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SUMMARY

We have formulated a Bayesian approach to paired comparison experimentation
under the multi-binomial and Bradley-Terry models and have provided two estimators
of the model parameters (assuming a natural conjugate prior distribution) for each
model. Furthermore, in the Bradley-Terry case, if the experimental design and
prior distribution satisfy the criterion of posterior balance, then for a large
class of acceptable loss functions, a Bayes ranking of the worth parameters is
explicitly calculated and shown to coinclde with the ranking determined by each of
the two estimators. Thus, if the objective is ranking the worth parameters by
their estimates, which are not easily calculated, one can easily calculate the
Bayes ranking with the assurance that it agrees with the ranking provided by these

estimates.
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1. INTROLUCTION

The testing of a set ﬁf:items for preference on o&erall suitability or on
specific characteristics often requires of the respondent the ability to mske very
fine sensory discriminstions based on coﬁplex physioclogical processes. To remove
some of the confusion associated with simultaneously comparing several objects,
the method of paired comparisons.has been wideiy employed. In paired comparison

experimentation, expressions of preference are obtained for all possible pairs of
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objects in the set of Interest. The data from such experimgpts are used, among

other things, to ranl;__!the objects in order of preference. League competitions and .
round-robin tournaments provide additional examples of situations in which rankings

are based on the performance of'objééts'when they meet in pairs. The method of

paired comparisons has been discussed in s monograph by David (1963).

A number of mathematical models for paired comparisons have been introduced,
the most notable being the Thurstone-Mosteller and the Bradley-Terry models. Less
structured models under which the responses to each pair are considered to arise
from distinct binomial experiments have also been used. Models of this type are
referred to as mlti-binomial models. The preference probebilities of the multi-
binomial model can be required to satisfy trénsitivity constraints of varying

severity.

The present paper undertakes a Bayesian approach to the analysis of data
arising from paired comparison experiments. Two statistical models are considered: ‘
the milti-binomial model (Section 2) and the Bradley-Terry model (Sections 3 and 4).
The objectives are (i) to provide estimators of the preference probabilities of
the multi-binomial model and of the worth parameters of the Bradley-Terry model,

and (ii) to provide a ranking of the objects in the set of interest.

Por each statistical model,.the ﬁétural conjugate family of priors can be
used to represent a wide variety of prior beliefs. Furthermore, the prior
parameters are shown to have meaningful interpretations in the sense of "equivalent
prior sample information" as discussed by Winkler (1967). The prior-posterior
analysis for the multi-binomial model is a direct extension of that for the single
binomial. While less tractable, the prior-posterior analysis for the Bradley-Terry

model has a nunber of interesting features which result from properties noted by

Ford (1957). . . ‘
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In the estimation ﬁrobleng iwo“approaches to using the posterior distribution
. are considered. In the first approach the modal point of the posterior is used as
the estimator of the paramétérs. This'is analogous to the use of the maximum
likelihood principle in the classical analysis of paired comparison data. The
second approach is to obtain the estimator which, for a specified loss, minimizes

the Bayes risk.

The ranking problem is a more complicated one and has been considered
(Section h) only for the Bradley-Terry model where either the mode of the posterior
or the mean of the posterior (the Bayes rule under quadratic loss) can be used to
provide a ranking of the objects. In certain "balanced" situations an intuitive
ranking based on the posterior parameters can be shown to be the Bayes ranking for
. a large class of loss functions. This development parallels the discussion of
optimal ranking procedures given by Blihlmann and Hubef (1963). In the presence of

such balance it is shown that the three rankings referred to above are identical.

