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Abstract. The nonlinear mechanism of shaping of a high
vertical wave number spectral tail in the field of a few dis-
crete internal gravity waves in the atmosphere is studied in
this paper. The effects of advection of fluid parcels by inter-
acting gravity waves are taken strictly into account by calcu-
lating wave field in Lagrangian variables, and performing a
variable transformation from Lagrangian to Eulerian frame.
The vertical profiles and vertical wave number spectra of the
Eulerian displacement field are obtained for both the case of
resonant and non-resonant wave-wave interactions. The evo-
lution of these spectra with growing parameter of nonlinear-
ity of the internal wave field is studied and compared to that
of a broad band spectrum of gravity waves with randomly
independent amplitudes and phases. The calculated vertical
wave number spectra of the vertical displacements or relative
temperature fluctuations are found to be consistent with the
observed spectra in the middle atmosphere.

Keywords. Meteorology and atmospheric dynamics (Mid-
dle atmosphere dynamics; Turbulence; Waves and tides)

1 Introduction

Observations of the mesoscale wind velocity and tempera-
ture fluctuations in the middle and upper atmosphere often
reveal a presence of a small number of discrete gravity waves
(Sica, 1999; Gurvich and Chunchuzov, 2005). Other stud-
ies suggest that the fluctuations are induced by a broad band
spectrum of gravity waves (Allen and Vincent, 1995; Hines,
1991). To explain the observed forms of the vertical wave
number spectra of temperature fluctuations in the stably strat-
ified layers of the atmosphere (troposphere, stratosphere and
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mesosphere) we analyze in this paper a nonlinear shaping
mechanism for these fluctuations.

For the ocean a similar shaping mechanism was proposed
earlier by Allen and Joseph, 1989 (hereinafter AJ89), who
tried to find a physical explanation for the well-known em-
piric forms of the oceanic internal wave spectra derived by
Garrett and Munk (1975). This mechanism was associated
with the influence of the wave-induced advection of fluid
parcels on both spatial and temporal internal wave spec-
tra. The AJ89’ approach was later applied by Chunchuzov
(1996) to the atmosphere, and then developed by Chunchu-
zov (2001), Hines (2001) (hereinafter HO1), and Chunchu-
zov (2002) (hereinafter CO2) with substantial modifications
of the AJ89’approach (the cause of these modifications and
their detailed description are given in HO1 and CO2). Based
on the nonlinear shaping mechanism we study here the de-
pendence of the spectral forms on whether wave sources ex-
cite a few discrete gravity waves during observational period,
or a broad band spectrum of random waves.

A nature of the mesoscale fluctuations in the atmosphere is
debated for a long time (see, for instance, Fritts and Alexan-
der, 2003, Sect. 4.1). In certain range of high vertical wave
numberskz the observed vertical wave number spectra of the
temperature fluctuations show ak−3

z -power law. It was no-
ticed by Hines (1991) that the gravity waves with the highkz,
which are within thek−3

z -spectral tail, have very low horizon-
tal phase speeds, comparable to the horizontal wind velocity
fluctuations induced by the waves themselves. Such waves
should strongly interact due to advective nonlinearity of the
Eulerian fluid motion equations.

To take into account the wave-induced advection of fluid
parcels it was suggested in a number of works to use a
Lagrangian frame of variables for studying the dynamics
of gravity waves, and then perform a variable transforma-
tion to the Eulerian frame, where the advection takes place
(AJ89; Chunchuzov, 1996, 2001; Eckermann, 1999; HO1;
CO2; Broutman et al., 2004; Pinkel, 2008). As an exact
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transformation it strictly takes into account the advective ef-
fects associated with the nonlinear terms(v∇)v in the Eule-
rian equations of motion without using any approximations
for these terms. Using a Lagrangian approach it was found
in CO2 that a strong nonlinearity of the wave field generates
a 3-D Eulerian wave number spectrum with ak−5-power law
decay at high wave numbersk. This spectrum is of highly
anisotropic form as a result of a balance between the nonlin-
ear wave energy transfer from the characteristic (vertical and
horizontal) scales of internal wave sources toward smaller
vertical and larger horizontal scales, and the dissipation of
wave energy at small vertical scales due to wave breaking
processes. Such cascade-like energy transfer in the 3-D wave
number space is caused by non-resonant wave-wave interac-
tions, which along with wave energy dissipation play a key
role in shaping of the equilibrium gravity wave spectrum.
The wave-like fluid motions generated by the non-resonant
interactions resemble anisotropic and vertically oriented vor-
tices rather than the linear gravity waves, because the disper-
sion surfaces of these waves in the frequency-wave number
space are completely “smeared” by advection.

The hypothesis about a significant role played by forward
energy cascade in shaping of the spectra of the mesoscale
fluctuations in the atmosphere was earlier proposed by De-
wan (1997) on the basis of his saturated-cascade similitude
theory. Using this theory Dewan found the forms of the hor-
izontal and temporal gravity wave spectra, which were close
to their observed forms, although he traditionally interpreted
the vertical spectra as a result of the saturation of linear grav-
ity waves caused by their convective or shear instabilities.
The merging of wave saturation and wave cascade processes
was assumed to be possible due to the existence of a unique
relation between the vertical wave length and period of grav-
ity waves. Lindborg (2006) also used a similitude theory
added by numeric simulations of energy cascade in stratified
fluid. This allowed him to derive thek−3

z andk
−5/3
h forms

for the vertical spectra (scales from 100 to 1000 m) and the
horizontal spectra (scales from about 1 to 500 km), respec-
tively. However, contrary to the linear wave saturation hy-
pothesis, Lindborg (2006) assumed that both the horizontal
and vertical spectra arise “. . . from one and the same type
of nonlinear chaotic motion. . . ” governed by the fully non-
linear Boussinesq equations. Such highly anisotropic mo-
tions significantly differ from those induced by linear grav-
ity waves, therefore he suggested for these motions a neutral
term “layer” instead of “wave”. The conclusion made by
Lindborg (2006) about the importance of a nonlinear energy
cascade in shaping of highly anisotropic mesoscale fluctua-
tions in stably stratified fluid is in agreement with that previ-
ously obtained in CO2 based on Lagrangian approach.

Recently, the 3-D spectrum obtained in CO2 was slightly
modified by Gurvich and Chunchuzov (2008) who assumed
that the anisotropy of the temperature fluctuations decreases
with a decrease of their vertical scale. Based on this assump-

tion they developed the model of the 3-D spectrum of tem-
perature fluctuations, from which both the vertical and hor-
izontal wave number spectra were obtained. These spectra
were shown to be consistent with their observed forms in the
middle atmosphere.

