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ABSTRACT
Although the invasive azooxanthellate corals Tubastraea coccinea and T. tagusensis are
spreading quickly and outcompeting native species in the Atlantic Ocean, there is little
information regarding the genetic structure and path of introduction for these species.
Here we present the first data on genetic diversity and clonal structure from these two
species using a new set of microsatellite markers. High proportions of clones were
observed, indicating that asexual reproduction has a major role in the local population
dynamics and, therefore, represents one of the main reasons for the invasion success.
Although no significant population structure was found, results suggest the occurrence
of multiple invasions for T. coccinea and also that both species are being transported
along the coast by vectors such as oil platforms and monobouys, spreading these
invasive species. In addition to the description of novel microsatellite markers, this
study sheds new light into the invasive process of Tubastraea.

Subjects Biodiversity, Conservation Biology, Ecology, Genetics, Marine Biology
Keywords Sun-coral, Clone structure, Microsatellites, Population genetics, T. coccinea,
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INTRODUCTION
The marine environment is continuously subjected to multiple stressors, many of which
are associated with human activities (e.g., over-exploitation of resources, pollution, climate
change and invasive species) (Halpern et al., 2014; Gallardo et al., 2016). Among these
stressors, invasive species are considered to be a major threat to biodiversity (Molnar
et al., 2008) with the potential to quickly trigger changes in native communities and the
ecosystem services and functions, which can have wide-ranging negative impacts. There are
numerous examples of marine invasions which impact humans or native biota, such as in
theMediterranean Sea with the invasion of the ctenophoreMnemiopsis leidyi, which caused

How to cite this article Capel et al. (2017), Clone wars: asexual reproduction dominates in the invasive range of Tubastraea spp. (Antho-
zoa: Scleractinia) in the South-Atlantic Ocean. PeerJ 5:e3873; DOI 10.7717/peerj.3873

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/207625234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://peerj.com
mailto:katiacapel7@gmail.com
mailto:katiacapel7@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.3873
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.3873


the collapse of the fishing industry (Shiganova, 1998), the algae Womersleyella setacea, that
negatively affected sponge reproduction (Caralt & Cebrian, 2013) and the lionfish Pterois
spp., responsible for a reduction in the native fish recruitment in the Atlantic (Albins &
Hixon, 2008).

Scleractinian corals are known to play a key role in the marine environment by building
structurally complex and highly diverse ecosystems (Reaka-Kudla, 1997). As ecosystem
engineers that are under threat globally (Hoegh-Guldberg, 1999; Pandolfi et al., 2003),
scleractinian corals are rarely seen as an environmental risk. However, three scleractinian
species from the genus Tubastraea were introduced and are spreading rapidly throughout
the Western Atlantic Ocean (De Paula & Creed, 2004; Fenner, 2001; Fenner & Banks,
2004; Sammarco, Atchison & Boland, 2004; Sammarco, Porter & Cairns, 2010; Capel, 2012;
Sampaio et al., 2012; Costa et al., 2014; Silva et al., 2014), threatening native and endemic
species (Mantellato et al., 2011; Santos, Ribeiro & Creed, 2013; Creed, 2006) and fouling
man-made structures and vessels.

Tubastraea is an azooxanthellate dendrophyllid genus from the Pacific and Indian
Oceans that was first reported in the Caribbean in 1943 (Vaughan & Wells, 1943). Since
then, three species have been identified in the Western Atlantic Ocean: (1) T. coccinea,
now reported along 9,000 km of coastline of the Western Atlantic Ocean from Florida
(26◦47′N, 80◦02′W) (Fenner & Banks, 2004) to Southern Brazil (27◦17′S, 48◦22′W) (Capel,
2012); (2) T. tagusensis, along the Brazilian coast (De Paula & Creed, 2004); and (3)
T. micranthus in the Gulf of Mexico (Sammarco, Porter & Cairns, 2010). All three are
considered opportunistic species most likely associated with transport on ships and/or oil
platforms in the Caribbean, Gulf of Mexico and Brazilian coast (Cairns, 2000; Castro &
Pires, 2001; Sammarco, Porter & Cairns, 2010).