2. THE MULTI-BINOMIAL MODEL

One can formulate probability models for paired comparisons which have varying
degrees of structure. A relatively unstructured model can be described as follows.
Suppose that t objects are to be tested in pairs with nij responses being obtained
to the pair (i,j). Each response consists of an expression of preference for
either object i or object j; expressions of no preference are not permitted. Let

6=10[06,,;1i,j =1, *++, t], where 8

i 13 is the probability of preference for object i

i3

over object J, eij + eji = 1, and where for convenience 9ii = $. Also set

n = [nij; 1, =1, *++, t] and w = [wij; i,j =1, *+-, t], where Vis is the ob-

served frequency of preference for object i over object jJ, wij + wji = nij’ and -

n.. = w., = 0., Then under the assumption that all pairwise comparisons are

‘I' ii ii
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stochastically independent, the statistical model is defined by the probability

function

ple(E‘g) = /'[ (:”) ste"n . (2.1)

The probability function (2.1) is a product of independent binomial proba-
bility functions and will be referred to as the multi-binomial model. Under this
t
model we effectively analyze the data w as though it had arisen from <2> separate

experiments. For instance, in estimating 6, . we would only use the observed

i3

frequency w,. obtained in the comparison of the pair (i,3). Although use of the

iJ
model (2.1) in which there is no structure on § (other than 9 + e = 1(t X t))
unrealistic in most situations, it is instructive to examine possible prior-

posterior analyses for g, The development will be of value in understanding the

corresponding analyses for models which impose additional structure on Q.

The prior-posterior analysis is a straightforward extension of that for the
single binomial model. Following the spirit of Raiffa and Schlaifer (1961,

Section 3.2), it follows directly that the conjugate prior distribution for E is

~

T o¥iigYit = L w0) 3
pE( ) = K(w) ey 15053 = = g(8:w°), 8 €4, (2.2)
where A = {2: Q0 < eij <1, ei,j + eji =1; 1 # 3, 1,3=1, ¢, t};
WO = [le’ i, 3 =~%, **+, %] is a matrix of prior parameters, ng > -1, wgi = 0,
and where
(o] - o] (o] (o] (]
() = JIT(ugy + vl + 2)/T(g, + 1ITGS, + 1) . (2.3)
i<j

Under (2.2), the elements of 8§ corresponding to different palrs are independentl&
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distributed with Ei i Beta(ng + 1, wgi + 1). Although this independence may be
undesirable, it is compatible with the nature of the statistical model.

Setting n° = [ngj; i,j =1, *+-, £} with ng =wl, + w°

0 4
} J ij Ji
an equivalent form of (2.2) in terms of the lower halves of the matrices w° and n°.

= ngi, we can obtain

The prior (2.2) is properly defined and continuous over the interior of A whenever

[¢]

wij > -1l foralli,j=1, ***, t. Moreover, when E? is nonnegative, (2,2) has a

g

unique modal point in A at §" where eij = It ng = 0 for some i # j then

(0] [o]
13/7%5°

6 is on the boundary of A, but if w$, > O for all i # j then (2.2) is zero on the

0
iJ
boundary of A and §* is in the interior.

When they are nonnegative, the parameters EP can be interpreted in the sense
of "equivalent prior sample information" as described by Winkler (1967). In

. 0 (o]
specifying (wij’ Wi

menter can be viewed as saying that he belleves that of n®, expression of preference

13

for the pair (i,3), ng will favor object i. The ratio w;.’_j/n‘;J

experimenter's prior assessment of the “most probable" value of ©

) or equivalently (ng, ngj) for each pair (i,j), the experi-

represents the

13 and corresponds

to the modal point of the prior distribution, while ng represents the degree of

J
confidence that the experimenter has in his expressed belief. Larger values of

ngj indicate greater confidence on the part of the experimenter, and stronger
indications from the data will be required in order to substantially alter the

experimenter's prior beliefs about eij.