The nonlinear shaping mechanism proposed in CO2 forms
a certain Eulerian frequency spectrum of the temperature and
wind velocity fluctuations at a fixed point of space (Chunchu-
zov et al., 2006). This spectrum was derived from the 4-
D frequency-wave number spectrum obtained in CO2. It
was found that at high frequencies (ω>N), which are be-
yond the buoyancy frequencyN , the nonlinear wave-wave
interactions generate in the frequency spectrum theω−3-tail
of the same nature as thek−3

z -tail in the vertical spectrum.
For the intermediate range of frequencies (f �ω<N ,f is in-
ertial frequency) the frequency wind velocity spectrum was
shown to follow theεω−2 power law, whereε=σ 2N/χ is the
mean generation rate of wave energy from random gravity
wave sources,σ is the rms value of the wave-induced hori-
zontal wind velocity fluctuations,χ=σ/σw characterizes the
anisotropy of the Lagrangian wave field,σw is the rms value
of the vertical wind velocity fluctuations. In this range the
frequency spectra of the wind velocity fluctuations measured
in stably stratified lower troposphere (by acoustic anemome-
ters and acoustic sounding) in average (over all the measured
spectra) decayed with growingω as εω−2 (Chunchuzov et
al., 2006).

Recently, the Lagrangian approach, but slightly simplified,
was applied to the oceanic waves by Pinkel, (2008) to explain
the observed velocity shear spectrum in the ocean. He con-
sidered the time-varying advection of fluid parcels caused by
a few energy contained sinusoidal constituents of the wave
field such as inertial and tidal components. The latter were
taken in so-called semi-Lagrangian frame. The kinematic
distortion of the wave field due to transfer from this frame
to the frame of measurement platform resulted in the advec-
tive “smearing” of the discrete spectral lines. Analyzing this
effect Pinkel (2008) assumed that the apparently continuous
wave number-frequency spectrum of the oceanic shear can
result from a wave field populated at only a few intrinsic fre-
quencies. It was noticed earlier in CO2 that the increasing
with wave amplitudes kinematic effects of advection become
significant only when the nonlinearity of the wave field in
the Lagrangian frame becomes significant as well. There-
fore, the shaping mechanism for the wave spectrum consid-
ered here is not associated with a purely kinematic effect,
but results from a combined effect of both the advective and
dynamic nonlinearities of the wave field.

The important result of the nonlinear theory developed in
CO2 was the obtained form for the 4-D gravity wave spec-
trum, which allowed one to explain the observed forms of
both the frequency and spatial 1-D (vertical and horizontal)
spectra based on the same shaping mechanism. The general-
ity of this mechanism was shown by parameterization of the
vertical, horizontal, frequency spectra and the corresponding
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second-order structure functions (under nonlinear saturation
of the fluctuations) through the same main parametersN,σ

andχ , and by the agreement of the predicted and observed
spectra (Gurvich and Chunchuzov, 2008; Chunchuzov et al.,
2006). However, the forms of other statistical characteristics
of the fluctuations such as their probability density functions
and third-order structure functions still need to be obtained
from the same theory and compared to the experimental data
available.

The nonlinear theories of wave spectra proposed by AJ89,
Chucnchuzov (1996), HO1, Hines (2002), and CO2 were re-
cently tested by Klaassen and Sonmor (2006) (hereinafter,
KS06) and Klaassen (2009), who came to the conclusion that
their kinematic model does not provide any support for these
theories. KS06 found that for the typical wave amplitudes
required to produce thek−3

z -spectral tail the vertical profiles
of the Eulerian displacement wave field become multivalued
and the transformation from Lagrangian to Eulerian variables
becomes invalid. As an alternative to the nonlinear shap-
ing mechanism for this tail, Klaassen (2009) suggested that
“. . . through instability, atmospheric wave fields create and
possibly coexist with a field of smaller-scale (perhaps turbu-
lent) eddies, which act to exert a force on the mean back-
ground flow. In other words, the secondary field of eddies
acts as a dissipation mechanism for the larger scale internal
waves, producing momentum deposition and perhaps satura-
tion as the latter continue to propagate. . . ”

It is necessary to note that the multivalues can arise in the
profile of the wave field, because the latter is a solution of
nonviscous fluid motion equations. Another well-known ex-
ample of such solutions is a plane acoustic wave of finite
amplitude, whose wave profile distorts with increasing dis-
tance from a plane source until it becomes multivalued near
its wave front (Lighthill, 1978; Rudenko and Soluyan, 1977).
By taking into account a molecular viscosity and thermal
conductivity one can stabilize the nonlinear steepening of the
wave profile and prevent the arising of multivalues. In the
case of internal waves propagating through realistic atmo-
sphere the different types of wave-induced instabilities may
prevent the arising of discontinuities in the wave field pro-
file through wave breaking processes and transferring wave
energy into the energy of turbulent eddies. However, these
processes as shown in CO2 occur only within the thin spa-
tial regions whose thickness is small compared to the vertical
scales, 2π/kz, typical for thek−3

z -tail. In these local regions
of space a sink of wave energy balances the nonlinear wave
energy transfer through the entire spectral tail.

Since wave drag parameterization schemes are sensitive to
the height dependence of the forms of the vertical wave num-
ber spectra and of the characteristic scales of wave breaking
processes the estimating of these scales is of great impor-
tance for solving the problem of parameterization of gravity
wave drag in the atmospheric circulation models (McLan-
dress, 1997; Fritts and Alexander, 2003). Beside this, the
knowledge of the space-time spectrum of the wave-induced

temperature and wind speed fluctuations is needed for the
prediction of the statistics of the amplitude and phase fluc-
tuations of low-frequency acoustic waves (Chunchuzov et
al., 2006; Ostashev et al., 2005) and electromagnetic waves
(Gurvich and Chunchuzov, 2003, 2005), propagating through
a realistic atmosphere.

In this paper we consider the same nonlinear shaping
mechanism for gravity wave spectrum as in CO2, but for only
two waves. Based on the Lagrangian fluid motion equations,
derived in Sect. 2, we will study in Sect. 3 a nonlinear gener-
ation of the harmonics of two given waves in the Lagrangian
frame of variables, and calculate their displacement field by
using perturbation method. In Sect. 4, the obtained field and
its vertical wave number spectrum will be studied in the Eu-
lerian frame. Both resonant and non-resonant wave-wave in-
teractions will be analyzed. Such study will be extended in
Sect. 5 to the case of only one ducted gravity wave excited
by wave sources to show a generality of the shaping mecha-
nism discussed here. In Sect. 6 the spectra for the case of a
few discrete waves will be compared to those for the case of
a high number (n�1) of gravity waves with randomly inde-
pendent amplitudes and phases. The new forms obtained for
3-D and 1-D wave number spectra will be analyzed.

