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This paper deals with the stability analysis problem for a class of discrete-time stochastic
BAM neural networks with discrete and distributed time-varying delays. By constructing a
suitable Lyapunov-Krasovskii functional and employing M-matrix theory, we find some sufficient
conditions ensuring the global exponential stability of the equilibrium point for stochastic BAM
neural networks with time-varying delays. The conditions obtained here are expressed in terms
of LMIs whose feasibility can be easily checked by MATLAB LMI Control toolbox. A numerical
example is presented to show the effectiveness of the derived LMI-based stability conditions.

1. Introduction

Recently, the study of Bidirectional associative memory neural networks has attracted
the attention of many researchers due to its applications in many fields such as pattern
recognition, automatic control, associative memory, signal processing, and optimization; see,
for example, [1–9]. The (BAM) neural networks model, proposed by Kosko [10, 11], is a two
layer nonlinear feedback network model and it was described that the neurons in one layer
are fully interconnected to the neurons in the other layer, while there are no interconnections
among neurons in the same layer.

Furthermore, due to the finite switching speed of neuron amplifiers and the finite
speed of signal propagation time delays are unavoidable in the implementation of neural
networks [12–14]. According to the way it occurs, time delay can be classified as two types:
discrete and distributed delays. Discrete time-delay is relatively easier to be identified in
practice and hence the stability analysis for BAM with discrete delays has been an attractive
subject of research in the past few years; see [15, 16]. On the other hand, due to the presence
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of an amount of parallel pathways of a variety of axon sizes and lengths, a neural network
usually has a spatial nature. Therefore, it is necessary to introduce continuously distributed
delays over a certain duration of time; see [17, 18].

Moreover, in implementations of neural networks, stochastic disturbances are
inevitable owing to thermal noise in electronic devices. Practically, the stochastic phe-
nomenon usually appears in the electrical circuit design of neural networks. The stochastic
effects can have the ability to destabilize a neural system. Therefore, it is significant and of
importance to consider stochastic effects to the stability property of the neural networks with
delays. It is noted that most of the BAM neural networks have been assumed to act in a
continuous-time manner. However, when it comes to the implementation of discrete-time
BAM networks, there are only few works appeared in the literature; see [6, 19–24] and the
references cited therein. Therefore, there is a crucial need to study the dynamics of discrete-
time BAM neural networks and it becomes more significant from practical point of view. In
[19], Gao and Cui discussed the global robust exponential stability of discrete-time interval
BAM neural networks with time-varying delays, and in [24], the authors investigated the
global exponential stability for discrete-time BAM neural network with time variable delay.
In the above said references the stability problem for BAM neural networks is considered
only with discrete delay, and distributed delay has not been taken into account and remains
challenging. So, our main aim in this work is to make the first attempt to shorten such a gap.

Motivated by the above points, in this paper, we will study the exponential stability
problem for a new class of discrete-time stochastic BAM neural networks with both discrete
and distributed delays. The existence of the equilibrium point is proved under mild
conditions on the activation functions. By constructing an appropriate Lyapunov-Krasovskii
functional, a linear matrix inequality (LMI) approach is developed to establish sufficient
conditions for the discrete-time BAM neural networks to be globally exponentially stable
in the mean square. Here, we note that the LMIs can be easily solved by using Matlab LMI
toolbox, and no tuning of parameters is involved. Finally, a numerical example is presented
to show the usefulness of the derived LMI-based stability conditions.

Notations. Throughout this paper, R
n and R

n×m denote, respectively, the n-dimensional
Euclidean space and the set of all n × m real matrices. I denotes the identity matrix with
appropriate dimensions and diag(·) denotes the diagonal matrix. For real symmetric matrices
X and Y , the notationX ≥ Y (resp.,X > Y )means that thematrixX−Y is positive semidefinite
(resp., positive definite). N = {1, 2, . . . , n} and ‖ · ‖ stands for the Euclidean norm in R

n.
λmax(X) (resp., λmin(X)) stands for the maximum (resp., minimum) eigenvalue of the matrix
X. The symbol ∗within a matrix represents the symmetric term of the matrix.

2. Problem Description and Preliminaries

Consider the following discrete-time stochastic BAM neural networks with both discrete and
distributed delays of the following form:
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or, in an equivalent form,
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(2.2)

for k = 1, 2, . . ., where x(k) and y(k) are the neural state vector; A = diag{a1, a2, . . . , an}
and B = diag{b1, b2, . . . , bn} are the state feedback coefficient matrices; C = [cij]n×n,D =
[dij]n×n,W = [wij]n×n, V = [vij]n×n,M = [mij]n×n, and N = [nij]n×n are, respectively,
the connection weight matrices, the discretely delayed connection weight matrices, and
distributed delayed connection weight matrices; τ(k) and σ(k) denote the discrete time-
varying delays satisfying

τm ≤ τ(k) ≤ τM, σm ≤ σ(k) ≤ σM, (2.3)

where τm, τM, σm, and σM are known positive integer; M,N denotes the distributed time-
varying delays. Then
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(2.4)

denote the neuron activation functions. The constant vectors J = [J1, J2, . . . , Jn]
T and I =

[I1, I2, . . . , In]
T are the external inputs from outside the system; μM, (M = 1, 2, . . .) and

ρN, (N = 1, 2, . . .) are scalar constants, where w1(k) and w2(k) are scalar Wiener process
(Brownian motion) on the probability space (Ω,F,P)with
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with E(·) being the mathematical expectation operator; δ : R
n × R

n × R → R
n and χ : R

n ×
R

n × R → R
n are the nonlinear vector function representing the disturbance intensities.

In this paper, we make following assumptions for the neuron activation functions.

Assumption 1. For j, i ∈ {1, 2, . . . , n}, the neuron activation functions fj(·), f̂i(·), gj(·), ĝi(·),
hj(·), and ĥi(·) in (2.2) are continuous as well as bounded on R.