Once established, invasive species can alter the structure of local communities, displacing
and outcompeting native species (Vitousek, 1990;Mooney & Cleland, 2001; Lages, Fleury &
Menegola, 2011; Cure et al., 2012; Santos, Ribeiro & Creed, 2013; Miranda, Cruz & Barros,
2016). In contrast to the native range, where Tubastraea is largely restricted to shaded or
marginal habitats, studies on oil rigs in the Gulf of Mexico have shown that both T. coccinea
and T. micranthus are excellent competitors and can overgrow other species (Hennessey &
Sammarco, 2014; Sammarco et al., 2015). Similarly, in Brazil, T. coccinea and T. tagusensis
can cover up to 100% of the available surface in some areas (Mantellato et al., 2011), killing
native and endemic coral species upon direct contact (Creed, 2006; Santos, Ribeiro & Creed,
2013;Mantellato & Creed, 2014; Miranda, Cruz & Barros, 2016).

Fast growth rate, rapid range expansion, early reproductive age, propagule pressure and
a wide variety of reproductive and survival strategies are biological characteristics usually
associated with invasion success (Sax & Brown, 2000; Sakai et al., 2001; Lockwood, Cassey
& Blackburn, 2005; Sax et al., 2007). Tubastraea species possess all of these characteristics
(Cairns, 1991; Ayre & Resing, 1986; Glynn et al., 2008; Harrison, 2011; Capel et al., 2014;
De Paula, Pires & Creed, 2014), which are enhanced by the fact that within the invaded
areas they generally lack natural predators and dominant competitors. In addition, a
large number of infested vectors (e.g., oil platforms and monobuoys) have been recorded
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transporting Tubastraea spp. along the Brazilian coast, leading to rapid range expansion
throughout the Southwestern Atlantic Ocean (Creed et al., 2016).

Asexual reproduction improves coral ability to reach high abundance (Ayre & Miller,
2004) and may be an important trait of many invasive species, mainly in the first stage
of invasion (Taylor & Hastings, 2005). When associated with early reproductive age
and high propagule pressure it can rapidly increase abundance. Asexual production
of brooded planulae has been reported in several anthozoans, including actinarians
(Ottaway & Kirby, 1975; Black & Johnson, 1979), octocorals (Brazeau & Lasker, 1989) and
scleractinians (Stoddart, 1983; Ayre & Resing, 1986). Although T. coccinea and T. diaphana
appear to reproduce mainly by asexually produced larvae (Ayre & Resing, 1986), there is no
information for their congeners, and the proportion of sexual versus asexual reproduction
remains unknown within the genus. Furthermore, Ayre & Resing (1986) were able to score
only two allozyme loci to infer asexual production of brooded larvae of Tubastraea spp. and
the use of a larger number of more polymorphic loci, such as microsatellites, is desirable
to corroborate their findings.

Although Tubastraea species are spreading rapidly and changing local benthic
communities throughout the tropical Western Atlantic, information about their genetic
diversity and reproductive strategies are still scarce. The study of reproductive strategies
of invasive species is fundamental to understanding the invasion process, preventing new
invasions, development of effective management strategies, and resolving the ecological
and evolutionary processes involved in their invasion success (Sakai et al., 2001; Sax et al.,
2007). However, to date there was no molecular marker developed to perform such studies
with Tubastraea. Here, we report 12 novel microsatellite loci specifically developed for
T. coccinea and cross-amplified in T. tagusensis and investigate the clonal structure and
genetic diversity of populations of these alien invasive corals in the Southwestern Atlantic
Ocean.

MATERIALS AND METHODS
Sampling and DNA extraction
Microsatellite development was performed using samples of T. coccinea collected from
Búzios Island (23◦47′S, 45◦08′W, 6 m in depth) and also from a monobuoy (IMODCO 4)
at the São Sebastião channel (23◦48′S, 45◦24′W, 5 m of depth), Brazil. Additional samples
of T. coccinea and T. tagusensis, collected from Todos-os-Santos Bay (TSB), northeastern
Brazil (12◦49′S, 38◦46′W), and Ilha Grande Bay (IGB) (23◦06′S, 44◦15′ W), southeastern
Brazil (∼24 colonies/species/locality), were used to test the markers and evaluate their
genetic diversity (Fig. 1). Samples were preserved in 96% ethanol or CHAOS buffer (Fukami
et al., 2004) prior to extraction. Total DNA was extracted using the Qiagen DNeasy tissue
and blood kit following the manufacturer’s instructions or using the Phenol:Chloroform
method described by Fukami et al. (2004).

Microsatellite development and primer testing
Two genomic libraries were constructed at the National Laboratory for Scientific
Computing (LNCC, Petrópolis, Brazil) using the 454 Genome Sequencer FLX platform
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Figure 1 Distributional range and sample localities on Southwestern Atlantic.Map showing the dis-
tributional range of Tubastraea spp. on Southwestern Atlantic with the northern (NL) and southern (SL)
limits of the distribution and sampled localities: Todos-os-Santos Bay (TSB) and Ilha Grande Bay (IGB)
are showed by dark-gray stars; light-gray star represent Búzios Island and São Sebastião channel where ini-
tial collections to isolate microsatellite loci were performed. Map layout from http://d-maps.com/carte.
php?num_car=1521&lang=en.