The posterior distribution for E is given by

lo
=
=]
a—_
o
m
>3

1 1
rgly(ele) = () TTefiselis = (2.4)

i<y

where K(+) is given by (2.3), and where the parameters ¥ of the posterior distri-

bution are obtained by combining the data z‘with the parameters z? representing



T
=w+w. Alson =w +w"~ =n+n°,
~ ~ "~ lad ~d

~ ~

the experimenter's prior beliefs, }g}

Inferences about the preference probabilities g can be made on the basis of
the posterior distribution (2.4). In particular, we will consider the estimation
of 8. One approach would estimate § by the mode 8%(w) of the posterior distri-
bution, 6? 5 (w) = w;j/n; 5" This is analogous to the usual maximum likelihood

estimator §, 613 = w; /By, obteined under the statistical model. Alternatively,

iJ
one might adopt a decision theoretic gpproach and estimate § by the Bayes rule
corresponding to the assumed loss function. Under quadratic loss, the Bayes
estimator for § is the mean E(Vi) = E[EIE = w] of the posterior distribution,
850 = Wiy + 1)/ (nfy + 2).

Let us now turn attention to models which impose additional structure on the
preference probabllities B. Such structure can be of two types: (1) a specific
parametric form for the preference probabilities g, or (ii) a set of constraints
on the space A for Q. The models due to Thurstone-Mosteller and Bradley-Terry are
examples of parametric structure. The second of these models will be treated in
subsequent sections of this paper. Transitivity constraints provide an example of

the second type of structure and will now be discussed.

When the preférence probabilities g are unconstrained, a problem arises in
defining a ranking of the objects based on 8. This problem can be resolved by
requiring g to satisfy a transitivity constraint. Two such conditions have been

used:

weak stochastic transitivity (cl): for every triad of objects (i,j,k)

04 2% and 8k 2% imply 8, 2%, (2.5)

strong stochastic transitivity (CZ): for every triad of objects (i,j,k)

055 =% and 6, =% dmply 6,, = mex(o (2.6)

13 157 )
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The stronger condition is not necessarily warranted in all situations. For a

Bxal

discussion of this point see David (1963, p. 13) and Iuce (1961). Conditions ¢,

and 02 each lead to a well defined ranking of every triad and hence to a true

ranking of the set of t objects. The ranking defined by condition 02 is precisely

that determined by the row sums of @, cf. David (1963, p. 19).

The transitivity constraints C, and C2 lead to corresponding modifilcation of

1
the prior and posterior distributions. Let
Ai = {g: g € A and satisfies Ci}, i=1, 2.

Then if 9y denotes the probability measure under (2.2) of the region Ai, the prior

and posterior distributions are given by

p5(8) = ¢ &(8: W)
6 ed
5 1

P3| (ely) = ¢} &(9: )

respectively, 1 = 1, 2, where g(98: +) 1s defined by (2.4).

As for the estimation of g on the basls of the posterior distribution, the

constraints C; éﬁd’ce pléy a major role. To obtain the modal estimator wé determine

whether the ratios w;j/n;j satisfy the constraint Ci; if they do then these ratios
couprise the modal estimator 6"(w); if not then §%(w) is on the boundary of A,
The search for the Bayes rule corresponding to a specified loss function poses
greater éroﬁiéﬁs. In keeping with the spirit of the constraint Ci’ we would

restricﬁwatféﬁéiOn to estimators téking values in Ai. ‘Since Ai is not convex the

resulting estimation problems require compIicatedibpffﬁization techniques.
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3. PRIOR AND POSTERIOR ANALYSIS UNDER THE BRADLEY-TERRY MODEL

The model for paired conmaris'ons presented by Bradley and Terry (1952) imposes
a parametric structure on the preference 'probabilities. 9, It is assumed that the
respdnses to the objecﬁs may be described in terms of an underlying continuum on
which fhe "worths" of the objects can:be relatively located. If we let 1 ; denote
the "worth", an index of relative preference, of the i'"™ object, my 2 0, then the

Bradley-Terry model postulates that

913 = ni/(ni +'ﬁj) for all (i,3). (3.1)

