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By R. R. Davidson and D. L. Solomon 

Cornell University 

SUMMARY 

We have formulated a Bayesian approach to paired comparison experimentation 

under the multi-binomial and Bradley-Terry models and have provided two estimators 

of the model parameters (assuming a natural conjugate prior distribution) for each 

model. Furthermore, in the Bradley-Terry case, if the experimental design and 

prior distribution satisfy the criterion of posterior balance, then for a large 

class of acceptable loss functions, a Bayes ranking of the worth parameters is 

explicitly calculated and shown to coincide with the ranking determined by each of 

the two estimators. Thus, if the objective is ranking the worth parameters by 

their estimates, which are not easily calculated, one can easily calculate the 

Bayes ranking with the assurance that it agrees with the ranking provided by these 

estimates. 

~ key words: Paired comparisons, preference testing, tournaments, prior­

posterior analysis, Bayes estimators, Bayes rankings. 

1. . INTROtUCTION 

The testing of a set of items for preference on overall suitability or on 

specific characteristics often requires of the respondent the ability to make very 

fine sensory discriminations based on complex physiological processes. To remove 

some of the confusion associated with simultaneously comparing several objects, 

the method of paired comparisons has been widely employed. In paired comparison 

experimentation, expressions of preference are obtained for all possible pairs of 
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objects in the set of interest. The data from such experiments are used, among 

other things, to rank>:the objects in order of preference. League competitions and e 
round-robin tournaments provide additional examples of situations in which rankings 

are based on the performance of objects when they meet in pairs. The method of 

paired comparisons has been discussed in a monograph by David (1963). 

A number of mathematical models for paired comparisons have been introduced, 

the most notable being the Thurstone-Mosteller and the Bradley-Terry models. Less 

structured models under which the responses to each pair are considered to arise 

from distinct binomial experiments ha.ve also been used. Models of this type are 

referred to as multi-binomial models. The preference probabilities of the multi-

binomial model can be required to sat~sfy transitivity constraints of varying 

severity. 

The present paper undertakes a Bayesian approach to the analysis of data 

arising from paired comparison experiments. Two statistical models are considered: e 
the multi-binomial model (Section 2) and the Bradley-Terry model (Sections 3 and 4). 

The objectives are (i) to provide estimators of the preference probabilities of 

the multi-binomial model and of the worth parameters of the Bradley-Terry model, 

and (ii) to provide a ranking of the objects in the set of interest. 

For each statistical model, the natural conjugate family of priors can be 

used to represent a wide variety of prior beliefs. Furthermore, the prior 

parameters are shown to have meaningful interpretations in the sense of "equivalent 

prior sample information" as discussed by Winkler (1967). The prior-posterior 

analysis for the multi-binomial model is a direct extension of that for the single 

binomial. While less tractable, the prior-posterior analysis for the Bradley-Terry 

model has a number of interesting features which result from properties noted by 

Ford (1957). 



- 3 -

In the estimation problem, two approaches to using the posterior distribution 

are considered. In the first approach the modal point of the posterior is used as 

the estimator of the parameters. This is analogous to the use of the maximum 

likelihood principle in the classical analysis of paired comparison data. The 

second approach is to obtain the estimator which, for a specified loss, minimizes 

the Bayes risk. 

The ranking problem is a more c·omplicated one and has been considered 

(Section 4) only for the Bradley-Terry model where either the mode of the posterior 

or the mean of the posterior (the Bayes rule under quadratic loss) can be used to 

provide a ranking of the objects. In certain '~alanced" situations an intuitive 

ranking based on the posterior parameters can be shown to ~~ the Bayes ranking for 

. a large class of loss functions. This development parallels the discussion of 

optimal ranking procedures given by Btihlmann and Huber (1963). In the presence of 

such balance it is shown that the three rankings referred to above are identical. 

2. THE MJLTI-BINOMIAL MODEL 

One can formulate probability models for paired comparisons which have varying 

degrees of structure. A relatively unstructured model can be described as follows. 