(Fernandez-Silva et al., 2013). Reads were trimmed for adapters and quality using the
FASTX-Toolkit. The software Newbler 2.3 (Roche, Basel, Switzerland) was used to perform
the de novo assembly. The programs MSATCOMMANDER 0.8 (Faircloth, 2008) and
SSRfinder were used to search for di-, tri-, tetra-, penta-, and hexa-nucleotide repetitions.
Thirty-nine pairs of primers flanking the microsatellite regions were designed using
Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/) and primer characteristics were checked
using OligoAnalyzer 3.1 (https://www.idtdna.com/calc/analyzer/). Forward primers were
designed with a M13 tail at their 5′ end (TGT AAA ACG ACG GCC AGT) for dye labeled
(6-FAM, VIC, NED, or PET) primers annealing to the replicated strand during PCR
reactions (Schuelke, 2000).
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A total of 47 specimens of T. coccinea and 48 T. tagusensis were amplified by Polymerase
Chain Reactions (PCRs). PCRs were performed in 10 µl reactions including 0.2 µM of
forward primer with M13 tail, 0.4 µM of labeled primer (M13 with VIC, NED, PET, or
6-FAM fluorescent dyes), 0.8 µM of reverse primer, 1U GoTaq (Promega, Fitchburg, WI,
USA), 1× PCR Buffer (Promega), 0.20 mM dNTPs (Invitrogen, Carlsbad, CA, USA),
between 1.5 and 2.5 mM MgCl2 (Table 1), 10 µg BSA (Invitrogen), and 5–10 ng of DNA.
Cycling conditions were: 95 ◦C for 3 min followed by 5 cycles at 95 ◦C, 30 s; 52–62 ◦C
(Table 1), 30 s; 72 ◦C, 45 s; and 30 cycles at 92 ◦C, 30 s; 52–62 ◦C, 30 s; 72 ◦C, 55 s; with
a final extension at 72 ◦C for 30 min (Toonen, 1997). Amplification was verified in 2%
agarose gel. PCR products were pooled with GS600-LIZ size standard (Applied Biosystems,
Waltham,MA,USA) and genotyped in theABI 3500 genetic Analyzer (Applied Biosystems).
Genotypes were determined using the program Geneious 7.1.9.

Statistical analyses
Clonal structure of each species was assessed using the ‘GenClone’ on R 3.2.3 package
(R Core Team, 2015). Samples with the same alleles at all loci (ramets) were assigned
to the same multilocus genotype (MLG, or genets) and considered to be a product of
asexual reproduction. To check if individuals with the same MLG were truly clones, the
probability of finding identical MLGs, resulting from distinct sexual reproductive events
(Psex), was calculated following Arnaud-Haond et al. (2007). When Psex < 0.001, samples
are considered ramets belonging to the same genet. In order to avoid the overestimation
of genotype numbers due to scoring errors or somatic mutations (Douhovnikoff & Dodd,
2003), a second analysis calculating the genetic distance among all pairs of genets was
performed. Based on the genetic distances, MLGs that differed at only one allele were
assigned to the same multi-locus Lineage (MLL) (Arnaud-Haond et al., 2007). For the
genetic diversity and population structure analyses, only unique MLLs were considered.

To assess the clonal structure of each population, two indexeswere calculated as proposed
by Arnaud-Haond et al. (2007): (1) clonal richness, to evaluate the proportions of clones in
each population (R=G−1/N−1), where G represents distinct multilocus lineages (MLL)
and N is the total number of individuals sampled. The index ranges from zero (when all
individuals are clones) to one (when all samples analyzed correspond to a different MLL);
and (2) the genotypic evenness, to evaluate the equitability in the distribution of the MLL,
calculated by the Simpson’s complement evenness index (V = (D−Dmin)/(Dmax−Dmin)),
where D represents the observed diversity, Dmax the value assumed if all genets have the
same number of ramets, and Dmin the diversity value when all but one genet has one
individual (Hurlbert, 1971). This index ranges from zero (when one genet dominates the
population) to one (when genets each have the same number of ramets).