Since 9, is invariant to multiplication of 7 = (m by a nonzero constant,

’ 0.0’ ‘n )
t
. \ l t
we will assume without loss of generality that z rri = 1. This same model had
i=1

been proposed earlier by Zermelo (1929), and was subSequently independently pre-
sented by Ford (1957). A summary of various representations of the model (3.1) is

given in Bradley (1965). | ‘

The Bradley-Terry model has the advantage that the parameterization
T = (nl, vee, "t) is in terms of the set of t objeci;s of interest, whereas the
parameterization 6 of the multi-binomial model is in terms of the (;) paired com-
parisons. Moreover, under the model (3.1) , the preference probasbilities g satisfy

the strong transitivity condition (2.6): for

Oy = 03305/ (83305 * 8548405

=1 2 =
and when Qi j 22 then © 1k ejk , and similarly, when

81395/ 013(0p + Bcy)

9., 2% then 8 The true ranking of the objects determined by § is pre-

jk ik J°
cisely the ranking determined by .

261
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When the Bradley-Terry model is assumed to hold, the statistical model (2.1)

becomes

n,, :
PE‘E(E‘E‘) = ﬂ ("’i;) n;].un‘;“/(ﬂi + nj)nié (3.2)
| 143

where w = [wij; i, =1, *++, tl and n = [nij; i,j =1, +++, t] are defined as for

t
the model (2.1). If we let s = (s,, ***, s, ) where s, = X w,., the total number
~ l .t 1 J'.__.l iJ
of preferences for the i'® object, then (3.2) can be written
t
Gl = (T702) 71 Gt D, + w720 (
PEIEEE = n"i ]T Weg \Ty 7 T . 3.3)
i=1 1<

The statistic (s,n) is sufficient for the statistical model.

The conjugate prior distribution for 7 obtained from (3.2) has density

(m) = c(w®) []riiemSe/(my + m P10 = 2(n: w0), g € O (3.4)
PE’,Z’ W Ini nj m nJ. =flm:vw’), 1 el 3.
i<3
t
where Q = {E:ﬁi 20, i=1, **+, t, iZlni = 1}, and where wo = [w‘;j; i, = 1,000,%]
(o] OT

is a wmwatrix of prior parameters w;?_'j =z 0, and go =w +tyw o as in Section 2.

Alternatively, if we let s° = (sg_, cen, s‘%) be the vector of row sums of w°,

t
s = = w9, then (3.4) can be rewritten as
17 504
t
0 .0 = S? n 0 ,0
pp(n) = K(s%,m0 N\ [ nit)/ [] (my # m)"t8 =n(m: 5°5°), me . (3.5)
~ i=1 1<y

The form of the constant K(+, ¢) will be described later. Each (s°,n°) determines
exactly one prior distribution so that all matrices w° with the same s° = w°1 and

n® = w° + w 1 represent equivalent prior beliefs,

~ ~ ~
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The prior distribution is properly defined and continuous on Q whenever E? is
nonnegative. This is clear from (3.4). By the definition of s° and n° in terms of .

i = 1,0'."'5’

_, t
w°, the prior distribution in the form (3.5) requires that 52 < ngj,
j=1
t

and that £ s = 2% ng..
i=1 i<j 9
In eliciting the prior beliefs of an experimenter, the prior parameterization
w° is likely to be more effective than (s°,n°). The problem with asking the

experimenter to specify (EP,EP) is that the conditions referred to in the preceding

paragraph mist be satisfied.

The interpretation of KP is identical with that under the conjugate prior

(2.2) for the multi-binomial model, namely that the experimenter believes that of

o]

n® °
i

3 responses to the pair (i,j) in a conceptual experiment, wij

will favor object i.

As suggested before, ngj

to the outcome for the pair (1,j).

represents the strength of the experimenter's belief as

Suppose now that'zf'Satisfies the following assumption introduced by Ford

(1957).