Assumption 2. For j, i ∈ {1, 2, . . . , n}, the neuron activation functions in (2.2) satisfy
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i , ∀t1, t2 ∈ R,

(2.6)
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Remark 2.1. Assumption 2 was first introduced by Liu et al. [25]. The constants l−j , l
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i in Assumption 2 are allowed to be positive, negative,
or zero. So, the activation functions used in this paper may be nonmonotonic and more
general than the usual sigmoid functions and Lipschitz functions. Such conditions are very
rude in quantifying the lower and upper bounds of the activation functions; hence we use
generalized activation functions, because it is very helpful for using LMI-based technique to
reduce the possible conservatism.

In order to simplify our proof, we shift the equilibrium point x∗ = (x∗
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where

u(k) =(u1(k), u2(k), . . . , un(k))
T , v(k) = (v1(k), v2(k), . . . , vn(k))

T ,
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(2.8)

Assumption 3. Obviously, the activation functions fj , f̂i, gj , ĝi, hj , and ĥi (i, j ∈ N) satisfy
the following condition:

l−j ≤ fj(s)
s

≤ l+j , ∀s ∈ R, u−
i ≤ f̂i(t)

t
≤ u+

i , ∀t ∈ R,
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(2.9)

Assumption 4. The constants μM, ρN ≥ 0 satisfy the following convergent conditions:

+∞∑
M=1

μM < +∞,
+∞∑
M=1

MμM < +∞,

+∞∑
N=1

ρN < +∞,
+∞∑
N=1

NρN < +∞.

(2.10)

Remark 2.2. Assumption 4 ensures that the terms M
∑+∞

M=1μMh(v(k − M)) and
N
∑+∞

N=1ρNĥ(u(k −N)) are convergent, which is significant for the subsequent analysis.

Assumption 5. There exist constant matrices G and K such that

δT(x, y, k)δ(x, y, k) ≤ |Gx|2, ∀x, y ∈ R
n,

χT(x, y, k)χ(x, y, k) ≤ ∣∣Ky
∣∣2, ∀x, y ∈ R

n.
(2.11)
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The following definition and lemmas will be essential in employing the exponential
stability conditions.

Definition 2.3. The delayed discrete-time stochastic BAM neural network (2.7) is said to be
globally exponentially stable, if there exist two positive scalars ν > 0 and 0 < G < 1 such that

‖u(k)‖ + ‖v(k)‖ ≤ νGk

(
sup

−σM≤s≤0
‖u(s)‖ + sup

−τM≤s≤0
‖v(s)‖

)
. (2.12)

Lemma 2.4. LetX and Y be any n-dimensional real vectors and let P be an n×n positive semidefinite
matrix. Then, the following matrix inequality holds:

2XTPY ≤ XTPX + YTPY. (2.13)

Lemma 2.5. Let M ∈ R
n×n be a positive semidefinite matrix, xi ∈ R

n, and ai ≥ 0, (i = 1, 2, . . .). If
the series concerned are convergent, the following inequality holds:

(
+∞∑
i=1

aixi

)T

M

(
+∞∑
i=1

aixi

)
≤
(

+∞∑
i=1

ai

)
+∞∑
i=1

aixi
TMxi. (2.14)

In the rest of the paper, we will focus on the stability analysis of SBAMNN (2.7).
By choosing an appropriate Lyapunov-Krasovskii functional, we aim to develop an LMI
approach for deriving sufficient conditions under which the SBAMNN (2.7) is globally
exponentially stable.

3. Main Results

Now, we are in a position to state our main results in the following theorem.

Theorem 3.1. Under Assumptions 1–5, the discrete-time stochastic BAM neural network (2.7) is
globally exponentially stable in the mean square, if there exist constants λ0 > 0 and ε0 > 0 if there
exist diagonal matrices Λ1 = diag{λ(1)1 , λ

(1)
2 , . . . , λ

(1)
n } > 0, Λ2 = diag{λ(2)1 , λ

(2)
2 , . . . , λ

(2)
n } > 0, Γ1 =

diag{γ (1)1 , γ
(1)
2 , . . . , γ

(1)
n } > 0, Γ2 = diag{γ (2)1 , γ

(2)
2 , . . . , γ

(2)
n } > 0, Ω1 = diag{ω(1)

1 , ω
(1)
2 , . . . , ω

(1)
n } >

0, and Ω2 = diag{ω(2)
1 , ω

(2)
2 , . . . , ω

(2)
n } > 0 and positive definite matrices P1 > 0, P2 > 0, Q1 >

0, Q2 > 0, R1 > 0, and R2 > 0, such that the following LMIs hold:
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P1 < λ0I,

Ξ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11 0 Λ2U2 Γ2V2 0 Ω2W2 0

∗ −Q2 0 0 0 0 0

∗ ∗ Π33 0 0 0 0

∗ ∗ ∗ −Γ2 0 0 0

∗ ∗ ∗ ∗ Π55 0 0

∗ ∗ ∗ ∗ ∗ −Ω2 0

∗ ∗ ∗ ∗ ∗ ∗ Π77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

P2 < ε0I,

Ξ2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ11 0 Λ1L2 Γ1M2 0 Ω1N2 0

∗ −Q1 0 0 0 0 0

∗ ∗ Θ33 0 0 0 0

∗ ∗ ∗ −Γ1 0 0 0

∗ ∗ ∗ ∗ Θ55 0 0

∗ ∗ ∗ ∗ ∗ −Ω1 0

∗ ∗ ∗ ∗ ∗ ∗ Θ77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(3.1)