Suppose that t objects are to be tested in pairs with n .. responses being obtained 
l.J 

to the pair (i,j). Each response consists of an expression of preference for 

either object i or object j; expressions of no preference are not permitted. Let 

e =[e .. ; i,j ~ 1, ···, t], where eiJ" is the probability of preference for object i ,..., l.J 

over object j, e1j + eji = 1, and where for convenience eii ~ ~. Also set 

E = (n1j; i,j = 1, •••, t] and~= [wij; i,j = 1, •••, t], where w1j is the ob­

served frequency of preference for object i over object j, wij + wji = nij' and· 

nii = w1i ~ 0. Then under the assumption that all pairwise comparisons are 
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stochastically independent, the statistical model is defined by the probability 

:f'unction 

(2.1) 

The probability function (2.1) is a product of independent binomial proba-

bility fUnctions and will be referred to as the multi-binomial model. Under this 

model we effectively analyze the data j!, as though it had arisen from (~) separate 

experiments. For instance, in estimating 9 .. we would only use the observed 
~J 

frequency wij obtained in the comparison of the pair (i,j). Although use of the 

model (2.1) in which there is no structure on ~.(other than~+ !T = l(t X t)) is 

unrealistic in most situations, it is instructive to examine possible prior-

posterior analyses for e. The development will be of value in understanding the ,..., 

corresponding analyses for models which impose additional structure on e. ,.., 

The prior-posterior analysis is a straightforward extension of that for the 

single binomial model. Following the spirit of Raiffa and Schlaifer (1961, 

Section 3.2), it follows directly that the conjugate prior distribution fore is -,... 
(2.2) 

where A={!: 0 ~ e1j ~ 1, e1j + eji = 1; if j, i,j = 1, ···, t), 

w0 = [w~ .· i,j = 1, •••, t] is a matrix of prior parameters, w~. > -1, w0 = 0, 
,.., ~J 1 ~J ii 

and where 

K(~0 ) = rr r(w~j + wji + 2)/r(w~j + l)r(wji + 1) • 
i<j 

(2.3) 

Under (2.2), the elements of ~corresponding to different pairs are independently 
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distributed with Iij ~ Beta(wij + l, wji + l). Although this independence may be 

undesirable, it is compatible with the nature of the statistical model. 

Setting ~0 = [nij; i,j = l, •••, t] with nij = wij + wji = nji' we can obtain 

an equivalent form of (2.2) in terms of the lower halves of the matrices w0 and n°. ,..., ,..., 

The prior (2.2) is properly defined and continuous over the interior of A whenever 

wij > -1 for all i,j = 1, •••, t. Moreover, when ~0 is nonnegative, (2.2) has a 

unique modal point in A ate* where e~i .. j = w01j/n~ .• If w~. = 0 for some if j then 
,..., ~J ~J 

e* is on the boundary of A, but if w0i. > 0 for all if j then {2.2) is zero on the ,..., J 

boundary of A and e~• is in the interior. ,... 

Yfuen they are nonnegative, the parameters w0 can be interpreted in the sense ,..., 

of 11 equivalent prior sample information" as described by Winkler ( 1967). In 

specifying (wij' wji) or equivalently (wij' nij) for each pair (i,j), the experi­

menter can be viewed as saying that he believes that of nij expression of preference 

for the pair (i,j), wij will favor object i. The ratio wij/nij represents the 

experimenter's prior assessment of the "most probable" value of eij and corresponds 

to the modal point of the prior distribution, while nij represents the degree of 

confidence that the experimenter has in his expressed belief. Larger values of 

nij indicate greater confidence on the part of the experimenter, and stronger 

indications from the data will be required in order to substantially alter the 

experimenter's prior beliefs about eij" 

The posterior distribution for ~ is given by 

(2.4) 

where K(·) is given by (2.3), and where the parameter8'1fof the posterior distri-,.., 

bution are obtained by combining the data w with the parameters w0 representing 
~ ,..., 
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the experimenter's prior beliefs, w1 = w + w0 • Also n1 = w1 + w1 T = n + n°. 
~. ~ ~ ~ ~ 

Inferences about the preference probabilities e can be made on the basis of ,..._ 

the posterior distribution (2.4). In pa~ticular, we will consider the estimation 

of e. One approach would estimate e by the mode e*(w) of the posterior distri-
~ ' ,...., f""J 

b ti e* ( ) _ 1 I 1 u on, ij ~ - wij nij" This b analogous to the usual maximum likelihood 

A A I estimator e, e .. = w .. n. j, obtained under the statistical model. 
~ 1J 1J 1 . . 