Assumption: In every partition of the indices {1, **+, t} into two nonempty sets
‘T and J, there exists ie€I, jedJ such that ng > 0. Equivalently, for each (i,j)

there exists a sequence of indices 1., 1 oo, im with 1, = 1 and im = J such

0’ v 0

that w, | >0fork =0, 1, **+, (m- 1).
klk+1

This assumption essentially means that we are assuming a priori that the set
of objects cannot be partitioned into two sets where the objects in the first set
are dominated by the objects in the second. Under this assumption, Ford shows that
h(g; E?,E?) has a unique mode 7" in the interior of Q, which is obtained as fhe

solution to the equations
t

e anj/(n"{ + nJ) = s;, i=1, *o0, t. .

i
J=1
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If we now let w?j = nci’ J'rrl/ (1'rl + rrf]') it follows that w° and w* are equivalent prior
. parameters. Thus the specified w° can be interpreted as a specification of EO and

the preference probabilities nl/ ('rTl + Tr';) , which correspond to the a priori most
probable T. Furthermore, S?. can be interpreted as the total number of preferences
for the i'" object in the conceptual experiment which corresponds to 50 and the

prior mode ¥, 1 =1, 2, ***, t.

It might seem that the Dirichlet distribution with density

-1 -1 a, -1
pn(g) =D (a.l, cee, at)ﬂ?_'l eemt, meQ, a >-1
where

D(ay, ***, a,c)_‘= E I‘(ai)/f'(iai)

would provide a reasona.bie family of prior distributions. This corresponds to a
member of the conjugate family only if ?ai = t, in which case ’go =a - ,:L and
‘ n° = 0. Moreover, %° = O is the only nonnegative w° which ylelds a Dirichlet

prior, namely a = 1, the prior which is uniform on Q.

An interesting feature of the conjugate prior (3.5) , however, is that it can
be expressed as an infinite mixture of Dirichlet distributions. To exhibit this
we note that if m 20, u = (ul, vee, ut) is a vector of nonnegative integers, and

ui,j = {E uy = uy = 0}, then for the pair (i,j)

=]

(my + ﬂj)-m = ZCH +Z ) l)( z "k)u

=0 kFL, g

m+u -1 u u, u

o 00 z

z ( u >(ul, see, ut> TTl nt
5@(13 ‘

(3.6)

u
where the last equality follows from the multinomial expansion of z Trk> when
Fi,3

‘ modified to include 'r'l':.L and 1, with zero exponents. In that we are to consider the

J
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product of the expansions (3.6) over all (4,j) with i < j, we will identify the

m, u, and u which correspond to the pair (i,3) by mij’ u 13’ and 513, respectively. ‘
~ R *»

)"™ 14 is the product of (;) terms, one

Each term in the expansion of I (m, +m 3

S
from each of the sums (3.6) which correspond to (i,j), i < j. If we let &= X ‘Uij,
o 1<)

then each term in the expansion corresponds to a g = ) e

(W10 Wiz **s Beeoa)
For each vector £ = (2, =, Zt) of 'no,nnegati\_re integers, let

5, = {g: ges, = By 2}. The sets , define a partition of 4. Thus
~ 1<5™ ~ b

. - ' 4 4
[l ry # )™ = ), olhgingt oo i
1<) s

~s

where

] ml '+ u | v— l‘.. u
c(4m) = N T3 (3.7)
o ge i];[j ( u')icj )(ul:ij’ ? utl ij) '

~

and where Z denotes summation over all vectors of ndnnegative integers.
2

~

We can now write ~h('t':rl: r,m) of (3.5) as

n(m: r,m) = X(z,m) Z C(ﬁ,z)ﬂ’f”“ cor it th (3.8)
4
where .
C - N -l X :
(K@m =) c(bm) Dz, + 4 +1, o,z + 4 + 1), (3.9)
4@ .

~

One property of the coefficients C(,‘&’E) which will be of importance in

Section 4 is the following: if m, , = m for all (1,3), then c(,{&)m(}v - 5)) =

J
C(&G,m(i - g)) for any permutation £ of Z.



The posterior distribution for E is given by the density

~ ~ o~

pplynle) = £(z: @) = nlg: gHn'), g e (3.20)

where f(m: +) and h(y: », ¢) are defined by (3.l4) and (3.5), respectively. The
parameters xl or (gl ,r’g) of the posterior distribution are obtained by combining
the data W or (s,n) with the prior parameters w® or (s°,n°). Specifically,

1 0

v =w+w, s =5 +s
o d ~ ~ ~e

~ ~

t
, and n* = n + n°, Furthermore, si = Z w; and
1 1T

21 =w + v The vector ;;-sf will play a central role in the next section and

~

will be referred to as the posterior scores.