where

Π11 = ATP1A − 2P1 −Λ2U1 − Γ2V1 −Ω2W1 + (1 + σM − σm)Q2 + ρR2 + λ0G
TG,

Π33 = BDP2D
TBT −Λ2 + 2P2, Π55 = BVP2V

TBT +DVP2V
TDT + P2,

Π77 = BNP2N
TBT +DNP2N

TDT + VNP2N
TV T − ρ−1R2,

Θ11 = BTP2B − 2P2 −Λ1L1 − Γ1M1 −Ω1N1 + (1 + τM − τm)Q1 + μR1 + ε0K
TK,

Θ33 = ACP1C
TAT −Λ1 + 2P1, Θ55 = AWP1W

TAT + CWP1W
TCT + P1,

Θ77 = AMP1M
TAT + CMP1M

TCT +WMP1M
TWT − μ−1R1,

L1 = diag
{
l+1 l

−
1 , l

+
2 l

−
2 , . . . , l

+
nl

−
n

}
, L2 = diag

{
l+1 + l−1

2
,
l+2 + l−2

2
, . . . ,

l+n + l−n
2

}
,

M1 = diag
{
m+

1m
−
1 , m

+
2m

−
2 , . . . , m

+
nm

−
n

}
, M2 = diag

{
m+

1 +m−
1

2
,
m+

2 +m−
2

2
, . . . ,

m+
n +m−

n

2

}
,

N1 = diag
{
n+
1n

−
1 , n

+
2n

−
2 , . . . , n

+
nn

−
n

}
, N2 = diag

{
n+
1 + n−

1

2
,
n+
2 + n−

2

2
, . . . ,

n+
n + n−

n

2

}
,

U1 = diag
{
u+
1u

−
1 ,u

+
2u

−
2 , . . . , u

+
nu

−
n

}
, U2 = diag

{
u+
1 + u−

1

2
,
u+
2 + u−

2

2
, . . . ,

u+
n + u−

n

2

}
,
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V1 = diag
{
v+
1v

−
1 , v

+
2v

−
2 , . . . , v

+
nv

−
n

}
, V2 = diag

{
v+
1 + v−

1

2
,
v+
2 + v−

2

2
, . . . ,

v+
n + v−

n

2

}
,

W1 = diag
{
w+

1w
−
1 , w

+
2w

−
2 , . . . , w

+
nw

−
n

}
, W2 = diag

{
w+

1 +w−
1

2
,
w+

2 + w−
2

2
, . . . ,

w+
n +w−

n

2

}
,

μ =
+∞∑
k=1

μk, ρ =
+∞∑
k=1

ρk.

(3.2)

Proof. Let us choose the Lyapunov-Krasovskii functional as

V1(k) = uT (k)P1u(k) + vT (k)P2v(k),

V2(k) =
k−1∑

i=k−τ(k)
vT (i)Q1v(i) +

k−1∑
i=k−σ(k)

uT (i)Q2u(i),

V3(k) =
k−τm∑

j=k−τM+1

k−1∑
i=j

vT (i)Q1v(i) +
k−σm∑

j=k−σM+1

k−1∑
i=j

uT (i)Q2u(i),

V4(k) =
+∞∑
i=1

μi

k−1∑
j=k−i

vT (i)R1v(i) +
+∞∑
i=1

ρi
k−1∑
j=k−i

uT (i)R2u(i).

(3.3)

In order to analyze the global exponential stability of the stochastic BAM neural
network, we calculate differences ΔV (k) of the Lyapunov function V (k), along with the
trajectories of the BAM neural network (2.7); then we have

ΔV (k) =ΔV1(k) + ΔV2(k) + ΔV3(k) + ΔV4(k), (3.4)

where

ΔV1(k) = uT (k + 1)P1u(k + 1) − uT (k)P1u(k) + vT (k + 1)P2v(k + 1) − vT (k)P2v(k)

=

[
Au(k) + Cf(v(k)) +Wg(v(k − τ(k))) +M

+∞∑
M=1

μMh(v(k −M))

]T

× P1

[
Au(k) + Cf(v(k)) +Wg(v(k − τ(k))) +M

+∞∑
M=1

μMh(v(k −M))

]

− uT (k)P1u(k)

+

[
Bv(k) +Df̂(u(k)) + V ĝ(u(k − σ(k))) +N

+∞∑
N=1

ρNĥ(u(k −N))

]T
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× P2

[
Bv(k) +Df̂(u(k)) + V ĝ(u(k − σ(k))) +N

+∞∑
N=1

ρNĥ(u(k −N))

]

− vT (k)P2v(k) + δT (u, v, k)P1δ(u, v, k) + χT (u, v, k)P2χ(u, v, k)

≤ uT (k)(AP1A − P1)u(k) + 2uT (k)AP1Cf(v(k)) + 2uT (k)AP1Wg(v(k − τ(k)))

+ 2uT (k)AP1M

(
+∞∑
M=1

μMh(v(k −M))

)
+ fT (v(k))CP1Cf(v(k)) + 2fT (v(k))

× CP1Wg(v(k − τ(k))) + 2fT (v(k))CP1M

(
+∞∑
M=1

μMh(v(k −M))

)

+ gT (v(k − τ(k)))WP1Wg(v(k − τ(k))) + 2gT (v(k − τ(k)))WP1M

×
(

+∞∑
M=1

μMh(v(k −M))

)
+

(
+∞∑
M=1

μMh(v(k −M))

)T

MP1M

×
(

+∞∑
M=1

μMh(v(k −M))

)
+ vT (k)(BP2B − P2)v(k) + 2vT (k)BP2Df̂(u(k))

+ 2vT (k)BP2V f̂(u(k − σ(k))) + 2vT (k)BP2N

(
+∞∑
N=1

ρNĥ(u(k −N))

)

+ f̂ T (u(k))DP2Df̂(u(k)) + 2f̂ T (u(k))DP2V ĝ(u(k − σ(k))) + 2f̂ T (u(k))DP2N

×
(

+∞∑
N=1

ρNĥ(u(k −N))

)
+ ĝT (u(k − σ(k)))VP2V ĝ(u(k − σ(k)))

+ 2ĝT (u(k − σ(k)))VP2N

(
+∞∑
N=1

ρNĥ(u(k −N))

)
+

(
+∞∑
N=1

ρNĥ(u(k −N))

)
N

× P2N

(
+∞∑
N=1

ρNĥ(u(k −N))

)
+ uT (k)λ0GTGu(k) + vT (k)ε0KTKv(k).