Alternatively, 

one might adopt a decision theoretic approach and estimate e by the Bayes rule 
. . ,...., 

corresponding to the assumed loss function. Under quadratic loss, the Bayes 

estimator for e is the mean S(w) 
,..; ,...,,.... 

e .. (w) = (w~. + l)l(n~j + 2). 
1J "" 1J 1 

= E[elw = w] of the posterior distribution, 
...... "" ~ ,..., 

Let us now turn attention to models which im:pose additional structure on the 

preference probabilities e. Such structure can be of two types: (1) a specific ,.., 

parametric form for the preference probabilities ~ or (ii) a set of constraints 

on the space A for ~· The models due to ~1urstone-Mosteller and Bradley-Terry are ~ 

exam:ples of parametric structure. The second of these models will be treated in 

subsequent sections of this paper. Transitivity constraints provide an example of 

the second type of structure and will now be discussed. 

When the preference probabilities e are unconstrained, a problem arises in 
""" 

defining a ranking of the objects based on e. This problem can be resolved by 
,..; 

requiring e to satisfy a transitivity constraint. Two such conditions have been ,..., 

used: 

weak stochastic transitivity (c1 ): for every triad of objects (i,j,k) 

e . j ~ ~ and e 2:: ~ • m:pl "' ~ ~ 
1 ;,;: jk 2 J. y "ik 2 ' 

strong stochastic transitivity (c2 ): for every triad of objects (i,j,k) 

(2.6) 
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The stronger condition is not necessarily warranted in all situations. For a 

discussion of this point see David (1963, p. 13) and Luce (1961). Conditions c1 

and c2 each lead to a well defined ranking of every triad and hence to a true 

ranking of the set of t objects. The ranking defined by condition c2 is precisely 

that determined by the row sums of e, cf. David (1963, p. 19). ,...-

The transitivity constraints c1 and c2 lead to corresponding modification of 

the prior and posterior distributions. Let 

b.= {e: e € 6 and satisfies c~J, 
~ ,.., ,.., ... i = 1, 2. 

Then if ~i denotes the probability measure under (2.2) of the region bi, the prior 

and posterior distributions are given by 

~(~) 
·1 g( e: w0 ) = cpi I'J ,..... 

,.... 

Pe I w(~ 1:!) cp"1 g(e: -vl) 
i e Ai 

= i ,.., "' ;:,..., 

respectively, i = 1, 2, where g(e: •) is defined by (2.4). ,..., 

As for the estimation of e on the basis of the posterior distribution, the ,..., 
• i-),. 

constraints cl and c2 play a major role. To obtain the modal estii:nator we· "determine 

1 I 1 whether the ratios wij n1 j satisfy the constraint c1; if' they do then these ratios 

COillPrise the modal estimator e~'(w ); if not then e~*(w) is on the boundary of Ai. 
~ ~ ~ ~ 

The search for the Bayes rule corresponding to a specified loss function poses 

greater problems. In keeping with the spirit of the constraint c1, we would 
··r 

restrict attention to estimators taking values in A1 • ·since Ai is not convex the 

resulting estimation problems require comp1:icated optizdzation techniques. 
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3. PRIOR .AND POSTERIOR ANALYSIS UNDER THE :BRADLEY-TERRY M:>DEL 

The model for paired comparisons presented by Bradley and Terry (1952) imposes 

a parametric structure on the preference ·probabilities e. It is assumed that the 
"'"' 

responses to the objects may be described in terms of an underlying continuum on 

which the "worths" of the objects can<be relatively located. If we let ni denote 

the "worth", an index of relative preference,of the ith object, ni :2:0, then the 

Bradley-Terry model postulates that 

(3.1) 

Since~ is invariant to multiplication of~= (n1, •••, nt) by a nonzero constant, 
t 

we will assume without loss of generality that I: 1T. = 1. This same mdel had 
i=l l. 

been proposed earlier by Zermelo (1929), and was subsequently independently pre-

sented by Ford (1957). A summary of various representations of the model (3.1) is 

given in :Bradley (1965). 