L, ESTIMATION AND RANKING PROCEDURES

The selection of an estimator for the vector of worth parameters T of the
Bradley-Terry model is of central interest. Such an estimator can be used to
estimate the preference probabilities as defined by (3.1). A second feature of
an estimator of 1 1s that 1t can be used to provide a ranking of the set of objects.
The properties of such rankings will be discussed, but first let us proceed to a

discussion of two methods of estimation based on the posterior distribution (3.10).

In the classical analysis of data which are assumed to arise under the
Bradley-Terry model, the method of maximum likelihood has been used to provide an
estimator for m. In particular, Ford (1957) has shown that if the observed fre-
quencies of preference W satisfy the partitioning assumption stated in Section 3,
then the likelihood f£(rm: w) = h(m: s,n) has a unique maximum in the interior of Q.
By analogy, we can use the mode p¥(w) of the posterior distribution £lm:wt) =
n(m: s',n') to estimate m. The mode exists and is unique provided w' satisfies
the partitioning assumption, a condition which holds for v'f if it holds for either

W or yf’, and is obtained as a solution to the equations in the posterior parameters
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%Z K% pp=s; 1=1, 00 (.1)

Ford also describés an iterative scheme for solving the above equations which he
shows converges monotonically to the unique solution g* (w). If the partitioning
assumption does not hold for }Ll , we can partition the objects into several subsets

so that in each the assumption holdS"forAvﬁz’ and hence for yj'.

The second estimator for 11 to be .considered ‘is the Bayes estimator under a
quadratic loss function, namely p(w) = E(gl}l = ), the posterior mean of I.
Setting N* = Zst = Z n', and 4 = 24, 1t follows that

1 13 . 1
i<j ‘ i
5§y=x@5g)2agg{@3+g+lvml+A+tﬂ
4 (k.2)

° /D(si"' Ll'i' 1+ S}b + zt +1),5=1, **°, t,

where C(4,n') and K(g",gl) are defined in (3.7) and (3.9) and where Z denotes
)

summation over all .vectors of nonnegative integers. Note that O < f’j (w) <1,

j=1,2 ', tand JflpJ(J

‘will be used in examining properties of the ranking determined by i(z)

1. Expression (4.2), although not in closed form,

In that the worth parameters T of the Bradley—‘l‘erry_ model determine the true
ranking of the objects, it is reasonable to use an estimator of T to provide an
estimated ranking. 'In' p.a.rbicular » Wwe can use the rarnkings determined by R*(",L) and
p(v), rarkings which are meaningful for any set of posterior perameters (s’ ’E.l)'
When n;j = n for all (i,Jj), a condition which can be referred to as posterior

1

balance, the posterior scores 3 also determine a meaningful ranking. The condition
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of posterior balance depends only on the prior parameter 2? and on the design n
and does not depend on the observed responses. If an experimenter, after speci-
fying E?, desires the same posterior information, as measured by Ef, about each
pair (1,j), i < J, then he could select n to achieve posterior balance. It will
now be demonstrated that under posterior balance, the ranking determined by §} is
a Bayes ranking for a wide class of loss functions, and furthermore that the
rankings determined by s, p*(w), and éﬁﬁ) are identical. When posterior balance
does not hold, the ranking determined by E} is obviously inappropriate, but the

other two rankings are still meaningful.

A decision theoretic approach to the problem of ranking the objects in a
balanced paired comparison experiment has been taken by Bilhlmann and Huber (1963).
When consideration is restricted to ranking procedures which are permutation in-
variant, they have shown that the ranking based on the observed scores s is uni-
formly best, with respect to an "acceptable" loss function, if and only if the
underlying probability structure is given by the Bradley-Terry model. An
"acceptable" loss function has the property that the loss does not decrease when

the ranking is made worse by interchanging two objects.