2 Equations for nonlinear internal wave field in the La-
grangian frame of variables

We start with a system of motion equations for nonviscous,
stably stratified, and nonrotating fluid in Lagrangian frame of
variablesr=(a,b,c) andt (Lamb, 1932; Gossard and Hooke,
1975):

∂2x

∂t2

∂x

∂a
+

∂2y

∂t2

∂y

∂a
+

(
∂2z

∂t2
+g

)
∂z

∂a
= −

1

ρ

∂p

∂a
(1)

∂2x

∂t2

∂x

∂b
+

∂2y

∂t2

∂y

∂b
+

(
∂2z

∂t2
+g

)
∂z

∂b
= −

1

ρ

∂p

∂b
(2)

∂2x

∂t2

∂x

∂c
+

∂2y

∂t2

∂y

∂c
+

(
∂2z

∂t2
+g

)
∂z

∂c
= −

1

ρ

∂p

∂c
(3)

ρJ = ρ0 (4)

p = p0

(
ρ

ρ0

)γ

(5)

whereg is gravity acceleration,γ is adiabatic constant,x,y,z

are the co-ordinates at a momentt of a fluid parcel, whose
undisturbed position under static state of the atmosphere is
given by co-ordinatesa,b, andc, ρ is the density of a parcel
at a momentt,p is its pressure,ρ0 andp0 are the density
and pressure of the same parcel under static condition, and
J=

∂(x,y,z)
∂(a,b,c)

is the determinant of the Jacobian of transforma-
tion from Lagrangian variablesa,b,c to Eulerian variables
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x,y,z. Under static condition the parcels obey a static equa-
tion ∂p0

/
∂c=−gρ0, z=c. One can notice that a nonlinearity

of the system of Eqs. (1–5) is associated with the nonlinearity
of the inertial terms in the left sides of the Eqs. (1–3) describ-
ing parcel’s acceleration, the nonlinearity of a mass continu-
ity Eq. (4), and the nonlinearity of the adiabatic equation of
state (Eq. 5).

Assume, that there are wave disturbances in the atmo-
sphere that cause small perturbations of parcel’s density,
ρ1=ρ−ρ0, or volumeV1=1

/
ρ−1

/
ρ0 per unit mass, and

pressure,p1=p−p0, relative to their undisturbed values. De-
note the components of the displacement vectorS(a,b,c,t)

of the parcel byx1(a,b,c,t), y1(a,b,c,t), andz1(a,b,c,t), so
we can write

x=a+x1(a,b,c,t), y=b+y1(a,b,c,t), z=c+z1(a,b,c,t)(6)

and

J = 6εαβγ [δ1α +∂x1(r,t)/∂rα]

[δ2β +∂y1(r,t)/∂rβ ][δ3γ +∂z1(r,t)/∂rγ ],

(α,β,γ = 1,2,3), (7)

wherer=(a,b,c), εαβγ is the anti-symmetric unit tensor of
the third rank,δαβ=1 for α=β andδαβ=0 for α 6=β. The sum
in Eq. (7) is taken over repeating indicesα, β andγ .

Under incompressible fluid approximation:J=1, which
implies a conservation of the density of a fluid parcel along
its trajectory. According to the mass continuity equation
(Eq. 4) the wave disturbances of the volumeV1 are accompa-
nied by the disturbances,J1=J−1, of the JacobianJ relative
to 1:

ρ0V1 = J1 (8)

Taking into account that ∂
∂c

(
p1
ρ0

)=−
p1

ρ2
0

dρ0
dc

+
1
ρ0

∂p1
∂c

, the

Eqs. (1–3) can be rewritten in the following form

∂2x1

∂t2
+

∂

∂a

(
p1

ρ0
+gz1

)
= La,

La = −
∂2x1

∂t2

∂x1

∂a
−

∂2y1

∂t2

∂y1

∂a
−

∂2z1

∂t2

∂z1

∂a
−V1

∂p1

∂a
, (9)

∂2y1

∂t2
+

∂

∂b

(
p1

ρ0
+gz1

)
= Lb,

Lb = −
∂2x1

∂t2

∂x1

∂b
−

∂2y1

∂t2

∂y1

∂b
−

∂2z1

∂t2

∂z1

∂b
−V1

∂p1

∂b
(10)

∂2z1

∂t2
+

∂

∂c

(
p1

ρ0
+gz1

)
+

p1

ρ2
0

dρ0

dc
+V1

∂p0

∂c
= Lc, (11)

Lc = −
∂2x1

∂t2

∂x1

∂c
−

∂2y1

∂t2

∂y1

∂c
−

∂2z1

∂t2

∂z1

∂c
−V1

∂p1

∂c
(12)

where, according to Eq. (5), the volume disturbances are
given by

V1 =
1

ρ0
[

1(
1+

p1
p0

) 1
γ

−1] (13)

The first three nonlinear terms in the expressions forLa , Lb

andLc describe specifically Lagrangian components of the
acceleration, which arise due to transition from Eulerian to
the Lagrangian frame. The nonlinearity of the forth (pres-
sure) term in the same expressions is associated with the non-
linearity of the adiabatic state equation (Eq. 5).

In case of small relative pressure disturbances, such that∣∣∣∣ p1

ρ0c
2
0

∣∣∣∣�1, the relation (13) may be expanded into an infinite

power series

V1 =
1

ρ0

[
−

p1

ρ0c
2
0

+O

(
p2

1

(ρ0c
2
0)

2

)]
(14)

wherec2
0=

γp0
ρ0

is the adiabatic sound speed squared, and via

O

(
p2

1
(ρ0c

2
0)2

)
we designated the small terms of order

p2
1

(ρ0c
2
0)2

and the terms of higher order. With the use of Eq. (14) the
Eq. (11) takes the following form

∂2z1

∂t2
+

∂

∂c

(
p1

ρ0
+gz1

)
−

N2

g

p1

ρ0
= Lc +gO

(
p2

1

(ρ0c
2
0)

2

)
(15)

whereN2
=−g

(
1
ρ0

dρ0
dc

+
g

c2
0

)
is the Brunt-V̈ais̈alä frequency

squared.
To express pressure terms in Eq. (15) via displacements

we use Eq. (7), which allows us to write the deviation of the
Jacobian from 1,J1=J −1, as

J1 =

(
∂x1

∂a
+

∂y1

∂b
+

∂z1

∂c

)
+J ′′, (16)

whereJ ′′ is the sum of the quadratic and cubic (over the
displacement derivatives) terms in Eq. (7), therefore from
Eqs. (8) and (16) we have

∂x1

∂a
+

∂y1

∂b
= ρ0V1−

∂z1

∂c
−J ” (17)

Taking the derivative overa of both sides of the Eq. (9), and
the derivative overb of both sides of the Eq. (10), and then
adding them with the use of Eq. (17) we obtain

∂2

∂t2

(
ρ0V1−

∂z1

∂c
−J ′′

)
+1⊥

(
p1

ρ0
+gz1

)
=

∂La

∂a
+

∂Lb

∂b
(18)

The Eq. (18) allows one to eliminate a pressure term1⊥(
p1
ρ0

)

from the left side of the Eq. (15) by applying the operator1⊥

to both sides of this equation. As a result we obtain

∂21z1
∂t2 +N21⊥z1−

N2

g
∂2

∂t2
∂z1
∂c

=

(
N2

g
−

∂
∂c

)[
−

∂2

∂t2 (ρ0V1−J ′′)+( ∂La

∂a
+

∂Lb

∂b
)
]

+1⊥

[
Lc +gO

(
p2

1
(ρ0c

2
0)2

)] (19)
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In what follows we consider internal wave field under in-
compressible fluid approximation, which requires a formal
limit transition c0→∞ or V1→0 in the Eqs. (8–12), and
(14). Such transition implies that the phase speeds of the
internal waves considered here are small compared to the
sound speed (Gossard and Hooke, 1975). In this case
the term

