable to find a reduction to planar graphs of maximum degree 4.

Theorem 4.10.

(a) For any positive integer d, deciding whether a planar graph is (2, d)-colorable is NP-
complete.

(b) Deciding whether a planar graph is (3, 1)-colorable is NP-complete.

FIGURE 5. Uncrossing edges in Gφ.
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FIGURE 6. v has defect d− 1 = 3 in Dv.

Proof. (a) The reduction is from (2, 1)-coloring in planar graphs. For each vertex x in
G introduce the structure Dv defined as follows. The vertex set of Dv consists of the sets
B1, B2, . . . , Bd−1, each of cardinality 2d + 1, and the vertices c1, c2, . . . , cd−1. The only edges
in Dv join ci to all of Bi and Bi+1 for 1 ≤ i < d−1, and cd−1 to all of Bd−1. Then v is joined to
B1 and all of the ci. See Figure 6. In any (2, d)-coloring of Dv the vertices ci must all have the
same color. Furthermore, at least d − 1 of each Bi must have the color opposite to the ci. This
means that v has defect at least d− 1 in Dv . But by giving all the ci the same color as v and all
the Bi the opposite color one can ensure that v has defect exactly d− 1 in Dv . Thus the resulting
planar graph G′ has a (2, d)-coloring if and only if the original graph G had a (2, 1)-coloring.

(b) The reduction is from planar 3-coloring (cf. Stockmeyer [29]). For any graph G in the
plane, form the graph G′ by joining to each vertex of G the 6-vertex Hajós subgraph H depicted
in Figure 7. Since H is outerplanar, all its vertices can be joined to a single vertex of G and the
resulting graph will still be planar. Furthermore, it is simple to check thatH is not (2, 1)-colorable,
so in any (3, 1)-coloring, all 3 colors must appear among the vertices of each copy of H, while H
can be (3, 1)-colored so that a specified color appears only once thereby giving each vertex in G
exactly one new defect. Thus G′ will be (3, 1)-colorable if and only if G was (3, 0)-colorable.

We remark that even though (2, 1)-coloring planar graphs is NP-complete, nonetheless these
graphs form a class of planar graphs that are easy to 4-color in practice. For, it follows from
Euler's formula that the average degree of any planar bipartite graph is less than 4. Since a (2,
1)-colorable graph is the edge-union of a bipartite graph and a matching, the average degree of
any (2, 1)-colorable planar graph will be less than 5, and hence will always have a vertex v of
degree 4 or less. So G can be colored by induction, using a Kempe-chain argument (from the
5-color theorem) to re-color in linear time in the case when v's four neighbors have different
colors.

4.2. General Defective Coloring

These results are straightforward.

FIGURE 7. An outerplanar graph, H, which is not (2, 1)-colorable.
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Theorem 4.11. (k, d)-colorability is NP-complete for any k ≥ 3 and d ≥ 0.

Proof. We reduce (k, 0)-colorability to (k, d)-colorability as follows. First consider the
complete k-partite graph K, in which each part contains kd + 1 vertices. Because each part
contains at least kd + 1 vertices, the only valid (k, d)-coloring of K assigns a different color
to each part. Now form the graph G′ from the graph G by connecting each vertex of G to d
vertices in each part of K. The resulting graph G′ is indeed (k, d)-colorable if and only if G is
(k, 0)-colorable.

We can also show that whether a graph of maximum degree 2(d + 1) is (2, d)-colorable is
NP-hard. The reduction from (2, 1)-coloring in graphs of maximum degree 4 is by adding for each
vertex v a copy of the complete bipartite graphK2d+1,2d+1 and making v adjacent to d−1 vertices
in each part of the new subgraph. This means there is not always a Brooks-type improvement
on Lovász's bound. However we do not know what happens for 3 or more colors. For example,
what is the complexity of (3, 1)-coloring in graphs of maximum degree 6? (We can only prove
intractability for degree 7.) Thus we ask the following question:

Question 4.12. In general, what is the complexity of (k, d)-coloring in graphs of maximum
degree k(d + 1)?

Theorem 4.13. For constant defect d, there exists an ε > 0 such that no polynomial-time
algorithm can nε-approximate the d-defective chromatic number, unless P = NP.

Proof. This is an immediate consequence of the results of Arora et al. [3] on the hardness of
approximating the normal chromatic number. For, it is easy to transform a (k, d)-coloring of a
graph G into an (k(d+1), 0)-coloring of G, by simply (d+1)-coloring each color class, because
δ in a color class is at most d. This is an O(k)-coloring of G when d is constant.