(3.5)

By using Lemma 2.4, we have

2uT (k)AP1Cf(v(k))

≤ uT (k)P1u(k) + fT (v(k))ACP1C
TATf(v(k)),

2uT (k)AP1Wg(v(k − τ(k)))

≤ uT (k)P1u(k) + gT (v(k − τ(k)))AWP1W
TATg(v(k − τ(k))),

2uT (k)AP1M

(
+∞∑
M=1

μMh(v(k −M))

)
≤ uT (k)P1u(k)

+

(
+∞∑
M=1

μMh(v(k −M))

)T

AMP1M
TAT

(
+∞∑
M=1

μMh(v(k −M))

)
,
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2fT (v(k))CP1Wg(v(k − τ(k))) ≤ fT (v(k))P1f(v(k))

+ gT (v(k − τ(k)))CWP1W
TCTg(v(k − τ(k))),

2fT (v(k))CP1M

(
+∞∑
M=1

μMh(v(k −M))

)

≤ fT (v(k))P1f(v(k)) +

(
+∞∑
M=1

μMh(v(k −M))

)T

× CMP1M
TCT

(
+∞∑
M=1

μMh(v(k −M))

)
,

2gT (v(k − τ(k)))WP1M

(
+∞∑
M=1

μMh(v(k −M))

)

≤ gT (v(k − τ(k)))P1g(v(k − τ(k))) +

(
+∞∑
M=1

μMh(v(k −M))

)T

×WMP1M
TWT

(
+∞∑
M=1

μMh(v(k −M))

)
,

2vT (k)BP2Df̂(u(k)) ≤ vT (k)P2v(k) + f̂ T (u(k))BDP2D
TBT f̂(u(k)),

2vT (k)BP2V ĝ(u(k − σ(k)))

≤ vT (k)P2v(k) + ĝT (u(k − σ(k)))BVP2V
TBT ĝ(u(k − σ(k))),

2vT (k)BP2N

(
+∞∑
N=1

ρNĥ(u(k −N))

)

≤ vT (k)P2v(k) +

(
+∞∑
N=1

ρNĥ(u(k −N))

)T

BNP2N
TBT

(
+∞∑
N=1

ρNĥ(u(k −N))

)
,

2f̂ T (u(k))DP2V ĝ(u(k − σ(k))) ≤ f̂ T (u(k))P2f̂(u(k))

+ ĝT (u(k − σ(k)))DVP2V
TDT ĝ(u(k − σ(k))),

2f̂ T (u(k))DP2N

(
+∞∑
N=1

ρNĥ(u(k −N))

)
≤ f̂ T (u(k))P2f̂(v(k)) +

(
+∞∑
N=1

ρNĥ(u(k −N))

)T

×DNP2N
TDT

(
+∞∑
N=1

ρNĥ(u(k −N))

)
,

2ĝT (u(k − σ(k)))VP2N

(
+∞∑
N=1

ρNĥ(u(k −N))

)

≤ ĝT (u(k − σ(k)))P2ĝ(u(k − σ(k)))

+

(
+∞∑
N=1

ρNĥ(u(k −N))

)T

VNP2N
TV T

(
+∞∑
N=1

ρNĥ(u(k −N))

)
,
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ΔV2(k) = V2(k + 1) − V2(k)

=
k∑

i=k+1−τ(k+1)
vT (i)Q1v(i) −

k−1∑
i=k−τ(k)

vT (i)Q1v(i)

+
k∑

i=k+1−σ(k+1)
uT (i)Q2u(i) −

k−1∑
i=k−σ(k)

uT (i)Q2u(i)

= vT (k)Q1v(k) − vT (k − τ(k))Q1v(k − τ(k)) +
k−1∑

i=k+1−τ(k+1)
vT (i)Q1v(i)

−
k−1∑

i=k−τ(k)+1
vT (i)Q1v(i) + uT (k)Q2u(k) − uT (k − σ(k))Q2u(k − σ(k))

+
k−1∑

i=k+1−σ(k+1)
uT (i)Q2u(i) −

k−1∑
i=k−σ(k)+1

uT (i)Q2u(i)

= vT (k)Q1v(k) − vT (k − τ(k))Q1v(k − τ(k)) +
k−τm∑

i=k−τ(k+1)+1
vT (i)Q1v(i)

+
k−1∑

i=k−τm+1
vT (i)Q1v(i) −

k−1∑
i=k−τ(k)+1

vT (i)Q1v(i)

+ uT (k)Q2u(k) − uT (k − σ(k))Q2u(k − σ(k)) +
k−σm∑

i=k−σ(k+1)+1
uT (i)Q2u(i)

+
k−1∑

i=k−σm+1

uT (i)Q2u(i) −
k−1∑

i=k−σ(k)+1
uT (i)Q2u(i)

= vT (k)Q1v(k) − vT (k − τ(k))Q1v(k − τ(k)) +
k−τm∑

i=k−τM+1

vT (i)Q1v(i)

+ uT (k)Q2u(k) − uT (k − σ(k))Q2u(k − σ(k)) +
k−σm∑

i=k−σM+1

uT (i)Q2u(i),

(3.6)

ΔV3(k) = V3(k + 1) − V3(k)

=
k−τm+1∑

j=k−τM+2

k∑
i=j

vT (i)Q1v(i) −
k−τm∑

j=k−τM+1

k∑
i=j

vT (i)Q1v(i)

+
k−σm+1∑

j=k−σM+2

k∑
i=j

uT (i)Q2u(i) −
k−σm∑

j=k−σM+1

k∑
i=j

uT (i)Q2u(i)

=
k−τm∑

j=k−τM+1

k∑
i=j

vT (i)Q1v(i) −
k−τm∑

j=k−τM+1

k−1∑
i=j

vT (i)Q1v(i)
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+
k−σm∑

j=k−σM+1

k∑
i=j

uT (i)Q2u(i) −
k−σm∑

j=k−σM+1

k−1∑
i=j

uT (i)Q2u(i)

=
k−τm∑

j=k−τM+1

[
vT (k)Q1v(k) − vT(j)Q1v

(
j
)]

+
k−σm∑

j=k−σM+1

[
uT (k)Q2u(k) − uT(j)Q2u

(
j
)]

≤ (τM − τm)vT (k)Q1v(k) −
k−τm∑

j=k−τM+1

vT (i)Q1v(i) + (σM − σm)uT (k)Q2u(k)

−
k−σm∑

j=k−σM+1

uT (i)Q2u(i),

(3.7)

ΔV4(k) = V4(k + 1) − V4(k)

=
+∞∑
i=1

μi

k∑
j=k−i+1

vT (i)R1v(i) −
+∞∑
i=1

μi

k−1∑
j=k−i

vT (i)R1v(i)

+
+∞∑
i=1

ρi
k∑

j=k−i+1
uT (i)R2u(i) −

+∞∑
i=1

ρi
k−1∑
j=k−i

uT (i)R2u(i)

=
+∞∑
i=1

μi

[
vT (k)R1v(k)−vT (k−i)R1v(k−i)

]
+

+∞∑
i=1

ρi
[
uT (k)R2u(k)−uT (k−i)R2u(k−i)

]

≤μvT (k)R1v(k)− 1
μ

(
+∞∑
M=1

μMh(v(k−M))

)T

R1

(
+∞∑
M=1

μMh(v(k−M))

)

+ρuT (k)R2u(k)− 1
ρ

(
+∞∑
N=1

ρNĥ(u(k−N))

)T

R2

(
+∞∑
N=1

ρNĥ(u(k−N))

)
.