∣∣ρ0V1−J ′′
∣∣=∣∣∂x1

/
∂a+∂y1

/
∂b+∂z1

/
∂c
∣∣ describ-

ing linear disturbances of a fluid parcel’s volume caused
by pressure variations takes the value of the order of∣∣p1
/
(ρ0c

2
0)
∣∣∼∣∣gz1

/
c2

0

∣∣�1, therefore the first and last terms
in the right side of the Eq. (19) can be neglected. As a result
Eq. (19) takes the form containing only displacement com-
ponents

∂21z1

∂t2
+N21⊥z1−

N2

g

∂2

∂t2

∂z1

∂c

=

(
N2

g
−

∂

∂c

)[
∂La

∂a
+

∂Lb

∂b

]
+1⊥Lc. (20)

Assume that the maximum values of the vertical and hori-
zontal displacement components, designated asAc andAa ,
respectively, are small compared to the corresponding ver-
tical and horizontal length scales,lc and la , over which a
displacement field significantly varies. We consider the ratio
µ=Ac/lc as a small parameter:µ�1. From a linear continu-
ity equationJ1≈

∂x1
∂a

+
∂y1
∂b

+
∂z1
∂c

≈0, and from our assumption
about the axial symmetry of the displacement field in the hor-
izontal plane we conclude that the following derivatives are

small:
∣∣∣ ∂x1

∂a

∣∣∣∼∣∣∣ ∂y1
∂b

∣∣∣∼∣∣∣ ∂z1
∂c

∣∣∣∼µ�1, therefore the ratioAa

la
(or

Ab

lb
) is of the order ofAc

lc
. In this case the deviation of the Ja-

cobian (7) from 1, given by Eq. (16), contains second-order
(∼µ2) and third-order (∼µ3) small terms in the sumJ ′′.

Now we can estimate the nonlinear terms in the right side
of the Eq. (20) and compare them with the linear terms in

the left side assuming a Boussinesq approximation:lc
N2

g
�1,

which implies that the mean atmospheric density slowly
varies over the vertical length scalelc (Lighthill, 1978). If
ω is the characteristic frequency of the internal wave field,

then|La|∼ω2

∣∣∣∣A2
a+A2

b+A2
c

la

∣∣∣∣∼|Lb|, and|Lc|∼ω2

∣∣∣∣A2
a+A2

b+A2
c

lc

∣∣∣∣,
hence forlc N2

g
�1 andAa∼

Ac

lc
la the right side of the Eq. (20)

takes the value∼ ω2

l2a lc
(1+

l2a
l2c

)A2
c . At the same time the left side

of the Eq. (20) is of the order ofω2( 1
l2a

+
1
l2c

)Ac for ω≤N and

lc
N2

g
�1, therefore the ratio of the terms in the right side of

the Eq. (20) to the value of the left side∼Ac

lc
∼µ�1.

Let us seek a solution of the nonlinear Eq. (20) as a se-
ries over small perturbations (∼µ ) of the displacement field:
z1=z′

1+z′′

1+..., (similarly, for x1 andy1), wherez′

1=O(µ),
z′′

1=O(µ2) and etc., to obtain a linear equation forz′

1 as a
first-order approximation:

∂21z′

1

∂t2
+N21⊥z′

1−
N2

g

∂
2

∂t2

∂z′

1

∂c
= 0 (21)

Then, the second-order equation takes the form

∂21z′′

1

∂t2
+N21⊥z′′

1 −
N2

g

∂
2

∂t2

∂z′′

1

∂c
= f (z′) (22)

where f (z′) is the right side of the Eq. (20) expressed
through only first-order displacementsx1=x′

1,y1=y′

1 and
z1=z′

1. Similar equations can be obtained for the higher-
order terms in the displacement field.

Our goal now is to consider a process of generation of non-
linear harmonics in a given field of discrete internal gravity
waves in the atmosphere and obtain their wave field both in
Lagrangian and Eulerian co-ordinate systems.

3 Internal wave-wave interactions in the Lagrangian
frame of variables

3.1 Second-order Lagrangian displacements induced
by internal waves

Below we consider wave-wave interactions based on a well-
known methodology of nonlinear wave theory (see, for in-
stance, Phillips, 1967; McComas and Bretherton, 1977;
Craik, 1985; Lighthill, 1978; Rudenko and Soluyan, 1977),
but in the Lagrangian frame. Let us present a linear in-
ternal wave field in the atmosphere withN=const as a su-
perposition of two plane waves with wave number vec-
torsk1=(ka,1,kb,1,kc,1), k2=(ka,2,kb,2,kc,2) and amplitudes
Ac,1, Ac,2. Under Boussinesq approximation:

∣∣k1,2
∣∣�∣∣∣∣ 1

ρ0

dρ0

dc

∣∣∣∣≡ 1

H
, (23)

the first-order vertical displacement fieldz′(r,t) (below we
omit a subscript 1 for the displacement components) may be
presented as

z′
=

1

2
e

c
2H [Ac,1e

−i(ω1 t−k1r)
+Ac,2e

−i(ω2 t−k2r)
]+c.c, (24)

whereωj=N(
k2
⊥,j

k2
⊥,j +k2

c,j

)1/2>0 are wave frequencies,j=1, 2,

andk2
⊥,j=k2

a,j+k2
b,j .

Below we consider a two-dimensional case:kb,j=0
and y1=0, for which a first-order continuity equation,
∂z′

∂c
+

∂x′

∂a
=0, allows us to find a horizontal displacement com-

ponent

x′
= −

1

2
e

c
2H

[
kc,1

ka,1
Ac,1e

−i(ω1 t−k1r)

+
kc,2

ka,2
Ac,2e

−i(ω2 t−k2r)

]
+c.c. (25)

Using a linear solution (Eqs. 24–25) consider now a second-
order Eq. (22) with the initial condition:z′′(a,b,c,t=0)=0.
The substitution of Eqs. (24) and (25) to the right sides of
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the Eqs. (20) and (22) produces the following forcing term
of difference frequencyω1−ω2:

f (z′) =
1

4
f1Ac,1A

∗

c,2e
{c/H−i(ω1−ω2)t+i(k1−k2)r}

+c.c., (26)

where

f1 = i(ω2
1−ω2

2)[kc,1k
2
a,2+kc,2k

2
a,1

−ka,1ka,2(kc,1+kc,2)]

(
kc,1kc,2

ka,1ka,2
+1

)
(27)

Similarly, one can write the contribution to the right side
of the Eq. (22) from other forcing terms at frequencies
ω1+ω2, 2ω1, 2ω2 andω=0. The forcing term at frequency
ω1+ω2can be obtained by replacingω2 on −ω2, k2 on −k2
in Eqs. (26) and (27). For the second harmonics 2ω1and
2ω2 this term tends to zero, since Eq. (27) becomes zero for
k1=−k2 and ω1=−ω2, This result shows that there is no
self-interaction for each wave under Boussinesq approxima-
tion, including the caseω=0.