Quality control of loci followed Selkoe & Toonen (2006). To assess each population’s
genetic diversity, the number of alleles (Na), observed (Ho) and expected heterozygosities
(He) were calculated using the ‘diveRsity’ in R 3.2.3 package (R Core Team, 2015).
Significant deviations from Hardy–Weinberg equilibrium (HWE) and linkage equilibrium
were tested with the FSTAT program (Goudet, 1995). The occurrence of null alleles was
investigated using the Micro-Checker program (Van Oosterhout et al., 2004). To measure

Capel et al. (2017), PeerJ, DOI 10.7717/peerj.3873 5/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.3873


Table 1 Description of Tubastraea coccinea and Tubastraea tagusensismicrosatellite loci with their respective GeneBank Accession number. Forward primers in-
clude an M13 sequence (5′-TGTAAAACGACGGCCAGT-3′).

Locus/
Accession number

Primer sequence Repeat
motif

Species TA ( ◦C)/
[ ] MgCl2
(mM)

Range
(bp)

TSB (N = 23-Tc/24-Tt) IBG (N = 24-Tc/24-Tt)

Na Ho He F IS Na Ho He F IS

; F:TGTAAAACGACGGCCAGTACTTCGGTGATCGGACGAG-PET T. coccinea 56/2 a

;
Tco1/ KY198738

R: AGCACGGGTACTTGCTTTG
(GTT)6

T. tagusensis 56/2
567–600

2 0.12 0.18 0.00 1 0.00 0.00 NA

; F: TGTAAAACGACGGCCAGTGTGGAGAGTGAATAAGCTTGGG-NED T. coccinea 60/2 2 1.00 0.50 −1.00 2 1.00 0.50 −1.00

;
Tco4/ KY198739

R: GCCTGATGGTTTCTTGAGGTC
(TCA)4

T. tagusensis 58/2
253–259

2 0.40 0.32 −0.14 2 0.33 0.28 0.00

; F: TGTAAAACGACGGCCAGTTCAGGAGCCGATTAATACCTG-6FAM T. coccinea 54/2 5 0.50 0.76 0.39 3 0.20 0.34 0.50

;
Tco5/ KY198740

R: TGTGCAGTGAATGTGCTCAAG
(GAAA)5

T. tagusensis 54/2.5
368–432

2 0.60 0.42 −0,33 2 0.67 0.44 −0.33

; F: TGTAAAACGACGGCCAGTGGTGCAGTGTAAATTGGTTCG-PET T. coccinea 54 /2 2 1.00 0.50 −1.00 2 1.00 0.50 −1.00

;
Tco8/ KY198741

R: GACAAGTGGAAAGCGGACG
(GGA)6

T. tagusensis 52/2
343–349

2 1.00 0.50 −1.00 2 1.00 0.50 −1.00

; F: TGTAAAACGACGGCCAGTTTGACCACGTACTGCCAAG-VIC T. coccinea 60/2 a

;
Tco9/ KY198742

R: TCTGTTCAGAGAGCTCCGC
(TA)10

T. tagusensis 60/2
347–357

2 0.20 0.18 0.00 1 0.00 0.00 NA

; F: TGTAAAACGACGGCCAGTGTGCCCTAGGTCCATGGTTT-VIC T. coccinea 62/1.5 3 0.70 0.51 −0.31 3 1.00 0.57 −0.71

;
Tco29/ KY198743

R: CCGGCTTCTATATAGGCTTCC
(ATA)20

T. tagusensis 58/2
211–222

3 0.20 0.46 0.64 1 0.00 0.00 NA

; F: TGTAAAACGACGGCCAGTGGGAATTCGGATGCAATTAT-6FAM T. coccinea 60/1.5 3 1.00 0.61 −0.63 3 1.00 0.58 −-0.67

;
Tco30/ KY198744

R: CTCTGTGGAATGAGCTGCAA
(ACAT)6

T. tagusensis 60/2.25
252–264

2 1.00 0.50 −1.00 2 1.00 0.50 −1.00

; F: TGTAAAACGACGGCCAGTGCGTGGTCTGGTCTTTTCAT-6FAM T. tagusensis 58/2 2 1.00 0.50 −1.00 2 1.00 0.50 −1.00

;
Tco32a/ KY198745

R: ACCCACTTTGAGGTGTTTGG
(ATA)13 240–246

;Tco32b/ KY198745 a T. tagusensis 270–276 2 1.00 0.50 −1.00 3 1.00 0.61 −0,50

; F: TGTAAAACGACGGCCAGTGCGCCTACTACCACACGAAT-PET T. coccinea 58/2 2 0.38 0.31 −0.20 2 0.17 0.15 0.00

;
Tco34/ KY198746

R: TCCTTTCTACAGCGCACCTT
(TTA)19

T. tagusensis 58/2
189–217

3 0.80 0.58 −0.28 3 1.00 0.61 −0.50

; F: TGTAAAACGACGGCCAGTGCAATGACAACAGCCAGAAC-VIC T. coccinea 58/1.5 b b

;
Tco36/ KY198747

R: TTTCGTCTGCCACATTCTTG
(ATA)15 238–250

; F: TGTAAAACGACGGCCAGTAAACATTCGATTCCCACTCG-NED T. coccinea 62/1.5 4 1.00 0.74 −0.32 2 1.00 0.50 −1.00

;
Tco37/ KY198748

R: ACCCGGCCACTAATATTTCC
(CTA)24

T. tagusensis 62/1.5
242–263

3 1.00 0.62 −0.50 3 1.00 0.61 −0.50

; F: TGTAAAACGACGGCCAGTTTTGAGTTTGAGTTTATTGACTCCTT-NED T. coccinea 58/1.5 b b

;
Tco38/ KY198749

R: GGAGTAAGCTTAGAGGGGTGCT
(TACA)6 227–235

Notes.
TA, primer’s annealing temperature; [ ], MgCl2 concentration of magnesium chloride; N , number of individuals genotyped; Na, number of alleles; He, expected heterozygosity; Ho, observed het-
erozygosity; FIS, inbreeding coefficient (negative values indicate an excess of heterozygotes).