The Bradley-Terry model has the advantage that the parameterization 

E = (n1, ···, nt) is in terms of the set oft objects of interest, whereas the 

parameterization ~ of the multi-binomial model is in terms of the (~) paired com­

parisons. Moreover, under the model (3.1), the preference probabilities 9 satisfy 
. -

the strong transitivity condition (2.6): for 

The true ranking of the objects determined by e is pre-,.., 

cisely the ranking det~rmined by n. 
"'"' 
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When the Bradley-Terry model is assumed to hold, the statistical model (2.1) 

becomes 

(3.2) 

where w = [w .. ; i,j = 1, •••, t] and n = [n .. ; 
~J ~ ~J 

i,j = 1, •••, t] are defined as fo:r 
t 

the model (2.1). If we let~= (s1, ···, st) where s. = Z wij' the total number 
~ j=l 

of preferences for the ith object, then (3.2) can be written 

t 

Pwln<~l~) = ( rr rr~i) Tf (~: D<rri 
,...., ,...., i=l i<j 

) -n +n. i.l. 
J 

The statistic (s,n) is sufficient for the statistical model • ....... ,.., 

The conjugate prior distribution for TT obtained from (3.2) has density 
....... 

~ wo wo no 
= C ( w0 ) ,. rr . 1 .! rr . .! i / ( rr. + rr . ) 1 .! = f ( rr : w0 ) , rr € 0, 

....... ~ J l. J ,..., ,... ,.., 
i<j 

t 

(3-3) 

(3.4) 

where 0 = fn: rr. ~ 0, i = 1, ···, t, Z rr. = 1}, and where w0 = [w~ .; i,j = l,•••,t] 
,...., l. i=l ~ ....... l.J 

is a matrix of prior parameters w~. ~ 0, and n° = w0 + w0 T as in Section 2. 
l.J ,...., ....... ,...., 

Alternatively, if we let ~0 "" (s~, •••, s~) 

t 
s~ = ~ w~ ., then (3.4) can be rewritten as 

l. j=l ~J 

be the vector of row sums of w0 , ,...., 

1T € o. (3.5) 

The form of the constant K(•, •) will be described later. Each (s 0 n°) determines 
"''""' 

exactly one prior distribution so that all matrices w0 with the same s 0 = w0 1 and ,...., ....... 

n° = w0 + w0 T represent equivalent prior beliefs. ,...., 
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The prior distribution is properly defined and continuous on 0 whenever w0 is 

nonnegative. This is clear from ( 3. 4). By the definition of s 0 

""' 
w0 , the prior distribution in the form (3.5) requires that s 0 ~ 
~ i 

t 
and that L s~ = 

i=l 1. 
L noi ·• 

i<j J 

and n° 
t 
I: n~ ., 

j=l l.J 

in terms of 

i = l,···,t, 

In eliciting the prior beliefs of an experimenter, the prior parameterization 

w0 is likely to be more effective than (s0 ,n°). The problem with asking the 
~ 1 ~ ~ 

experimenter to specify (s0 ,n°) is that the conditions referred to in the preceding ...... ,.... 

paragraph must be satisfied. 

The interpretation of w0 is identical with that under the conjugate prior 
"'"' 

(2. 2) for the multi-binomial model, namely that the experimenter believes that of 

n~j responses to the pair (i,j) in a conceptual experiment, w~j will favor object i. 

As suggested before, n~j represents the strength of the experimenter's belief as 

to the outcome for the pair (i,j). 

Suppose now that w0 satisfies the following assumption introduced by Ford 
"' 

(1957). 

Assumption: In every partition of the indices {1, ·•• t} into two nonempty sets 

'I and J, there exists i € I, j €J such that w~. > o. Equivalently, for each (i,j) 
l.J 

there exists a sequence of indices i 0 , i 1, ···, im with i 0 = i and im = j such 

that w. . > 0 for k = 0, 1, · • •, (m - 1). 
l.kl.k+l 

This assumption essentially means that we are assuming a priori that the set 

of objects cannot be partitioned into two sets where the objects in the first set 

are dominated by the objects in the second. Under this assumption, Ford shows that 

h(rr: s 0 n°) has a unique mode rr* in the interior of o, which is obtained a.s the 
~ ~'~ ~ 

solution to the equations 

t 

rr~ I n~j/(n1 + rr·j·) = 

j=l 

i = l, . . . t . 
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If we now let w~. = n?jrr:.:·;(rr~:- + TT~:) it follows that w0 and w~:- are equivalent prior 
~J ~ ~ ~ J "' "' 