Let us seek a solution of Eq. (22) in the following form:

z′′
=

1

2
(A3(µt)ec/H−i(ω3t−k3r)

+c.c.), k3 = k1−k2,

ω3 = N(
k2
a,3

k2
a,3+k2

c,3

)1/2 , (28a)

whereA3(µt) is a slowly varying amplitude over the time
period 2π/ω3. Substitutingz′′ along with Eq. (27) to the
Eq. (22), and neglecting the terms∼µ3, µ/(kc,3H) and
1/(k3H)2, we obtain the equation forA3(t):

∂A3(t)

∂t
=

1

4

f1

iω3k
2
3

Ac,1A
∗

c,2e
−i1ωt , 1ω=ω1−ω2−ω3. (28b)

If resonant conditions are met, i.e.k3=k1−k2, ω3=ω1−ω2,
then the solution of the Eq. (28b) satisfying initial condi-
tion A3(t=0)=0 is A3(t)=

1
4

f1

iω3k
2
3
Ac,1A

∗

c,2t . The amplitude

of the harmonic of difference frequency grows linearly with
time

|A3| =
∣∣Ac,1Ac,2

∣∣1/2 t

tnon
for t � tnon

=
1

β1,2ω3
∣∣kc,1kc,2Ac,1Ac,2

∣∣1/2
, (29)

wheretnon is the characteristic interaction time between the

two waves, andβ1,2=

∣∣∣∣ f1

4iω2
3k2

3(kc,1kc,2)
1/2

∣∣∣∣ is the interaction

coefficient. In the opposite case of non-resonant interac-
tions between waves, i.e.1ω≡ω1−ω2−ω3 6=0, the ampli-
tude|A3(t)| is

|A3| =
1

4

∣∣∣∣∣ f1

iω3k
2
3

Ac,1A
∗

c,2
sin(1ωt

2 )

1ω
2

∣∣∣∣∣, (30)

and periodically varies in time with a period of4π
|1ω|

. In
the latter case|A3| reaches a first maximum at a moment

t1=π/1ω, whereas for the case of resonant interactions it
takes a maximum att=tnon in accordance with Eq. (29). The
ratio of the maximum amplitude under non resonant interac-
tions with|1ω|∼ω3 to that under resonant interactions is the
value of order

2t1

πtnon
∼ β1,2

∣∣kc,1kc,2Ac,1Ac,2
∣∣1/2

∼ µ � 1 (31)

As long as Eq. (31) is valid the amplitudes of the non-
resonant harmonics are small compared to those of resonant
harmonics, therefore wave-wave interactions have a selec-
tive character with a nonlinear wave energy exchange taking
place mostly between resonant wave modes. However, as a
nonlinear parameterµ increases and approaches some finite
values smaller than 1, the increasing withµ amplitudes of
the non-resonant modes become comparable to those of the
resonant modes (according to Eq. 31). In this case the wave
energy exchange between wave modes due to non-resonant
interactions becomes important as well. Such energy ex-
change does not have a selective character, since any wave
may interact with any other wave to generate a non- reso-
nant harmonic, whose frequency and wave number are not
connected via dispersion relation (sinceω 6=0). The impor-
tance of the non-resonant interactions between internal grav-
ity waves in shaping of their energy spectrum was pointed out
by Phillips (1967), who also noticed that such interactions
resemble cascade-like strong interactions between turbulent
motions of different scales in stably stratified fluid.

Consider first the case of resonant wave-wave interactions.
Let designate the aspect ratios of the vertical to the horizon-
tal wave number components of the interacting wave triad
asXj≡

kc,j

ka,j
, and assume thatX2

j�1 (j=1,2,3). In this case

we can neglect by the terms∼O(1/X2
j ) in the dispersion

equations for each of the three waves, so that the system of
the equations describing resonance conditions takes the form
(McComas and Bretherton, 1977):∣∣∣∣ka,1

kc,1

∣∣∣∣−∣∣∣∣ka,2

kc,2

∣∣∣∣=∣∣∣∣ka,3

kc,3

∣∣∣∣, ka,1

ka,3
−

ka,2

ka,3
=1,

kc,1

kc,3
−

kc,2

kc,3
=1 (32)

After introducing new variables:η=
kc,1
kc,3

, ξ=
ka,1
ka,3

, and elim-

inating ka,2
ka,3

from the second equation of Eq. (32) we obtain
the relationship betweenη andξ∣∣∣∣ξη
∣∣∣∣− ∣∣∣∣ξ −1

η−1

∣∣∣∣= 1 (33)

If we choose now a particular set of the vertical
wave numbers satisfying the last equation in Eq. (32):
kc,1=0.005 rad/m, kc,2=−0.003 rad/m, kc,3=0.008 rad/m,
then from Eqs. (32–33) obtain: ξ=55/64, η=5/8,∣∣∣X2
X1

∣∣∣=11
3 ,

∣∣∣X3
X2

∣∣∣=3
8. Hence, we can choose the val-

ues X1=6,X2=22,X3=8.25 to obtain a set of the hor-
izontal wave number components,ka,1≈0.000833rad/m,
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ka,2≈−0.000136 rad/m,ka,3≈0.000969 rad/m, and frequen-
cies,ω1≈N/|X1|=0.0033 rad/s,ω2≈N/|X2|=0.0009 rad/s,
satisfying resonance conditions (32). Note that a cho-
sen set of the wave numbers for a resonance triad sat-
isfies a Boussinesq approximation, since for all the three

waves
∣∣∣ 1
kc,j H

∣∣∣∼10−2, whereH∼8 km.

A second-order field for a horizontal component of the
displacement,x′′, can be found from a second-order mass-
continuity equation (J1=0) for incompressible fluid:

∂z′′

∂c
+

∂x′′

∂a
+J ′′

= 0,

J ′′
=

∂z′

∂c

∂x′

∂a
−

∂z′

∂a

∂x′

∂c

=
r0

4
Ac,1A

∗

c,2e
c/H e−i(ω1−ω2)t+i(k1−k2)r +c.c. (34)

where r0=−2kc,1kc,2+
ka,1k

2
c,2

ka,2
+

ka,2k
2
c,1

ka,1
, z′, x′ are given by

Eq. (24) and (25), respectively, and the harmonicz′′ has the
amplitudeAc,3 given by Eq. (29). From Eq. (34) we obtain

x′′
= −

kc,3

2ka,3
e

c
H Ac,3e

−iω3t+ik3r

+
r0Ac,1A

∗

c,2

4(ka,1−ka,2)
e

c
H e−i(ω1−ω2)t+i(k1−k2)r +c.c (35)

Note, that the amplitude of the first term in Eq. (35) grows
linearly with time, whereas second term remains limited in
its absolute value.