aLoci with evidence of linkage disequilibrium.
bLoci with evidence of null alleles.
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population structure two indexes were calculated using the programs Genetix (Belkhir et
al., 2004) and GenoDive (Meirmans & Van Tienderen, 2004). (1) Wright’s fixation index
FST, ranging from zero, when different populations have identical alleles frequencies,
to one, when each population has different fixed alleles (Wright, 1965). However, when
applied to highly polymorphic markers, such as microsatellites, this index never reaches
one and can underestimate genetic differentiation (Hedrick, 1999; Meirmans & Hedrick,
2011; Bird et al., 2011). The second measure, (2) Meirmans and Hedrick’s differentiation
index G

′′

ST, is a standardized measure rescaled from zero to one based on the maximum
value of G

′′

ST which simplifies interpretation of the degree of genetic differentiation among
populations when using highly polymorphic microsatellite markers (Meirmans & Hedrick,
2011; Bird et al., 2011).

A Bayesian analysis was performed to estimate the number of genetic clusters in the
dataset using STRUCTURE v. 2.3.4 software (Pritchard, Stephens & Donnelly, 2000) with
the admixture ancestry model and correlated allele frequency. The analysis was performed
with an initial burn-in of 500,000 cycles followed by 500,000 additional cycles and the
number of clusters (K ) tested varied from one to three with 15 iterations for each K -value.
A higher range in the number of clusters (K ranging from one to five) was also tested to
verify possible substructure within the populations. The most likely K -value was estimated
by estimating the ‘‘log probability of data’’ for each value of K (mean LnP(K )) (Pritchard,
Stephens & Donnelly, 2000) using STRUCTURE HARVESTER (Earl & Von Holdt, 2012).
The 1K criterion, frequently used in population genetic studies, is applied for datasets
with more than two populations and as one of the hypotheses here is that the two localities
are one panmitic population, this criterion was not used in the present work (Evanno,
Regnaut & Goudet, 2005).

RESULTS
Characterization of microsatellite markers
The two 454 runs resulted in a total of 329,832 reads with an average size of ±708.5
bp. A total of 1,077 regions with 2–6 bp microsatellite repeats with at least four units
were found. Among these regions, 39 were selected for primer design, based on the
size and position of the repeat within the sequence, and the primer characteristics (e.g.,
lacking primer-dimer formation). Within these, 11 and 10 were successfully amplified
and genotyped for Tubastraea coccinea and T. tagusensis respectively (Accession numbers:
KY198738–KY198749). While two loci failed to amplify for T. tagusensis (Tco36 and
Tco38), this species also exhibited two loci at a single locus with no evidence of linkage
disequilibrium between them (Tco32a and Tco32b), so both were included in these
analyses.

Evidence for null alleles for T. coccinea TSB population was observed in the same
two loci (Tco36 and Tco38) that failed to amplify for T. tagusensis. Since both loci
had only homozygote genotypes at the two analyzed localities, these loci were removed
from the genetic diversity analyses. The loci Tco1 and Tco9 showed evidence of linkage
disequilibrium with other loci and were also removed from the remaining analyses. The
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Table 2 Genetic diversity of Tubastraea coccinea and T. tagusensis in two localities on the Southwestern Atlantic Ocean, Todos os Santos Bay
(TSB) and Ilha Grande Bay (IGB), Brazil.