parameters. Thus the specified w0 can be interpreted as a specification of n° and 
""" 

the preference probabilities TT·:-;(TT':· + TT":), which correspond to the a priori most 
~ ~ J 

probable TT. Furthermore, s~ can be interpreted as the total number of preferences 
<"J ~ 

for the itb object in the conceptual experiment which corresponds to n° and the 
""' 

prior mode n*, i = 1, 2, ···, t. 
~ 

where 

It might seem that the Dirichlet distribution 1dth density 

PnC!!) = D-1(a1 , • • ·, a1)n~ -l • • • n:t -1, 
,...., 

TT € O, a. > -1 
~ 

D(a1, • • •, at) ~ ~ f(ai )/f(~ai) 
. ~ ~ 

would provide a reasonable family of prior distributions. This corresponds to a 

member of the conjugate family only if ~a. = t, in which case s0 = a - 1 and 
i~ "' ,.., "' 

Moreover, w0 = 0 is the only nonnegative w0 which yields a Dirichlet ,.., ,.., . ,...., 

prior, namely £ ~ !, the prior which is uniform on o. 

An interesting feature of the conjugate prior (3.5), however, is that it can 

be expressed as an infinite mixture of Dirichlet distributions. To exhibit this 

we note that if m ~ 0, ~ = (u1, ···, ut) is a vector of nonnegative integers, and 

~-'1_j = (~:ui =uj = o}, thenforthepa.ir (i,j) 

~ (m + uu - 1)( \ n:k)u (ni + TT)-m = L L 
u=O 

(3.6) 
u 

) TTlit • • • 
ut 1 ... 

where the last equality follows from the multinomial expansion of { ~ .TTk)u when 
'kf~, J 

modified to include TTi and nj with zero exponents, In that we are to consider the 
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product of the expansions (3.6) over all (i,j) with i < j, we will identify the 

m, u, and u which correspond to the pair ( i, j ) by m .. , u . j, 
IV ~J o 1 ~ 

and u.j, respectively.~ 
"'~ 

Each term in the expansion Of n ( TT. + TTj) -Int J is the product 
i<j ~. 

of (~) terms, one 

from each of the sums (3.6) which correspond to (i,j), i < j. If we let Jj = X '/J.'i • , 
i<j J 

then each term in the expansion corresponds to a g = (}t12, ~13 , 

For each vector~= (~1, ···, Lt) of nonnegative integers, let 

• • ·' ~(t-l)t) e Jt. 

§ £ = {g: g e .31, i:: u .. = ..e.}. The sets ~ ~ define a partition of }I. 
;:, i<j""~J ""' ;:. 

Thus 

n ('1Ti + '1Tj)-m1 J = L C(~,~)'IT~l ••• 
i<j . ..e. ,.., 

where 

and where L denotes summation over all vectors of nonnegative integers • 

..e. 

We can now write h(J!: E,JS) of (3.5) as 

where 

h(n: ~:,~) = K(_t,~) I c(~,~)n~l +t,. 
..e. ,.., 

[K(~,~) J1 = L C(,b;!;) D(r1 + t1 + l, 
..e. ,.., 

... 

One property of the coefficients c(.t,m) which will be of importance in ,.., ,..., 

Section 4 is the following: if m1 j = m for all (i,j), then C~m(l- !)) = 

cf J., ,m(1 - r)) for any permutation '" of !. ~ ,..., ,..., l'o{J 

(3.9) 
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The posterior distribution for n is given by the density ,..., 

Pnlw(~l;:?) = f(~: Jl> = h(1!,: ~1 ,-i), n, € n (3.10) 
,.,., ,.., 

where f(n: •) and h(n: ·, •) are defined by (3.4) and (3.5), respectively. The ,..., ,.., 

parameters w1 or (s1 ,n1 ) of the posterior distribution are obtained by combining ,.., ,.., ,..., 

the data w or (s,n) with the prior parameters w0 or (s 0 ,n°). ,...., ,...,,.., ,.,., ~ "" Specifically, 
t 
I: w~ j and 

. 1 ~ J= 

The vector s1 will play a central role in the next section and ,.., 

will be referred to as the posterior scores. 