The expression (29) for the amplitudeAc,3 of the differ-
ence frequency harmonic was obtained by a small perturba-
tion method, which is valid for the time momentst<tnon, for
which we can neglect by a reverse effect of the resonant har-
monic on the field of the first-order waves. The reverse effect
may be taken into account by the method of slowly vary-
ing amplitudes (see, for instance, McComas and Bretherton,
1977; Phillips,1967; Craik, 1985), which assumes a slow
time variation of the wave amplitudesAc,1(µt),Ac,2(µt) and
Ac,3(µt) over their periods. Using this method one can ob-
tain from Eq. (20) a system of three nonlinear equations for
the amplitudes of the wave triad, which shows a conservation
of their total wave energy :∣∣Ac,1

∣∣2+
∣∣Ac,2

∣∣2+
∣∣Ac,3

∣∣2 = const (36)

3.2 Estimates of the amplitudes of nonlinear harmonics
in the stratosphere

Let estimate at some momentt<tnon the amplitude of the
harmonic (31) for the altitudes 20–25 km of the lower strato-
sphere. At these altitudes the typical rms values of the
horizontal velocity fluctuationsσ are in the range (0.5–
5 m/s) (Fritts and Alexander, 2003), so forN=0.02 rad/s
the corresponding rms values of the vertical displacements,
νV =σ/N , are between 25 m and 250 m. If we choose
now for the first-order waves the amplitudesAc,1=65.34 m,

Ac,2=59.40 m at some reference heightcr=20 km, then
from Eqs. (27) and (29) the amplitude of the harmonic
with ω3=ω1−ω2=0.0024 rad/s at a momentt0=2.32×103 s,
equalsAc,3=34.2 m (in this case the coefficientβ1,2≈0.41
and the interaction timetnon=4.2×103 s).

Note, that the combinative harmonic with the wave
number k4=k1+k2 has the corresponding frequency
ω4=N

∣∣ka,4
/
kc,4

∣∣=0.007 rad/s that differs from the sum
ω1+ω2=0.0042 rad/s, so this harmonic is a non-resonant
one. Its amplitude, designated here asAc,4, can be esti-
mated from Eq. (30) by replacingω3, k3 on ω4,k4, and by
taking into account that1ω=ω1+ω2−ω4. The coefficient
f1 can be obtained from Eq. (21) by changing the signs of
ka,2 andkc,2. In this case the amplitudeAc,4=27 m at a mo-
mentt0=2.5×103 s, and is comparable with the amplitude of
the resonant harmonic.

The measure of nonlinearity of the obtained wave field can
be characterized by parameter

M0 ≡ {[(kc,1Ac,1)
2
+(kc,2Ac,2)

2
+(kc,3Ac,3)

2
]/2}

1/2, (37)

which is the rms value of the vertical
gradient(<(∂z1

/
∂c)2>)1/2, thereforeM0 is of the same

order of smallness as the parameterµ∼
∣∣kc,1Ac,1

∣∣�1
introduced in Sect. 2. For a chosen set of wave
numbers and amplitudes of the wave triadM0≈0.33,
and the rms value of the vertical displacements is
νV =[(

∣∣Ac,1
∣∣2+

∣∣Ac,2
∣∣2+

∣∣Ac,3
∣∣2)/2]

1/2=67 m. In the
resonance case the first term in Eq. (35) is on one order
higher in amplitude than the second one, therefore only the
first term will be taken into account in the second-order field
of the horizontal displacementsx1=x′

+x′′
+O(µ3), where

x′ andx′′ are given by Eqs. (25) and (35), respectively, and
via O(µ3) are designated all the nonlinear harmonics of
third-order and of higher order. The relative contribution
from these harmonics into the total displacement field
increases with increasing parameterM0.

4 Vertical profile and spectrum of the wave field in the
Eulerian frame of variables

4.1 Resonant interactions

To understand how the obtained Lagrangian wave field is
viewed from the Eulerian frame we perform a transformation
of variables:x=r+S(r,t), which allows one to calculate the
displacement field at some fixed point of spacex=(x,y,z)

at a momentt . Let designate this field bySE(x,t), and the
components of the vectorS(r,t) by Sa(r,t),Sb(r,t), and

Sc(r,t) instead ofx1, y1 and z1. Since the displace-
ment SE(x,t) at a point x is caused by a fluid parcel
with a co-ordinater in the unperturbed atmosphere, then
SE(x,t)=S(r,t). The latter relationship allows one to
express a Lagrangian co-ordinate asr=x−SE(x,t), and
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Fig. 1. One of the vertical profilesE(z) (continuous line) of the
Eulerian vertical displacement field of the resonant wave triad cal-
culated forM0=0.33,x0=3770 m andt0=2318.4 s. Also shown are
vertical displacementsSc(a=x0,c,t0)=L(c) of the parcels with the
same Lagrangian horizontal co-ordinatea=x0 and different vertical
co-ordinatesc−cr (dashed line),cr is some reference co-ordinatec

taken inside a given atmospheric layer.

obtain the equation for the Eulerian displacement vector
SE(x,t):

SE(x,t) = S(x −SE(x,t),t) (38)

For a given fieldS(r,t)the solution of the Eq. (38) allows one
to find the instant vertical profile of the Eulerian displace-
ment vectorSE(x=x0,y=y0,z,t0) at a momentt0 for a given
vertical line with the horizontal co-ordinatesx=x0,y=y0.

In the case of the resonant wave triad, analyzed in Sect. 3,
the Lagrangian displacementsSc(r,t)=z′

+z′′
+O(µ3) and

Sa(r,t)=x′
+x′′

+O(µ3) are given by Eqs. (24), (25), (28)
and (35). This field will be analyzed in the atmospheric layer
of thickness 2h�2H , within which the wave amplitudes
Ac,j ,(j=1,2,3,...) are considered as constant values taken
at some reference heightcr of the layer. The substitution
of the expressions (24), (25), (28) and (35) in the Eq. (38)
leads to the following system of equations for the vertical
and horizontal components,SE,z(x0,z,t0), SE,x(x0,z,t0), of
the Eulerian displacement vectorSE(x=x0,y=y0,z,t0) at a
momentt0:

SE,z(x0,z,t0) =

3∑
j=1

∣∣Ac,j

∣∣cos
[
ωj t0

−ka,j (x0−SE,x(x0,z,t0))

−kc,j (z−SE,z(x0,z,t0))−φj

]
, (39)

SE,x(x0,z,t0) = −

3∑
j=1

kc,j

ka,j

∣∣Ac,j

∣∣cos
[
ωj t0

−ka,j (x0−SE,x(x0,z,t0))

−kc,j (z−SE,z(x0,z,t0))−φj

]
. (40)

whereφ1, φ2, andφ3=φ1−φ2 are the initial phases of the
interacting waves.