(3.8)

It is clear from (2.9) that

(
fj
(
vj(k)

) − l+j vj(k)
)(

fj
(
vj(k)

) − l−j vj(k)
)
≤ 0, (3.9)

(
gj
(
vj(k)

) −m+
j vj(k)

)(
gj
(
vj(k)

) −m−
j vj(k)

)
≤ 0, (3.10)

(
hj

(
vj(k)

) − n+
j vj(k)

)(
hj

(
vj(k)

) − n−
j vj(k)

)
≤ 0, (3.11)

(
f̂i(ui(k)) − u+

i ui(k)
)(

f̂i(ui(k)) − u−
i ui(k)

)
≤ 0, (3.12)

(
ĝi(ui(k)) − v+

i ui(k)
)(
ĝi(ui(k)) − v−

i ui(k)
) ≤ 0, (3.13)

(
ĥi(ui(k)) −w+

i ui(k)
)(

ĥi(ui(k)) −w−
i ui(k)

)
≤ 0, (3.14)
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which is equivalent to

[
v(k)

f(v(k))

]T
⎡
⎢⎢⎢⎣

l+j l
−
j eje

T
j −

l+j + l−j
2

eje
T
j

−
l+j + l−j

2
eje

T
j eje

T
j

⎤
⎥⎥⎥⎦

[
v(k)

f(v(k))

]
≤ 0, k = 1, 2, . . . , n, (3.15)

where ek denotes the unit column vector having “1” element on its kth row and zeros
elsewhere.

Consequently,

n∑
j=1

λ
(1)
j

[
v(k)

f(v(k))

]T
⎡
⎢⎢⎢⎣

l+j l
−
j eje

T
j −

l+j + l−j
2

eje
T
j

−
l+j + l−j

2
eje

T
j eje

T
j

⎤
⎥⎥⎥⎦

[
v(k)

f(v(k))

]
≤ 0,

=⇒
[

v(k)

f(v(k))

]T[ Λ1L1 −Λ1L2

−Λ1L2 Λ1

][
v(k)

f(v(k))

]
≤ 0.

(3.16)

Similarly, from (3.10)–(3.14), we have

[
v(k)

g(v(k))

]T[ Γ1M1 −Γ1M2

−Γ1M2 Γ1

][
v(k)

g(v(k))

]
≤ 0, (3.17)

[
v(k)

h(v(k))

]T[ Ω1N1 −Ω1N2

−Ω1N2 Ω1

][
v(k)

h(v(k))

]
≤ 0, (3.18)

[
u(k)

f̂(u(k))

]T[
Λ2U1 −Λ2U2

−Λ2U2 Λ2

][
u(k)

f̂(u(k))

]
≤ 0, (3.19)

[
u(k)

ĝ(u(k))

]T[ Γ2V1 −Γ2V2

−Γ2V2 Γ2

][
u(k)

ĝ(u(k))

]
≤ 0, (3.20)

[
u(k)

ĥ(u(k))

]T[
Ω2W1 −Ω2W2

−Ω2W2 Ω2

][
u(k)

ĥ(u(k))

]
≤ 0. (3.21)

Then from (3.5)–(3.8) and (3.16)–(3.21), we obtain

ΔV (k) ≤ uT (k)
[
AP1A − 2P1 −Λ2U1 − Γ2V1 −Ω2W1 + (1 + σM − σm)Q2 + ρR2 + λ0G

TG
]
u(k)

+ uT (k)Λ2U2f̂(u(k)) + uT (k)Γ2V2ĝ(u(k)) + uT (k)
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×Ω2W2ĥ(u(k)) − uT (k − σ(k))Q2u(k − σ(k)) + f̂ T (u(k))

×
[
BDP2D

TBT −Λ2 + 2P2

]
f̂(u(k)) − ĝT (u(k))Γ2ĝ(u(k)) + ĝT (u(k − σ(k)))

×
[
BVP2V

TBT +DVP2V
TDT + P2

]
ĝ(u(k − σ(k))) − ĥT (u(k))Ω2ĥ(u(k))

+

(
+∞∑
N=1

ρNĥ(u(k −N))

)T[
BNP2N

TBT +DNP2N
TDT + VNP2N

TV T − ρ−1R2

]

×
(

+∞∑
N=1

ρNĥ(u(k −N))

)
+ vT (k)

×
[
BP2B − 2P2 −Λ1L1 − Γ1M1 −Ω1N1 + (1 + τM − τm)Q1 + μR1 + ε0K

TK
]

+ vT (k)Λ1L2f(v(k)) + vT (k)Γ1M2g(v(k)) + vT (k)Ω1N2h(v(k))

− vT (k − τ(k))Q1v(k − τ(k)) + fT (v(k))
[
ACP1C

TAT −Λ1 + 2P1

]
f(v(k))

− gT (v(k))Γ1g(v(k)) + gT (v(k − τ(k)))
[
AWP1W

TAT + CWP1W
TCT + P1

]

× g(v(k − τ(k))) − hT (v(k))Ω1h(v(k)) +

(
+∞∑
M=1

μMh(v(k −M))

)T

×
[
AMP1M

TAT + CMP1M
TCT +WMP1M

TWT − μ−1R1

]

×
(

+∞∑
M=1

μMh(v(k −M))

)
−
[

v(k)

f(v(k))

]T[ Λ1L1 −Λ1L2

−Λ1L2 Λ1

][
v(k)

f(v(k))

]

−
[

v(k)

g(v(k))

]T[
Γ1M1 −Γ1M2

−Γ1M2 Γ1

][
v(k)

g(v(k))