4. ESTIMATION AND RANKING PROCEDURES 

The selection of an estimator for the vector of worth parameters n of the 
"' 

Bradley-Terry model is of central interest. Such an estimator can be used to 

estimate the preference probabilities as defined by (3.1). A second feature of 

an estimator of TI is that it can be used to provide a ranking of the set of objects. 
"' 

The properties of such rankings will be discussed, but first let us proceed to a 

discussion of two methods of estimation based on the posterior distribution (3.10). 

In the classical analysis of data which are assumed to arise under the 

Bradley-Terry model, the method of maximum likelihood has been used to provide an 

estimator for n. In particular, Ford (1957) has shown that if the observed fre-
"' 

quencies of preference w satisfy the partitioning assumption stated in Section 3, ,.., 

then the likelihood f (J!,: ·~) = h (E: ~ ~) has a unique maximum in the interior of 0. 

By analogy, we can use the mode ;e.':·(~) of the posterior distribution f(!!,: ~) = 

h(TI: s1 n1 ) to estimate n. 
,...., ,.._,,,....., The mode exists and is unique provided ~ satisfies ,..., 

the partitioning assumption, a condition which holds for w1 if it holds for either ,.., 

w or w0 , and is obtained as a solution to the equations in the posterior parameters 
"' ,.., 
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··,··· 

p* \ n1 / (p* + p*) = 
i L iJ i J. i = 1, ' .. t. (4.1) 

j 

Ford also describes an itera.tive scheiQe for solving the abov~ equations which he 

shows converges mnotonically to the unique solution p*(w ). If the partitioning ,..., ~ 

a.ssumption does not hold for wl, we· can partition the objects into several subsets 
~ 

so that in each the assumption holds· 'for. w and hence for w1 • 
. ~ ~ 

The second estimator for 1'r to be. eonsidered is the Bayes estimator under a 
I'¥ 

quadratic loss function, namely p(lv) =. E(n!w = w.), the posterior mean of n. ,..,I"V ,...,rv ,..., . rtJ 

Setting N1 = Es~ = E n~j and t. = E~i' it follows that 
i<j i 

• ·n(s~ + ~1 + 1, • • ·, s~ + ~t + 1), j = 1, • • ·, t, 

where c(~,~1 ) and K(~1 ,~1 ) are defined in (3.7) and (3.9} and where L denotes 

~ 

summation over all vectors of nonnegative integers. 
t 

(4.2) 

j = 1, 2, ···, t and E pj(~ = 1. Expression (4.2), although not in closed form, 
j=l 

will be Used in examining properties of the ranking determined by t<!>· 

In that the worth parameters n of the Bradley-Terry model determine the true ,... . 

ranking of the objects, it is reasonable to use an estimator of n to provide an ,..., 

estimated ranking. In particular, we can use the rankings determined by £*(!) and 

p(w), rankings which are meaningful for any set of posterior parameters (s1 ,n1 ). 1'-J,...., ,.,., ~ 

When n~j = n for all (i,j), a condition which can be referred to as posterior 

balance, the posterior scores s1 also determine a meaningful ranking. 
~ . 

The condition 
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of posterior balance depends only on the prior parameter n° and on the design n ,..... ,..,. 

and does not depend on the observed responses. If an experimenter, after speci-

fying n°, desires the same posterior information, as measured by n1 , about each ,..... ,... 

pair (i,j), i < j, then he could select n to achieve posterior balance. It will 
"" 

now be demonstrated that under posterior balance, the ranking determined by s1 is ,... 

a Bayes ranking for a wide class of loss functions, and furthermore that the 

rankings determined by ! 1 , ~~~(~),and~(~) are identical. When posterior balance 

does not hold, the ranking determined by s1 is obviously inappropriate, but the ,..,. 

other two rankings are still meaningfuL 

A decision theoretic approach to the problem of ranking the objects in a 

balanced paired comparison experiment has been taken by BUhlmann and Huber (1963). 

When consideration is restricted to ranking procedures which are permutation in-

variant, they have shown that the ranking based on the observed scores s is uni-,... 

formly best, with respect to an "acceptable" loss function, if and only if the 

underlying probability structure is given by the Bradley-Terry model. An 

"acceptable" loss function has the property that the loss does not decrease when 

the ranking is made worse by interchanging two objects. 