More specifically, let D denote the set of all possible rankings

4= (dl, ceny dt), where d; is the rank of the it® object, and where 4, < dj means
i is ranked ahead of j. A ranking in which there are no ties is represented by

a Q'whicé-is a permitation of the integers (1, 2, **+, t). In representing a
ranking with ties, the rank of each object in a tied group is the average of the
ranks associated with the tied group. Clearly, the number of rankings in D is
finite. For every permutation o €L, the group of permutations of the integers

(1, 2, =+, t), let d = (do(l), see, dc(t)) and T _ = (.—rc(l), e, "o(t))' For
any specific’pair (i,j), let @ be the permutation which interchanges the i'® and
th

j** elements of d; that is, da(i) = dj, aa(J) = d,, and da(k) = 4 when k #1i,3.
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Definition: A loss function L(T;TI,Q.) defined on 2 X D is said to be acceptable if
(1) L(mq) = L(Eo’g.o) for every permutation ¢ ¢ I,

(i1) L(m,d) = L(g/.ga) when . < .nj and d, 2 dj.

When the prior structure of Section 3 is imposed, the arguments presented by

Bithlmann and Huber (1963) can be modified to give the following:

Theorem 1. If ng 5= n' for all pairs (i,j), then for any acceptable loss function
1 -

L(tm,d) the ranking determined by the posterior scores s' = s + s° is Bayes with

respect to the prior h(m: s°,n°).

Proof: The set D of nonrandomized rankings is finite so that there exists a

ranking d* € D which minimizes the Bayes risk or equivalently the posterior risk

r(d: s*,n!) = K(il,gl) f L(m,d) Tr S*—/ f (n +my 2 (dﬂ) (4.3)
Q i=1 i<
If ve let Qo = {TL’ nc(l) < no(e) < cee g ﬂc(t)}’ where by convention we take

o(i) <o(i +1) < *+* <o(i + k) when for some K Tog) = 0 then

Mo(1 + x)?
{Q0 R ceZ} constitutes a partition of Q into t! disjoint convex regions. Let Qe
correspond to the identity e = (1, «++, t) of £. TFor each ceZ, Te ch implies

0= Ty eQe. If v =g , then applying the transformation o to Qo glves

K(s* ,nl)Z f L(m,d) ’T'ﬁ /” ('rri + nj)nl(dgl)

i=1 i<j

i}

r(d: s*,n')

k(g2 ) [ 1,9 nﬂ )/rm PR (@) ()

c Q i=1
e

- x(ghm) [ L e [Ty /T + 1) (@)
Q v

=1 i<j
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where the last equality follows in that Z and Z denote summation over all permu-

o v
tations in Z.

Consider the fixed but arbitrary pair (i,j) and let d,, be the ranking obtained
from 4 by interchanging the i*® and j'* elements. Noting that o' = a and using

the invariance (condition (i)) of an acceptable loss function, we obtain

]

r(a: gt,nt) = x(s,at) | ) 11 ,0) U%a(l)/ﬂ(“ )% (@)
Q v

i<
(L.5)

]

. |
2,20 | L) M /T (g + 1,07 @D,
Qe v i=1 i)

Combining the last expressions of (4.4) and (4.5), it follows as in Blthlmenn and

Huber (1963, p. 509) that

~ o~ ~

r(a: g nt) =:%K<s‘,gl>0f LGRS LR WL Y
(4.6)
i “f}(k)/ﬂ (my + “J)nl(dn)‘
kFi, 1<

Now suppose that s’i = 83 and 4, s dj (so that i is ranked ahead of j). For each

ﬂe Qe and each ve £ we have

L,0) = T0,.q,) and My s 15, vmen v(1) < v(9)

DM’QG) and thi)nVij) 2 nitj)niti) when V(i) > V(J)

where the inequalities on L(7,d) follow from condition (ii) of an acceptable loss

function. The other inequalities follow from the fact that if a, 2 a, > 0 and

1
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b, by o b, by . | » S
‘o2 z bl then aita, a;”ast, or equivalently, by use of logarithms, albl + a2b2

albé + asb,. By applying the latter fact to the bracketed term in (4.6) for each

Nel, and V€E, we conclude that r(d: st,n') < r(d,: gt ).