]

−
[

v(k)

h(v(k))

]T[
Ω1N1 −Ω1N2

−Ω1N2 Ω1

][
v(k)

h(v(k))

]

−
[

u(k)

f̂(u(k))

]T[
Λ2U1 −Λ2U2

−Λ2U2 Λ2

][
u(k)

f̂(u(k))

]

−
⎡
⎣ u(k)

ĝ(u(k))

⎤
⎦

T[
Γ2V1 −Γ2V2

−Γ2V2 Γ2

][
u(k)

ĝ(u(k))

]

−
[

u(k)

ĥ(u(k))

]T[
Ω2W1 −Ω2W2

−Ω2W2 Ω2

][
u(k)

ĥ(u(k))

]

= ξT (k)Ξ1ξ(k) + ηT (k)Ξ2η(k), (3.22)
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where ξT (k) = [uT (k)uT (k − σ(k))f̂ T (u(k))ĝT (u(k))ĝT (u(k − σ(k)))ĥT (u(k))

(
∑+∞

N=1ρNĥ(u(k −N)))
T
]ηT (k) = [vT (k)vT (k−τ(k))fT (v(k))gT(v(k))gT (v(k−τ(k)))hT (v(k))

(
∑+∞

M=1μMh(v(k −M)))T ].
Therefore, if the LMIs (3.1) hold, it can be concluded that ΔV (k) ≤ 0. It follows that

V (k) ≤ V (0). By (3.22), the SBAMNN is globally asymptotically stable in the mean square.
Now, we are in a position to establish the exponential stability of the SBAMNN (2.7).
Then, there exists a scalar β > 0 such that

ΔV (k) ≤ −β
(
‖u(k)‖2 + ‖v(k)‖2

)
. (3.23)

From (3.3), it can be verified that

V (k) ≤ λmax(P1)‖u(k)‖2 + λmax(P2)‖v(k)‖2 + λmax(Q1)
k−1∑

i=k−τM
‖v(i)‖2 + λmax(Q2)

k−1∑
i=k−σM

‖u(i)‖2

+ (τM − τm)λmax(Q1)
k−1∑

i=k−τM
‖v(i)‖2 + (σM − σm)λmax(Q2)

k−1∑
i=k−σM

‖v(i)‖2

= λmax(P1)‖u(k)‖2 + λmax(P2)‖v(k)‖2 + β1
k−1∑

i=k−σM

‖u(i)‖2 + β2
k−1∑

i=k−τM
‖v(i)‖2,

(3.24)

where β1 = (1 + σM − σm)λmax(Q1) and β2 = (1 + τM − τm)λmax(Q2).
Choose a scalar θ > 1, satisfying

−βθ + (θ − 1)(λmax(P1) + λmax(P2)) + (θ − 1)
(
β1τMθτM + β2σMθσM

)
= 0.

(3.25)

Then by (3.23) and (3.24), we have

θk+1V (k + 1) − θkV (k) = θk+1V (k + 1) − θk+1V (k) + θk+1V (k) − θkV (k)

= θk+1ΔV (k) + θk(θ − 1)V (k)

≤ β3θ
k
(
‖u(k)‖2 + ‖v(k)‖2

)
+ β4θ

k

(
k−1∑

i=k−σM

‖u(i)‖2 +
k−1∑

i=k−τM
‖v(i)‖2

)
,

(3.26)

where β3 = −βθ + (θ − 1)(λmax(P1) + λmax(P2)) and β4 = (θ − 1)(β1 + β2).
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Therefore, for any integerN ≥ τM+1 andN ≥ σM+1, summing up both sides of (3.26)
from 0 to N − 1 with respect to k, we have

θNV (N) − V (0) ≤ β3
N−1∑
k=0

θk
(
‖u(k)‖2 + ‖v(k)‖2

)

+ β4
N−1∑
k=0

θk

(
k−1∑

i=k−σM

‖u(i)‖2 +
k−1∑

i=k−τM
‖v(i)‖2

)
.

(3.27)

Here, we note that for τM ≥ 1, σM ≥ 1, we have

N−1∑
k=0

θk

(
k−1∑

i=k−σM

‖u(i)‖2 +
k−1∑

i=k−τM
‖v(i)‖2

)
= σM(σM + 1)θσM sup

−σM≤i≤0
‖u(i)‖2 + τM(τM + 1)θτM

× sup
−τM≤i≤0

‖v(i)‖2 + σMθσM

N−1∑
k=0

θk‖u(k)‖2

+ τMθτM
N−1∑
k=0

θk‖v(k)‖2.

(3.28)

Substituting (3.28) in (3.27) gives

θNV (N) ≤ β3 + β4(σMθσM + τMθτM)
T−1∑
k=0

θk
(
‖u(k)‖2 + ‖v(k)‖2

)

+ β4[σM(σM + 1)θσM + τM(τM + 1)θτM]

(
sup

−σM≤i≤0
‖u(i)‖2 + sup

−τM≤i≤0
‖v(i)‖2

)
+ V (0).

(3.29)

We can observe that

V (N) ≥ {λmin(P1), λmin(P2)}
(
‖u(N)‖2 + ‖v(N)‖2

)
. (3.30)

It follows easily from (3.24) that

V (0) ≤ β1σM sup
−σM≤i≤0

‖u(i)‖2 + β2τM sup
−τM≤i≤0

‖v(i)‖2. (3.31)

Then, it follows from (3.25), (3.29), and (3.31) that

‖u(N)‖ + ‖v(N)‖ ≤ νGT

(
sup

−σM≤i≤0
‖u(i)‖ + sup

−τM≤i≤0
‖v(i)‖

)
, (3.32)
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where G = ω−1/2 and

ν =

√
β1σM + β2τM + β4[σM(σM + 1)θσM + τM(τM + 1)θτM]

λmin(P1), λmin(P2)
. (3.33)

This indicates that the discrete-time stochastic BAMneural network (2.7) is said to be globally
exponentially stable. This completes the proof of this theorem.

For a deterministic BAM neural network, we have the following system of equations:

x(k + 1) = Ax(k) + Cf
(
y(k)

)
+Wg

(
y(k − τ(k))

)
+M

+∞∑
M=1

μMh
(
y(k −M)

)
+ I,

y(k + 1) = By(k) +Df̂(x(k)) + V ĝ(x(k − σ(k))) +N
+∞∑
N=1

ρNĥ(x(k −N)) + J.