Specie Location N MLG MLL R V A AR Ap Ho He F IS

TSB 23 13 13 0.55 0.845 21 2.74 4 0.80 0.56 −0.380
T. coccinea

IGB 24 6 6 0.21 1.13e–16 17 2.18 0 0.77 0.45 −0.651
TSB 24 7 5 0.17 0.54 25 1.98 4 0.67 0.43 −0.468

T. tagusensis
IGB 24 6 3 0.09 1.04e–16 22 1.87 1 0.64 0.37 −0.615

Notes.
N , Number of individuals sampled; MLG, multilocus genotype; MLL, multilocus lineages; R, clonal richness; V, genotypic evenness; β, pareteo distribution; A, alleles
number; AR, allele richness; Ap, number of private alleles; Ho, observed heterozigosities; He, expected heterozigosities; F IS, inbreeding coefficient.

number of alleles per locus ranged from one to five in T. coccinea and one to four in T.
tagusensis. Between localities, Ho ranged from 0.38 to 1 (TSB) and 0.17 to 1 (IGB) for T.
coccinea and from 0.2 to 1 (TSB) and 0 to 1 (IGB) for T. tagusensis. He ranged from 0.31 to
0.76 (TSB) and 0.15 to 0.58 (IGB) for T. coccinea and from 0.18 to 0.62 (TSB) and 0 to 0.61
(IGB) for T. tagusensis (Table 1). In general, the observed heterozygosity was higher than
expected for most loci in both populations of both species, with up to 100% of individuals
being heterozygous at some loci (Table 1), although no significant deviation from HWE
was observed.

Clonality
Psex values observed were highly significant (<0.001) for all but two and seven individuals
of T. coccinea and T. tagusensis respectively. Thus, these data do not support the hypothesis
of several individuals with the same MLG having originated by chance from distinct sexual
reproduction events. A high proportion of clones were observed at both localities for both
species (Table 2). For T. coccinea, at TSB of the 23 colonies sampled 13 MLLs were found,
while at IGB only six MLLs out of the 24 colonies sampled were found. T. tagusensis had
five (at TSB) and three (at IGB) unique MLLs among the 24 sampled colonies at each
locality (Table 2). Missing values were considered as different alleles by the program, and
although only specimens with missing information at no more than one locus were kept,
it is important to note that the final number of MLL might be overestimated slightly.

Clonal richness observed for T. coccinea indicates that IGB is mostly composed of clones
(R= 0.22), with only six MLLs out of 24 individuals, while TSB has nearly half of the
individuals comprised of clones (13 MLL in 23 individuals sampled; R= 0.55) (Table 2).
In addition to the low MLL diversity at IGB, 19 individuals had the same predominant
MLL, which was observed by the evenness indexes (V = 1.13−16). Conversely, the TSB
population of T. coccinea had more equally distributed MLLs, with the most common one
being shared among only 4 individuals (V = 0.85). For T. tagusensis, both populations were
composed mainly of clones, with very low clonal richness (IGB: R= 0.09; TSB: R= 0.17).
Similarly to what was observed for T. coccinea, MLLs were more equally distributed at
TSB, with 14 individuals belonging to the same MLL (V = 0.54), while in IGB the most
common one was shared among 22 individuals (V =−1.04p−16).
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Genetic diversity and population structure
Only unique MLLs were used to assess genetic diversity and population structure in each
species. For both species, TSB had higher number of alleles, allelic richness and number
of private alleles compared to IGB, with T. coccinea presenting the more accentuated
differences (Table 2). There were no significant deficits of heterozygosity; both observed
(Ho) and expected (He) heterozygosity were similar when comparing between localities
for both T. coccinea (TSB: 0.80 and 0.56; IGB: 0.77 and 0.45) and T. tagusensis (TSB: 0.67
and 0.43; IGB: 0.64 and 0.37). The inbreeding coefficient (F IS), although not significant,
was negative for both localities and in both species, indicating an excess of heterozygotes
(Table 2).

FST and G
′′

ST values were 0.06 (p= 0.08) and 0.13 (p= 0.07) for T. coccinea and
indistinguishable from zero (p= 0.69 and p= 0.69) for T. tagusensis. The lack of significant
population structure among the sampled localities indicates similar allele frequencies for
both species across these sites. Although Bayesian analysis recovered two genetic clusters
for T. coccinea for both ranges of K tested, these groups are not a function of population
structure between localities (Fig. 2), but instead, reflect the presence of population structure
within each locality. Furthermore, there is no evidence of interbreeding between the two
clusters, and the FST values between these sites is likely a result of the strikingly different
proportion of these two groups in each site. In contrast, no clustering was observed between
or within localities for T. tagusensis, with the most likely K value being one for both ranges
of K tested (Fig. 2).