5. ALGORITHMS AND APPROXIMATE DEFECTIVE COLORING

Wigderson [30] gives the following algorithm to approximately color 3-colorable graphs. Pick a
threshold δ. Take the node of highest degree and 2 color its neighborhood with two new colors.
Remove its neighborhood. Continue until all nodes have degree at most δ. Then we can δ + 1
color the remaining graph. Each round we eliminate at least δ nodes using 2 colors, so the total
number of colors used is 2n/δ + δ + 1, and we choose δ = O(

√
n) to optimize. We now show

how to modify this allowing for some defect, d.
The Wigderson algorithm is a 2-stage procedure, and it fits into the paradigm that has been

used by nearly all subsequent algorithms for approximate 3-coloring (see [7, 5, 20, 6]).

(1) If the maximum degree of G is high, use the fact that the graph is 3-colorable to find a
large independent set in the graph

(2) If the maximum degree of G is low, we can color with few colors.

We know of no way to improve on step (1), above, when the coloring is relaxed to allow defects,
since in all cases, the original algorithms rely heavily on the fact that the (shared) neighborhood
of a (set of) vertex (vertices) is 2-colorable, and finding the 2-coloring is easy. By contrast (2, d)
coloring is NP-complete for any constant d > 0, as we showed in the previous section. However,
we can generalize both the first bound of Wigderson, and the more recent results by Karger,
Motwani and Sudan [20], both of which improve the number of colors used in step (2), to a
tradeoff for defects. The improvements in step (2) can then be inserted into the hybrid algorithms
to achieve the best tradeoffs for defects.
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The modification to Wigdgerson's algorithm is based on Lovász's coloring theorem as de-
scribed in Section 1.1. First note, one can construct the Lovász coloring, using a simple greedy
algorithm.

Theorem 5.14. Any graph of maximum degree ∆ can be (k, b∆/Kc) colored in O(∆E) time.

Proof. Begin with all vertices in the graph the same color. Then construct the Lovász coloring
by repeatedly picking any vertex v with more than b∆/kc self-colored neighbors, and flipping
its color to a different color which at most b∆/kc neighbors of v have (such a color must exist by
the pigeonhole principle). The procedure terminates in at most E steps, since every time a vertex
v is flipped in G, the number of monochromatic edges in G decreases by at least 1.

For example, any 3-regular graph can be (2, 1)-colored in O(E) time, and any 6-regular graph
can be (3, 2)-colored in O(E) time.

Theorem 5.15. There exists an O(∆E)-time algorithm to (d(8n
d ).5e, d)-color any 3-colorable

graph.

Proof. We follow the algorithm of Wigderson until the maximum degree is δ. By Theorem
5.14, the remaining graph can be ( δ

d , d) colored in O(δE) time. The total number of colors is
2n/δ + δ/d which is optimized by choosing δ =

√
2n/d.

5.1. Generalizing the KMS Algorithm to Defects

We next show how to get a similar tradeoff for the better approximation algorithms of Karger,
Motwani and Sudan [20]. We use the semidefinite program approach of [20] to obtain a vector
2-coloring. We then round to an integer defective coloring.

The approximation algorithms of Karger et al. [20] work as follows. First, the 3-coloring
problem is relaxed to the vector 3-coloring problem, which is solved in polynomial time using
semidefinite programming. The vector 3-coloring assigns unit vectors from Rn to the vertices
so that two vertices that are adjacent in the graph have vectors whose dot product is at most −1

2 .
Next, the vector 3-coloring is rounded to an ordinary coloring. One method used in [20] entails

partitioning the space Rn by random hyperplanes and giving the vertices in each partition the
same color. This results (with high probability) in what they call a semicoloring, which is an
assignment of colors to the n vertices so that the set of vertices which are not properly colored is
of size less than n/4. Recursion finished the process off.

A semicoloring bears considerable superficial resemblance to defective coloring, because
it allows (many) defective (i.e., monochromatic) edges. However, a semicoloring is a global
condition on defects that does not, in general, place any guarantee on the maximum local defect.
We modify the definition to reflect defects.

Definition. A d-defect semicoloring is an assignment of colors to the n vertices, such that the
number of vertices that have more than d adjacent neighbors of the same color, is less than n/4.

Theorem 5.16. There exists a polynomial-time algorithm to (O((n/d).387), d)-color a 3-color-
able graph on n vertices.