(3.34)

Then, by Theorem 3.1, it is very easy to obtain the following theorem.

Theorem 3.2. Under Assumptions 1–4, the discrete-time BAM neural network (3.34) is globally
exponentially stable, if there exist diagonal matrices Λ1 = diag{λ(1)1 , λ

(1)
2 , . . . , λ

(1)
n } > 0, Λ2 =

diag{λ(2)1 , λ
(2)
2 , . . . , λ

(2)
n } > 0, Γ1 = diag{γ (1)1 , γ

(1)
2 , . . . , γ

(1)
n } > 0, Γ2 = diag{γ (2)1 , γ

(2)
2 , . . . , γ

(2)
n } > 0,

Ω1 = diag{ω(1)
1 , ω

(1)
2 , . . . , ω

(1)
n } > 0 and Ω2 = diag{ω(2)

1 , ω
(2)
2 , . . . , ω

(2)
n } > 0 and positive definite

matrices P1 > 0, P2 > 0, Q1 > 0, Q2 > 0R1 > 0, and R2 > 0, such that the following LMIs hold:

Ξ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ11 0 Λ2U2 Γ2V2 0 Ω2W2 0

∗ −Q2 0 0 0 0 0

∗ ∗ Π33 0 0 0 0

∗ ∗ ∗ −Γ2 0 0 0

∗ ∗ ∗ ∗ Π55 0 0

∗ ∗ ∗ ∗ ∗ −Ω2 0

∗ ∗ ∗ ∗ ∗ ∗ Π77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

Ξ4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 0 Λ1L2 Γ1M2 0 Ω1N2 0

∗ −Q1 0 0 0 0 0

∗ ∗ Θ33 0 0 0 0

∗ ∗ ∗ −Γ1 0 0 0

∗ ∗ ∗ ∗ Θ55 0 0

∗ ∗ ∗ ∗ ∗ −Ω1 0

∗ ∗ ∗ ∗ ∗ ∗ Θ77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(3.35)
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where

Ψ11 = ATP1A − 2P1 −Λ2U1 − Γ2V1 −Ω2W1 + (1 + σM − σm)Q2 + ρR2,

Φ11 = BTP2B − 2P2 −Λ1L1 − Γ1M1 −Ω1N1 + (1 + τM − τm)Q1 + μR1,
(3.36)

and Π33, Π55, Π77, Θ33, Θ55, and Θ77 are defined in Theorem 3.1.

Proof. Similar to the proof of Theorem 3.1, we can derive the stability result. The proof is
straightforward and hence omitted.

If we neglect the distributed delay term in (2.2), it can be reduced to

x(k + 1) =
[
Ax(k) + Cf

(
y(k)

)
+Wg

(
y(k − τ(k))

)
+ I
]
+ δ
(
x(k), y(k − τ(k)), k

)
w1(k),

y(k + 1) =
[
By(k) +Df̂(x(k)) + V ĝ(x(k − σ(k))) + J

]
+ χ
(
y(k), x(k − σ(k)), k

)
w2(k).

(3.37)

For system (3.37), we have the following stability result.

Corollary 3.3. Under Assumptions 1–5, the discrete-time BAM neural network (3.37) is globally
exponentially stable, if there exist diagonal matrices Λ1 = diag{λ(1)1 , λ

(1)
2 , . . . , λ

(1)
n } > 0,

Λ2 = diag{λ(2)1 , λ
(2)
2 , . . . , λ

(2)
n } > 0, Γ1 = diag{γ (1)1 , γ

(1)
2 , . . . , γ

(1)
n } > 0, and Γ2 =

diag{γ (2)1 , γ
(2)
2 , . . . , γ

(2)
n } > 0, and positive definite matrices P1 > 0, P2 > 0, Q1 > 0, and Q2 > 0,

such that the following LMI holds:

Ξ5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Υ11 0 Λ2U2 Γ2V2 0

∗ −Q2 0 0 0

∗ ∗ Π33 0 0

∗ ∗ ∗ −Γ2 0

∗ ∗ ∗ ∗ Π55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

Ξ6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ11 0 Λ1L2 Γ1M2 0

∗ −Q1 0 0 0

∗ ∗ Θ33 0 0

∗ ∗ ∗ −Γ1 0

∗ ∗ ∗ ∗ Θ55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(3.38)

where

Υ11 = ATP1A − 2P1 −Λ2U1 − Γ2V1 + (1 + σM − σm)Q2,

Σ11 = BTP2B − 2P2 −Λ1L1 − Γ1M1 + (1 + τM − τm)Q1,
(3.39)

and Π33,Π55,Θ33, and Θ55 are defined in Theorem 3.1.
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Table 1: Allowable upper bound for σM and τM for given σm and τm.

In [19] σm = τm = 2 σM = τM = 4
In this paper σm = τm = 2 σM = τM = for any large finite value

4. Numerical Example

To illustrate the effectiveness of our stability criterion, we give the following numerical
example.

Example 4.1. Consider the SBAM neural networks (2.2) with the following parameters:

A =

⎡
⎢⎢⎣
0.3 0 0

0 0.3 0

0 0 0.4

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣
0.3 0 0

0 0.2 0

0 0 0.2

⎤
⎥⎥⎦, C =

⎡
⎢⎢⎣

0.4 0.2 −0.1
0 0.2 0.3

−0.1 0 0.2

⎤
⎥⎥⎦,

D =

⎡
⎢⎢⎣
−0.2 0.1 0

0.2 0.3 0.2

0 −0.2 0.2

⎤
⎥⎥⎦, W =

⎡
⎢⎢⎣
−0.2 0.2 0.6

0.3 0.1 0

0 −0.2 −0.5

⎤
⎥⎥⎦, V =

⎡
⎢⎢⎣

0.4 0.4 −0.2
0 0.1 0.2

−0.3 0 0.3

⎤
⎥⎥⎦,

M =

⎡
⎢⎢⎣
−0.2 0.6 0.1

0.1 0.3 0

0 −0.7 −0.5

⎤
⎥⎥⎦, N =

⎡
⎢⎢⎣

0.4 0.5 −0.3
0 0.1 0.3

−0.4 0 0.4

⎤
⎥⎥⎦, G =

⎡
⎢⎢⎣
0.2 0 0

0 0.3 0

0 0 0.3

⎤
⎥⎥⎦,

K =

⎡
⎢⎢⎣
0.4 0 0

0 0.2 0

0 0 0.2

⎤
⎥⎥⎦, τ(k) = 3 + sin

(
kπ

2

)
, σ(k) = 2 − cos

(
kπ

2

)
,

I = −3 sin
(
kπ

2

)
, J = 2 cos

(
kπ

2

)
, μk = ρk = e−4k,

f
(
y(k)