Introducing new non-dimensional variables

z′
=

SE,z

νV

,Z =
z

νV

, x′
=

SE,x

νV

, Mj = kc,jνV ,

pc,j =
Ac,j

νV

, Qj =
Mj

Xj

,R =
x0

νV

, 8j = ωj t0−φj , (41)

and performing the following transform of variables:

θ = z′
−Z, z′

= z′, (42)

one can rewrite Eqs. (39–40) in the non-dimensional form:

z′
=

3∑
j=1

pj cos[Mj θ +Qj (x
′
−R)+8j ] (43)

x′
= [−

3∑
j=1

Xjpj cos[Mj θ +Qj (x
′
−R)+8j ],

Z = z′
−θ. (44)

For a chosen horizontal co-ordinatex0 (or R) and a given
moment t0 the first equation in Eq. (44) was solved nu-
merically with respect tox′. The solutionx′

=x′(θ) was
substituted to the Eq. (43) to findz′

=z′(θ), and then
Z(θ)=z′(θ)−θ from Eq. (44). The obtained in parametric
form solution of the Eqs. (43–44) allows one to calculate the
vertical profiles of the Eulerian displacement components at
any time momentt0. One of the profilesSE,z(x0,z,t0)≡E(z)

of the field of resonance wave triad taken at a moment
t0=2318.4 s and atx0=3770 m is shown in Fig. 1. Along with
the Eulerian field we plotted in Fig. 1. the vertical profile of
the Lagrangian vertical displacementsSc(a=x0,c,t0)≡L(c)

of the fluid parcels with the same horizontal co-ordinate
a=x0 in the unperturbed atmosphere and with the different
vertical co-ordinatesc−cr (in this caseL(c) is given by the
right side of the Eq. (39), where we setSE,x(x0,z,t0)=0 and
z−SE,z(x0,z,t0)=c).

Despite a high nonlinearity of the wave field (M0=0.33)
the distortion of the Eulerian profileE(z) relative to the La-
grangian profileL(c) is not significant. This fact shows that
under resonance conditions the total wave energy is “kept”
within a wave triad regardless of the chosen co-ordinate
frame. However, the distortion ofE(z) becomes significant
in the opposite case of non- resonant wave-wave interactions
which will be considered below.
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4.2 Non-resonant interactions

Consider the case, when the interaction between the two
Lagrangian waves leads to the generation of the harmon-
ics with combinative frequenciesω3=ω1−ω2, ω4=ω1+ω2
and corresponding (related via dispersion equations) wave
numbersk3 andk4, for which the synchronism conditions
are violated: k1−k2 6=k3, k1+k2 6=k4. In this case, a
sum in the Eqs. (39–40) should be taken over four terms
(j=1,2,3,4). Beside this we have to keep second term in
the Eq. (35) for the harmonic of the horizontal displace-
ments withω3=ω1−ω2, and the same term for the harmonic
with ω4=ω1+ω2, because these terms can be comparable
in amplitudes with the first term in Eq. (35). Thus, in the
non-resonance case the system of the equations for the Eu-
lerian displacements becomes similar to Eqs. (43–44), but
with j=1,2,3,4, and with the following additional term in
the Eq. (44):

B5sin[M5θ +Q5(x
′
−R)+85]

−B6sin[M6θ +Q6(x
′
−R)+86],

B5,6 = r0
∣∣Ac,1Ac,2

∣∣/[2νV (ka,1∓ka,2)],

85,6 = 81∓82, (45)

where the upper and lower signs correspond to the sub-
scripts 5 and 6, respectively.

For solving this system (similarly to 43–44) the follow-
ing set of the parameters was chosen:kc,1=0.005 rad/m,
kc,2=−0.003 rad/m,kc,3=kc,1−kc,2=0.008 rad/m,
kc,4=0.0046 rad/m (6=kc,1+kc,2=0.002 rad/m),
ka,1=−8.33×10−4 rad/m,ka,2=−1.36×10−4 rad/m,
ka,3=−9.7×10−4 rad/m (6=ka,1−ka,2=−6.97×10−4 rad/m),
ka,4=ka,1+ka,2=−9.7×10−4 rad/m, ω1=3.3×10−3 rad/s,
ω2=9×10−4 rad/s,ω3=2.4×10−3 rad/s,
ω4=4.2×10−3 rad/s, 81=3.95 rad, 82=0.53 rad,
83=0.82 rad, 84=1.57 rad, 85=3.42 rad, 86=4.48 rad,
Ac,1=98.7 m, Ac,2=88.8 m, Ac,3=29.6 m, Ac,4=29.6 m.
The chosen set of the wave parameters is typical for the
stratospheric altitudes (Eckermann, 1999; Fritts and Alexan-
der, 2003). In this case:B5=−5.7,B6=−4, r0=8.9×10−5,
νV =98 m, and the parameter of nonlinearity,M0=0.44,
shows a strong nonlinearity of the wave field. The calculated
instant profilesL(c) andE(z) are shown in Fig. 2.

One can notice a non-sinusoidal “ steepening” of the wave
crests and troughs in the vertical variations of the Eulerian
field E(z), shown in Fig. 2, and a growth of its local gradi-
ents as compared to those in the Lagrangian fieldL(c). Such
distortion of the wave fieldE(z) relative toL(c) is caused
by a nonlinearity of the process of advection of fluid parcels
induced by the wave field (Chunchuzov, 1996; Eckermann,
1999; CO2). This process is accompanied by a growth of
the amplitudes of the high vertical wave number harmonics
in the Fourier spectrum of the Eulerian fieldE(z)relative to
those in the Lagrangian frame. At the same time the La-
grangian wave field becomes nonlinear itself while increas-

Fig. 2. Vertical profiles of the Eulerian and Lagrangian vertical dis-
placement fields,L(c) (a=0) andE(z)(x0=0), in the case of non-
resonant interactions between waves calculated forM0=0.44 m,
νV =98 m andt0=2.5×103 s.

ing M0 from 0 to M0=0.44, because the contribution into
this field O(µ3), coming from different nonlinear harmon-
ics, becomes significant and forms a continuous Lagrangian
spectral tail due to overlapping of these harmonics. The ad-
vection in the Eulerian frame causes additional distortion of
the wave field relative to the Lagrangian frame by generat-
ing Eulerian spectral tail of higher amplitude than that in the
Lagrangian frame.

Thus, the non-sinusoidal distortion of the Eulerian wave
field is caused by both the nonlinearity of the wave field in
the Lagarangian frame (which distorts the initial Lagrangian
field), and the nonlinearity of the transformation from La-
grangian to the Eulerian variables. In the Eulerian frame
these nonlinearities cause the non-resonant interactions be-
tween original waves and their numerous harmonics, which
are open and readily transfer wave energy from the original
waves to the high and low vertical wave number harmon-
ics. The non-resonant case as found here significantly dif-
fers from the case of resonance wave triad considered above,
since the resonance tends to keep energy within a wave triad
and prevents its distortion.