More specifically, let D denote the set of all possible rankings 

~ = (d1, ···, dt), where di is the rank of the ith object, and where di < dj means 

i is ranked ahead of j. A ranking in which there are no ties is represented by 

ad which is a permutation of the integers (1, 2, •••, t). In representing a 
I'V ...... 

ranking with ties, the rank of each object in a tied group is the average of the 

ranks associated with the tied group. Clearly, the number of rankings in D is 

finite. For every permutation a e Z, the group o:f permutations of the integers 

(1, 2, ···, t), let~= (da(l)' •••, da{t)) and Eo= (rro(l)' ···, na(t)). For 

any specific pair (i,j), let __ a be the permutation which interchanges the 1tb and 
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Definition: A loss function L(~~) defined on 0 X D is said to be acceptable if 

(i) 

(ii) 

L(rr,d) = ,.... ,.... 

L(rr,d) ~ 
""' "" 

L('!!a 1 ~) for every permutation a € .E, 

L( rr, 9-,.J when rr. ~ rr . and d. ';;!: d .• 
~·~ 1 J 1 J 

When the prior structure of Section 3 is imposed, the arguments presented by 

BUhlmann and Huber (1963) can be modified to give the following: 

Theorem 1. If n~j = n1 ~ all pairs. (i,j), ~ for any acceptable loss function 

L('!J/ ~) the ranking determined by the posterior scores ;?_,1 = !?.., + ;?_,0 ~ Bayes with 

respect to the prior h(rr: s 0 ,n°). --- ""' """"' 

Proof: The set D of nonrandomized rankings is finite so that there exists a 

ranking d~' € D which: minimizes the Bayes risk or equivalently the posterior risk 

t 
11 s~ J.~ 
f I Tri j f i (rri 

i=l i<j 

r(d: s1 n1 ) = K(s1 n-J. >. I L(rr d) ""'-' _,_ ~-

0 

nl 
+ rr.) (drr). J ,...., 

If we let 0 0 = (!!,: TTo(l) ~ rr0 ( 2 ) ~ • • • ~ Tro(t)J, where by convention we take 

o(i) < o(i + 1) < ••• < o(i + k) when for some ~TTa(i) = ••· = rro(i + k)' then 

(0 , a € .E} constitutes a partition of 0 into t! disjoint convex regions. Let 0 a e 

correspond to the identity e = (1, ••• 1 t) of I:. For each aE:.E, TT€0 implies 
"" 0 

11 = TT € 0 • If \) = o"l, then applying the transformation o to 0 gives 
"" NJ e a 

t 

r(d: s1 ,n1 ) = K(s1 ,n1 ) \I L(rr,d) 1rrrr~~/TfCrr. + rr.) 01 (drr) ,...._ ,..., ,..., ,...., L ,...,,..... II 1 1 J ,..., 
a 0 1=1. · i<j 

0 

t 

= K(~ ~~)I J L(~,~) rr 1l~ti) I rr (111 + 1lj)nl (d]) 
0 0 i=l i<j e 

= K(£ ,~1) J 
0 

e 

t 

I L(~,~) lT 11~ti) / Tf (1li + 1lj)n1 (d:!)) 
\) i=1 . i<j 

(4.4) 
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where the last equality follows in that I and L denote summation over all permu-
o v 

tations in E. 

Consider the fixed but arbitrary pair (i,j) and let ~be the ranking obtained 

from d by interchanging the ith and jth elements. Noting that cx"1 = ex and using ,.._, 

the invariance (condition (i)) of~ .acceptable loss function, we obtain 

(4.5) 
t 

= K(~l ~~l) I L L(R,,~) IT Tli(i) I rr (11i + nj )nl (d)}). 
0 v i=l i<j e 

Combining the last expressions of (4.4) and (4.5), it follows as in BUhlmann and 

Huber (1963, p. 509) that 

(4.6) 

Now suppose that s~ ~ sj and di ~ dj (so that i is ranked ahead of j). For each 

11 e: 0 and each veE we have ,..._ e 

sl sl sl sl 
L(11 ,d) ~ L(Tl ,~N) and Tl ~ )Tl ~ ) ~ Tl t Tl ~ ) when v(i) < v(j) ,..;).,) ,... ,..;).,) """"' V\i V\j V j) V\i 

where the inequalities on L(Tl,d) follow from condition (ii) of an acceptable loss ,..._,... 