)
= g
(
y(k)

)
= h
(
y(k)

)
=

⎡
⎢⎢⎣
tanh

(−4y1(k)
)

tanh
(−4y2(k)

)

tanh
(−y3(k)

)

⎤
⎥⎥⎦,

f̂
(
y(k)

)
= ĝ
(
y(k)

)
= ĥ
(
y(k)

)
=

⎡
⎢⎢⎣
tanh(−x1(k))

tanh(−4x2(k))

tanh(−x3(k))

⎤
⎥⎥⎦.

(4.1)

It can be verified that σm = τm = 3, σM = τM = 4, l+1 = m+
1 = n+

1 = 2, l−1 = m−
1 = n−

1 = −2,
l+2 = m+

2 = n+
2 = 2, l−2 = m−

2 = n−
2 = −2, l+3 = m+

3 = n+
3 = 1, l−3 = m−

3 = n−
3 = −1, u+

1 = v+
1 = w+

1 = 1,
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u−
1 = v−

1 = w−
1 = −1, u+

2 = v+
2 = w+

2 = 2, u−
2 = v−

2 = w−
2 = −2, u+

3 = v+
3 = w+

3 = 1 and
u−
3 = v−

3 = w−
3 = −1 with

L1 = M1 = N1 =

⎡
⎢⎢⎣

−4 0 0

0 −4 0

0 0 −1

⎤
⎥⎥⎦, L2 = M2 = N2 =

⎡
⎢⎢⎣

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦,

U1 = V1 = W1 =

⎡
⎢⎢⎣
−1 0 0

0 −4 0

0 0 −1

⎤
⎥⎥⎦, U2 = V2 = W2 =

⎡
⎢⎢⎣
0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦.

(4.2)

By using Matlab LMI toolbox, we solve the LMIs (3.1) in Theorem 3.1 and obtain the feasible
solutions as follows:

P1 =

⎡
⎢⎢⎣
−3.7477 0.5120 −0.2586
0.5120 −7.5557 −0.6515
−0.2586 −0.6515 −9.0264

⎤
⎥⎥⎦, P2 =

⎡
⎢⎢⎢⎣

−7.6744 0.2512 0.0154

0.2512 −6.2020 −0.0046
0.0154 −0.0046 −8.4207

⎤
⎥⎥⎥⎦,

Q1 =

⎡
⎢⎢⎣

2.8411 0.0680 −0.2237
0.0680 3.6480 −0.2702
−0.2237 −0.2702 2.1788

⎤
⎥⎥⎦, Q2 =

⎡
⎢⎢⎣

2.5375 0.5389 −0.6248
0.5389 3.6343 −0.3781
−0.6248 −0.3781 2.1497

⎤
⎥⎥⎦,

R1 =

⎡
⎢⎢⎣

1.8738 0.6069 1.2100

0.6069 2.2212 1.3303

1.2100 1.3303 2.1414

⎤
⎥⎥⎦, R2 =

⎡
⎢⎢⎣

−0.5616 −0.7036 2.2034

−0.7036 0.8218 −0.4770
2.2034 −0.4770 −1.2174

⎤
⎥⎥⎦,

Λ1 =

⎡
⎢⎢⎢⎣

−6.5450 0 0

0 −10.4004 0

0 0 −16.6900

⎤
⎥⎥⎥⎦, Λ2 =

⎡
⎢⎢⎣

−12.0795 0 0

0 −9.8357 0

0 0 −15.5096

⎤
⎥⎥⎦,

Γ1 =

⎡
⎢⎢⎣
1.7050 0 0

0 3.6765 0

0 0 2.1403

⎤
⎥⎥⎦, Γ2 =

⎡
⎢⎢⎣
2.3176 0 0

0 3.2988 0

0 0 2.0030

⎤
⎥⎥⎦,

Ω1 =

⎡
⎢⎢⎣
1.7050 0 0

0 3.6765 0

0 0 2.1403

⎤
⎥⎥⎦, Ω2 =

⎡
⎢⎢⎣

2.3176 0 0

0 3.2988 0

0 0 2.0030

⎤
⎥⎥⎦,

λ0 = 1.7593, ε0 = 3.6570. (4.3)
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Figure 1: State trajectories of x1(k), x2(k), x3(k), y1(k), y2(k), y3(k) for Example 4.1.

Then, it follows from Theorem 3.1 that the SBAMNN (2.7) with given parameters is
globally exponentially stable in the mean square. Our main purpose in this example is to
estimate the maximum allowable upper bound delay σM and τMfor given lower bound
σm and τm (Table 1). For instance, if we set σm = τm = 2, the allowable time delay
upper bound obtained by Gao and Cui [19] is 4. However, in our paper, we obtained that
for any time delay satisfying 0 < τ(t) ≤ τM = for any large finite value, 0 < σ(t) ≤
σM = for any largefinite value. This is much larger than that in [19], which shows the less
conservativeness of our developed method (Figure 1).
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5. Conclusion

In this paper, we have considered the stability analysis problem for a class of discrete-
time stochastic BAM neural networks with both discrete and distributed delays. Employing
a Lyapunov-Krasovskii functional and a Linear matrix inequality approach has been
developed to establish sufficient conditions for the SBAMNNs to be globally exponentially
stable. It has been shown that the delayed SBAMNNs are globally exponentially stable if
some LMIs are solvable and the feasibility of such LMIs can be easily checked by using
the numerically efficient LMI toolbox in Matlab. A numerical example has been given to
demonstrate the effectiveness of the obtained stability conditions.
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