It then follows that if sgn(s’i - s}) = sgn(dsf' - d"i") for each pair (i,j), then
the ranking g.f minimizes the posterior risk. That 1s, the ranking determined by

’sj‘ is Bayes.

The equivalence of the rankings determined by s g“(xi) , and p(w) will now be

established.

Theorem 2. If n; 3 = n* for all pairs (i,j) , then the rankings determined by the

posterior mode p*(w) and the posterior mean p(w) are identical with the Bayes

ranking determined by the posterior scores il .

Proof: (i) posterior mode p¥(w). As in Ford (1957), it follows from (k.l) that

1 3% o 11 £ 2 341
n[:pi Z(pi+pk) - P Z(pj +pk)]
k£

ki

L}

v t :
1% _ ot % %4 ol (pt 4 n
k=1
Thus, sgn(p"{ - p’jj") = sgn(s; - slj) for each (i,j) and the rankings determined by

p*(w) and s' are identical.

(ii) posterior mean é(x). From (4.2) we obtain

i-p.=®;-%MQ%§>Zd5§XW+z.+w%®§+ﬁ+1,~us;+%+l>
4

~

(4.7)
+K@%¢)ZN§§MW+2.+ﬂ%g-zyM%+zl+L'~,ﬁ+£t+n-
4

.
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If ot = n*(} - 1), then C(L,n') = C(r@a,gl) vhere £ is obtained from % by inter-
changing the i'" and j*® elements. Then by pairing terms which arise from 4 and éa’
the second member of (4.7) becomes

(s + 4 + )
il

r(w + 24, ++t+1)

K(g* 2! )Z c(4,0t)

~

£i>£

‘Y(Si; 33’£1’23)
kfi, J

J

where

1. _ 1 (1 1 1
y(si,sj,,ei,.ej) = (.e:L - zj)[r(si+ zi+1)r(sj+zj+1) - I’(si+ £j+1)r‘(sj+ %+ 1)] .

Noting that g(x) = fn I'(x) is continuous and convex, it follows from inequality
#3638 of Hardy, Littlewood, and Polya (1934, p. 261) that for each term in the sum
(zi > 23))

11 - 1 _ 1
sgn[v(si,sj,ﬂi,ﬁj)] sgn(s} sj).

Thus, sgn(ii - ij) = sgn(si - SE) for each (i,J) and the rankings determined by

p(w) and s are identical.

5. DISCUSSION

We have formulated a Bayesién approach to paired comparison experimentation
under the multi-binomial and Bradley-Terry models and have provided two estimators
of the model parameters (assuming a natural conjugate prior distribution) for each
model. Furthermore, in the Bradley-Terry case, if the experimental design and
prior distribution satisfy the criterion of posterior balance, éhen for a large

class of acceptable loss functions, a Bayes ranking of the vorth parameters is

explicitly calculated and shown to coincide with the ranking determined by each of
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the twb estimators. Thus, if the »‘objective is ranking the worth parameters by
thelr estimates, which are not easily calculated, one can easily calculate the
Bayes ranking with the assurance that it agrees with the ranking provided by these

estimates.

An interesting and unsélved pr.oblem is the nature of the Bayes ranking when
posterior balance does not obtain, and the extent to which this ranking agrees
with those determined by the estimators given here of the parameters of the
Bradley-Terry model. A second problem of interest is the formulation of optimality
criteria for the design paramétérs n of the paired comparison experiment. One
possibility, when estimation 1s the goal, is to choose an n which tends to yield
a tight posterior distributién, é.nd is subject to a constraint such as Z n

1<y 1

Another is to propose a cost associated with each statement of preference and

= N.

minimize the sum of this cost and the Bayes risk of the Bayes rule for the given
loss function.
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