function. The other inequalities follow from the fact that if a2 ~ a1 > 0 and 
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b b b b b 2 ;;:.: b1 then a1la2~ ;;:.: a12 a21, or eq_uivalently, by use of logarithms, a1b1 + a2b2 ;;:.: 

alb~ + a2bl. By applying the latter fact to the bracketed term in (4.6) for each e 
'Tl€0 and v€1:, we conclude that r(d: s1 ,n1 )::; r(9-rv: s1 ,n1 ). ,... e ,...,..., ""'""'"" 

It then fo,llows that if sgn(s~ - s~) = sgn(d·:;- - d-1::-) for each pair (i, j), then 
~ J J 

the ranking d'':· minimizes the posterior risk. That is, the ranking determined by 
""" 

s1 is Bayes. 
I"J 

The equivalence of the rankings determined by s1 p·n- ( w), and :P ( w) will now be ,...., ,...., ,.._ ,....,~ 

established. 

Theorem 2. If n~j = n1 ~~pairs (i,j), ~ ~ rankings determined by~ 

posterior mode p·~(w) and the posterior mean p(w) are identical with the Bayes __ ,....,,..., -- ---.~l""eJ- ---
ranking determined by the posterior scores s1 • 

Proof: (i) · posterior mode p"~(w). As in Ford (1957), it follows from (4.1) that 
. """ ,...., 

t 

1( ~, ") \ J'/(" = n Pi- Pj LPk Pi 
k=l 

Thus, sgn(p1- Pj) = sgn(s~ - sj) for each (i,j) and the rankings determined by 

p*(w) and s1 are identical. 
'"" ""' 

(ii) posterior mean p(w). From (4.2) we obtain 
,..., "' 

i\ - pj = (s~ - sj)K(~1 ,£1 ) L c(~,~l )(N1 + t. + t)"1 D(s~ + .tl + 1, 
t 

•••, s~ + .tt + 1) 

(4. 7) 

+ K(~1 ,;[) L C(b£.1 )(N1 + '-. + t)-l(ti- .tj)D(s~ + t 1 + 1, ••• s~ + .tt + 1) • 

.t 
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If ~1 = n1 (!, - f), then C(b~1 ) = C(£:a;;l) where. £:a is obtained from! by inter­

e.- changing the ith and jth elements. Then by pairing terms which arise from !:. and Az, 
the second member of (4.7) becomes 

where 

Noting that g(x) = tn r(x) is continuous and convex, it follows from inequality 

#368 of Hardy, Littlewood, and Polya. (1934, p. 261) that for each term in the sum 

(.ei > .ej), 

Thus, sgn(p1 - pj) = sgn(sl - sj) for each (i,j) and the rankings determined by 

R.<!) and ! 1 are identical. 

5. DISCUSSION 

We have formulated a Bayesian approach to paired comparison experimentation 

under the multi-binomial and Bradley-Terry models and have provided two estimators 

of the model parameters (assuming a na.tu;al.co~;tjugate prior.distribution) for each 
. ~-. : ;· .. • I • 

model. Furthermore, in the Bradley-Terry case, if the experimental design and 
..... • 

·': "!''•'- .:. ,· •. 

prior distribution satisfy the criterion of posterior balanCe"·-then for a large 

class of acceptable loss functions, a Bayes ranking of the worth parameters is 

explicitly calculated and shown to coincide with the ranking determined by each of 
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the two estimators. Thus, if the: .objective is ranking the worth parameters by 

their estimates, which are not easily calculated, one can easily calculate the e 
Bayes ranking with the assurance that it agrees with the ranking provided by these 

estimates. 

An interesting and unsolved problem is.the nature of the Bayes ranking when 

posterior balance does not obtain, and the extent to which this ranking agrees 

with those determined by the estimators given here of the parameters of the 

Bradley-Terry model. A second problem of interest is the formulation of optimality 

criteria for the design parameters n of the paired comparison experiment. One ,.., 

possibility, when estimation is the goal, is to choose an n which tends to yield . ,.,_ 

a tight posterior distribution, and is subject to a constraint such as E nij = N. 
.. . i<j 

Another is to propose a cost associated with each statement of preference and 

minimize the sum of this cost and the Bayes risk of the Bayes rule for the given 

loss function. 
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