Proof. We start with a vector 3-coloring. Then we select r + O(1) independent random
hyperplanes (where a random hyperplane is one with a random normal on the unit sphere in Rn).
Color each vertex according to which cell of the partition it lies in. The fact that the vectors assigned
to each vertex form a vector 3-coloring implies that the probability that a random hyperplane cuts
an edge (i.e., cuts the segment joining the ends of the two vectors) is at least 2

3 , by a lemma of [16].
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Then, by Markov's inequality, with probability 1
2 , the number of uncut edges is at most c(1

3 )rn∆,
where ∆ is the maximum degree of the graph. The number of vertices which are adjacent to at
least d uncut edges is at most 2c( 1

3 )rn∆/d, which is o(n) when r = log3 O(∆/d) (and less than
n/4 by appropriate choice of constants).

If we repeat the entire process t times, then with probability at least 1− 1
2

t
we will obtain a d-

defect semicoloring with O(2r) = O((∆/d)log32) colors, which is approximately O((∆/d).631).
The algorithm which produced the d-defect semicoloring is used recursively on the vertices with
more than d adjacent neighbors of the same color. This colors the graph with defect d with less
than a factor of 2 increase in the number of colors.

This approach is now combined with the Wigderson technique. Fix a threshold T . While the
maximum degree of the graph is greater than T (or until half the vertices have been colored) pick
a vertex of maximum degree, and 2-color its neighborhood (its neighborhood is 2-colorable, and
2-coloring is easy) with two new colors. Then one can finish with the above method when the
degree falls below T . This yields a coloring with O(n/T +(T/d).631) colors, which is optimized
by setting T = n.631d.387.

We remark that a recent paper of Blum and Karger [8] achieves a Õ(n2/9)-coloring for 3-
colorable graphs, by combining a modification of some complicated improvements for step 1,
due to Blum [5], with a more complicated version of [20] that uses a ‘‘random center’’ rather than
random hyperplane method for rounding. With a little work, one can obtain the corresponding
Õ((n/d)2/9, d)-coloring.

Also, Theorem 5.16 can be generalized to χ-colorable graphs for χ > 3. The guarantee on
the size θ of the angle between the unit vectors corresponding to adjacent vectors is now only
θ ≥ arccos(−1/(χ − 1)). A lemma of [16] says that the probability that an edge is cut by a
random hyperplane is θ/π. Thus the probability that an edge is not cut by r independent random
hyperplanes is given by (1−θ/π)r = (1/α)r, say. With appropriate choice of constants, just as in
the proof of Theorem 5.16, (since ∆ is always less than n) we immediately obtain an d-defective
semicoloring using Õ((n/d)logα2) colors. This yields an (Õ((n/d)logα2), d)-coloring.

6. APPLICATIONS AND OPEN PROBLEMS

The two most immediate open problems are Questions 2.5 and 4.12 listed in the text. The first
asks whether every toroidal graph is (4, 1)-colorable. This would complete the characterization
of defective colorings on the torus. The other asks for the complexity of (k, d)-coloring in graphs
of maximum degree k(d + 1). This is known to be easy for d = 0 (by Brooks' theorem) and is
now known to be hard for k = 2 and d > 0.

The most obvious application of defective coloring is a generalization of the application of
coloring to scheduling. For the scheduling problem where vertices represent jobs (say users on a
computer system), and edges represent conflicts (needing to access one or more of the same files),
allowing a defect means tolerating some threshold of conflict: each user may find the maximum
slowdown incurred for retrieval of data with 2 conflicting other users on the system acceptable,
and with more than 2 unacceptable. One might generalize this still further: to model different
tolerances at different vertices. Some jobs may be more tolerant of interference than others,
or all conflicts could not be equally expensive. This could partially be modeled by allowing
multiple edges, or equivalently weights on the conflict edges. Notice that the Lovász coloring
result (Theorem 5.14). would still apply in this case. In addition, if different colors correspond
to different time periods in the schedule, it is possible that some jobs may not be able to schedule
in all time-slots; rather each job may have a different subset of slots in which it is allowed to
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be scheduled. This is the defective version of the ‘‘list-coloring’’ problem, and would allow the
modeling of more complicated constraints.

Another approach involves looking at alternative definitions of defective coloring. One pos-
sibility would be to allow some total number of monochromatic edges, rather than the stronger
requirement of a maximum threshold of monochromatic edges at each vertex. One specific
generalization is to allow different defects for different colors. For example we might use the
notation [0, 1]-coloring to denote a coloring of the vertices with two colors such that the first
color is an independent set and the second color has defect at most 1. One can show that even this
simple extension of bipartiteness is NP-hard for planar graphs. The generalization of Theorem
1.1 to defects which are bounded as a function of the vertex and color has been explored in [4, 8,
21, 32].
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