DISCUSSION
The novel microsatellite markers reported herein will enable further studies regarding the
genetic diversity and population structure of Tubastraea spp. corals in the Atlantic and
native ranges of these invasive populations. Using thesemicrosatellites, this study shows that
both invasive coral species (T. coccinea and T. tagusensis) have high proportions of clones
at both localities on the Brazilian coast with identical multilocus lineages (MLLs) found
in sites separated by more than 1,500 km. The results indicate that asexual reproduction
dominates in the invasive range of Tubastraea spp. in the Southwestern Atlantic and despite
the large distance between localities, no significant population structure could be found. In
contrast, there are clear signs of population structure across this same region in an endemic
spawning coral species (Mussismilia hispida, Azevedo, 2015).

Our results support previous work reporting reproduction via asexual larvae in
T. coccinea (Ayre & Resing, 1986). Likewise, the high proportion of clones found at both
sampled localities for T. tagusensis indicates likely reproduction by asexual larvae for this
species also, a reproductive mode previously recorded for only three scleractinian species:
Pocillopora damicornis (Stoddart, 1983), Tubastraea diaphana and T. coccinea (Ayre &
Resing, 1986). Indeed, a study on the reproductive strategies of T. coccinea and T. tagusensis
in the Southwestern Atlantic observed a small number of spermaries and the presence of
embryos and planula at different times of the year, concluding that asexual reproduction
could be important for both species (De Paula, Pires & Creed, 2014). For most corals,
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Figure 2 Bayesian clustering analyses for Tubastraea coccinea and T. tagusensis. (A) and (B) shows the
most likely K -value estimated by the mean of estimated ‘‘log probability of data’’ for each value of K for
T. coccinea (K = 2) and T. tagusensis (K = 1), respectively; (C) and (D) shows the genetic clusters, where
each individual is represented by a vertical bar with different colors indicating the relative proportion of
each genetic cluster. TSB, Todos os Santos Bay; IGB, Ilha Grande Bay.

clonality is a result of mechanical fragmentation due to physical disturbances (Foster
et al., 2013; Nakajima et al., 2015). T. coccinea and T. tagusensis, however, are not prone
to fragmentation, so the high number of clones observed for both species in this study
seems more likely to result from asexually produced larvae. Nevertheless, it is desirable
to confirm the production of asexual larvae for both T. coccinea and T. tagusensis by
performing paternity studies in the future.

For invasive species, asexual reproduction can be crucial in the first stage of invasion,
when sexual partners are scarce or absent, because it significantly enhances the chances of
survival for the colonists (Taylor & Hastings, 2005). Successful invasions originating from
a few clonal genotypes have been previously recorded for plants (Ren, Zhang & Zhand,
2005; Liu et al., 2006) and other cnidarians (Reitzel et al., 2008). Asexual reproduction is
dominant in the invasive range and it may have contributed to the invasive success of
Tubastraea in the Southwestern Atlantic, where the rocky shores provide a suitable habitat
and release from enemies (Enemy Release Hypothesis, Keane & Crawley, 2002). At IGB
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both studied coral species have high percentage of clones and an extremely low genotypic
evenness, indicating that most colonies are clones belonging to the same genet. Sampling
more areas surrounding each collection site is needed to thoroughly examine clonal
diversity for these regions, but particularly in TSB where samples were more widely spaced,
this observation supports the role of asexual reproduction in increasing local abundance.
Gregarious settlement has been previously observed for both T. coccinea (Glynn et al.,
2008; De Paula, Pires & Creed, 2014), and T. tagusensis (De Paula, Pires & Creed, 2014),
although these studies did not determine if the aggregated larvae were sexually or asexually
derived. It is noteworthy that T. coccinea has higher numbers of MLLs, clonal richness
and genotypic evenness at TSB than at IGB, suggesting increased occurrence of sexual
reproduction or a greater number of successful colonists at the former site. Rates of
sexual and asexual reproduction can be highly variable among geographic regions in other
corals (Baums, Miller & Hellberg, 2006; Noreen, Harrison & Van Oppen, 2009; Combosch &
Vollmer, 2011; Gorospe & Karl, 2013), but it remains unknown what governs the difference
in the proportion of sexual and asexual reproduction at different localities. Several factors
can influence both genotypic and genetic diversity in invasive species, including the number
of invasions, the genetic diversity of the source population(s) and a variety of biological
factors, such as the main reproductive strategy adopted by the species (Dlugosch & Parker,
2008). Although sexual reproduction might also occur in Tubastraea, the results obtained
for T. coccinea might be an effect of the occurrence of recent multiple introductions from
different native populations (Roman & Darling, 2007). Another hypothesis would be the
presence of cryptic species, which has been found in other scleractinian corals (Pinzón
& Weil, 2011; Warner, Van Oppen & Willis, 2015; Nakajima et al., 2017). Morphological
analyses combined with molecular data including native populations are necessary to
corroborate this hypothesis.

A decrease in genetic diversity as a result of a small founding population has been
previously recorded for several invasive populations (Roman & Darling, 2007; Geller et al.,
2008; Johnson & Woollacott, 2015; Wrange et al., 2016; but see Gaither et al., 2010; Gaither,
Toonen & Bowen, 2012 for counter-examples). Here, we report excess of heterozygosity for
both populations of both species and the presence of up to 100% heterozygous individuals
at some loci (Table 1). High levels of heterozygosity can result from an isolate-breaking
effect, when multiple introductions mix previously separated native populations (Holland,
2000; Hamilton, 2010). However, in this case, there is no evidence of mixing between the
two genetic clusters (Fig. 2), indicating that they are not interbreeding. Thus, it seems more
likely that TSB and IGB were colonized by different native populations followed by recent
transport between localities without sufficient time for them to interbreed, although the
possibility of cryptic species that are incapable of interbreeding should also be considered.
If the first scenario of introduction by different native populations proves true, the high
heterozygosity could be either a result of a founder effect in which the new area was,
by chance, colonized by a higher number of heterozygote genotypes, or due to a higher
fitness of the heterozygote genotypes, either of which could be propagated by asexual
reproduction (De Meeus & Balloux, 2005). Alternatively, Gaither, Toonen & Bowen (2012)
showed that introduced fishes in Hawai’i with a known history actually had higher and
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more even genetic diversity than was observed in the native range, and such an effect could
also explain the observed pattern here. In contrast to what is observed with T. coccinea, we
recover only a single genetic cluster for T. tagusensis between both populations. This single
cluster could result from either invasion of both localities from the same source population,
or a secondary invasion along the Brazilian coast from the original locality being spread
to another. Unlike T. coccinea, which is now considered cosmopolitan (Cairns, 2000), T.
tagusensis has a restricted distribution (Cairns, 1991) and may have naturally low genetic
diversity. The distinction between these species is reminiscent of the pattern reported by
Gaither, Bowen & Toonen (2013) in which population structure of species in their native
range predicts the diversity and rate of spread in the invasive range.

Considering that (i) both T. coccinea and T. tagusensis brood larvae competent for only
∼18 days (in aquaria) that typically display gregarious settlement (Glynn et al., 2008; De
Paula, Pires & Creed, 2014) and (ii) the absence of Tubastraea in extensive areas between
the two localities, it is highly unlikely that they are connected through larval dispersal. On
the other hand, oil platforms are known to be moved between these regions (Sampaio et
al., 2012), and are considered the main vector for the introduction of Tubastraea into the
southwestern Atlantic (Castro & Pires, 2001; Creed et al., 2016). Thus, our data showing a
lack of structure between localities, and the occurrence of shared MLLs for each species
among these distant sites, indicate that anthropogenic vectors, such as oil platforms,
monobuoys, or other vessels have played an important role in dispersing these alien
invasive species, and possibly assisting other species to spread along the coast (Almeida et
al., 2015; Creed et al., 2016).

CONCLUSIONS
Invasive Tubastraea spp. are spreading quickly throughout the Atlantic, in some areas
covering up to 100% of the available surface (Mantellato et al., 2011) and outcompeting
native and endemic species (Mantellato et al., 2011; Santos, Ribeiro & Creed, 2013; Creed,
2006). Despite this documented impact and concern, little is known about the genetic
diversity and reproductive strategies of Tubastraea species globally. This study provides the
first survey of genetic diversity and likely reproductive strategies along the southwestern
Atlantic coast, demonstrating that asexual reproduction has an important role in the
population dynamics of both T. coccinea and T. tagusensis and is probably a relevant
feature leading to their invasive success. Results also indicate that there were likely at
least two different populations of T. coccinea introduced into the southwestern Atlantic. A
molecular systematic examination of the genus is highly recommended in order to check
for the occurrence of cryptic species. Future studies should focus on the identification of
potential source populations and the global phylogeograpy of Tubastraea with the goal of
tracking and limiting future invasions, as well as the establishment of effective management
and prevention strategies.
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