4.3 Vertical wave number spectral tail generated by a
nonlinearity of the wave field

The nonlinear distortion of the Eulerian vertical profileE(z)

is accompanied by enhancement of the amplitudes of high
vertical wave number harmonics of given two Lagrangian
waves in the Fourier spectrum ofE(z). These harmonics
are generated due to numerous non-resonant wave-wave in-
teractions, and form a high vertical wave number tail in the

www.ann-geophys.net/27/4105/2009/ Ann. Geophys., 27, 4105–4124, 2009



4114 I. P. Chunchuzov: Nonlinear shaping mechanism for gravity wave spectrum in the atmosphere

Fig. 3. Evolution of the vertical wave number spectra for the vertical profilesE(z) (continuous line) andL(c) (dotted line) with growing
parameter of nonlinearityM0. (a) M0=0.05,νV =12 m. (b) M0=0.44,νV =98 m; the corresponding profiles are shown in Fig. 2. The
straight dashed line corresponds to the observed power law decayβk−3

z , β=0.1. The wave numbersm∗ andmc are indicated by arrows,
wherem∗=1/(21/2νV ) is the lower characteristic wave number above which the non-resonant interactions form spectral tail, andmc is the
critical vertical wave number, at which wave energy dissipates due to wave-induced instabilities.

power spectral density (PSD) ofE(z) defined as (Bendat and
Piersol, 1967):

PSD(E(z)) =
F(kz)F ∗(kz)

l
(46)

whereF(kz) is a Fourier transform ofE(z) calculated be-
low by using MATLAB toolbox, andl is the length of the
realization ofE(z). While increasing the parameter of non-
linearity M0 from M0=0.05 (Fig. 3a) toM0=0.44 (Fig. 3b)
the amplitude of the tail in the Eulerian spectrum increases
as well. For small wave amplitudes,M0=0.05, there is a
very weak difference between Lagrangian and Eulerian spec-
tra, although the appearance in the Eulerian spectrum of
the peak corresponding to the second-order harmonic with
kc,3=kc,1−kc,2=0.008 is already noticeable (see continuous
line in Fig. 3a). The amplitudes of the second-order har-
monic and of higher order harmonics in the Lagrangian and
Eulerian spectra (shown in Fig. 3b by the dotted and contin-
uous lines, respectively) gradually increase with increasing
M0. However, the most rapid increase of these harmonics
takes place in the Eulerian spectrum, whose high-wave num-
ber tail approaches atM0=0.44 the straight line correspond-
ing to the observed power law decayβk−3

z , β=0.1. While
changing the locationx0 of the profileE(z), the slope of the
spectral tail also changes due to horizontal nonhomogeneity
of the wave field, but an average power law decay of the tail
remains close to theβk−3

z -power law (Chunchuzov, 2008).
It is important to note that our analysis of the internal

wave field was based on the approximate solutions of the
motion equations for nonviscous fluid (Eqs. 1–5). These

solutions do not take into account the existing mechanisms
of wave energy dissipation in the realistic atmosphere (Gos-
sard and Hooke, 1975) that limit an infinite growth of the
local wave field gradients with increasing value ofM0. In
the absence of dissipation a strong nonlinear steepening of
the wave crests in the Eulerian profileE(z) for M0=0.44
(Fig. 2) leads to the extremely high values of the vertical gra-
dients

∣∣∂SE,z/∂z
∣∣, which can exceed 1 at certain altitudes, as

seen in Fig. 4a. Beside this, the calculated for the second-
order displacement field vertical variations of the Jacobian
J1=J−1 (see Fig. 4b), have the rms values of about 0.2,
and at certain altitudes may reach maximum values of about
0.6. This means that the Lagrangian displacement field con-
taining second-order terms (∼M2

0), obeys the approxima-
tion (34) of fluid incompressibility,J1=J−1=0, only with
the accuracy of the terms of orderM2

0 . The third-order terms

(∼M3
0) like ∂z′′

∂c
∂x′

∂a
−

∂z′′

∂a
∂x′

∂c
+..., and higher-order terms con-

tribute to the deviationJ−1 from incompressibility, which
increases with increasing value ofM0. Therefore, the accu-
racy of the incompressible fluid approximation, which was
initially assumed in the paper for small enough values ofM0,
decreases with an increase ofM0.

The high-order terms in the displacement field contain
the harmonics with the combinative frequenciespω1±qω2
(p and q are integer numbers) greater than the buoyancy
frequencyN . As a result the temporal variations of the
Eulerian displacement field become also nonsinusoidal and
contain a nonlinear high-frequency tail (∼ω−3) in their fre-
quency spectrum (Chunchuzov et al., 2006). Thus, a highly

Ann. Geophys., 27, 4105–4124, 2009 www.ann-geophys.net/27/4105/2009/



I. P. Chunchuzov: Nonlinear shaping mechanism for gravity wave spectrum in the atmosphere 4115

Fig. 4. Vertical profiles of the vertical gradient of the Eulerian displacements,∂SE,z/∂z, and of the relative volume deformations of fluid
parcels,J1=J−1, for the case shown in Fig. 2.(a) ∂SE,z/∂z vs. vertical Eulerian co-ordinatez−cr . Vertical straight line corresponds to the
value∂SE,z/∂z=−1. (b) J1=J−1 vs. vertical Lagrangian co-ordinatec−cr .

nonlinear displacement field may vary in time so fast that
during short characteristic time scalesτ<2π/N the sound
travels on the distancesc0τ that are less than the vertical
length scales 2π/kz of the field’s spatial variations. For such
short time intervalsτ the pressure of adiabatically displaced
fluid parcel is unable of adjusting to the hydrostatic atmo-
spheric pressure, since this parcel “meets” a background,
which is already disturbed by fluid compressibility. There-
fore, there is no adiabatic constrain imposed by KS06 on the
volume variationsJ−1, because this constrain was based on
the assumption about the existence of the parcel’s pressure
adjustment to the hydrostatic background atmospheric pres-
sure. Such assumption is valid for only slow displacements
with small amplitudes, but not for nonlinear displacements
with high amplitudes and fast temporal variations.

To prevent the extremely large deformations of fluid par-
cel’s volumeJ1=J−1, arising in the ideal fluid under strong
nonlinearity of the wave field, we have to limit the spatial
gradients of the obtained Eulerian and Lagrangian displace-
ment fields by taking into account the dissipation of wave
energy. Otherwise, the further increase of the parameterM0
from 0.44 to 0.52 leads to the local absolute values ofJ1
exceeding 1 at certain altitudes, what means the nonphysi-
cal 100% relative changes of the fluid parcel’s volume and
the invalidity of the Lagrangian to Eulerian variable transfor-
mation. In the latter case the vertical profileE(z) becomes
discontinuous and multivalued in the thin local regions of
space (shown in Fig. 5a by arrows) due to unlimited nonlin-
ear distortion of the wave field. Such multivalued Eulerian
profiles were earlier found by KS06 and Klaassen (2009) in

Fig. 5. The multivalues (indicated by arrows) arising in the vertical
profileE(z)(x0=0) for M0=0.52,νV =118 m.

their kinematic advection models for a non-dissipative wave
field comprised of a superposition of seven or more linear La-
grangian gravity waves. These models extended earlier Eck-
ermann’s model (Eckermann, 1999) by taking into account
compressible gravity waves.
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It was found in KS06 that for the typical wave amplitudes
in the middle atmosphere required for producing a broad
Eulerian tail with a slope of−3, the Lagrangian to Eule-
rian transformations are overwhelmingly singular, with mul-
tiple parcels frequently occupying the same physical points
in space. These singularities are induced by stretching de-
formation fields which form during the superposition of si-
nusoidal waves with nonparallel wave vectors. Such defor-
mation fields were assumed in K09 to be unstable with re-
spect to three-dimensional vortices, therefore “. . . the satu-
rated middle atmosphere wave fields are frequently accom-
panied by small-scale turbulent eddies”. Thus, the instabil-
ity proposed in K09 leads to the wave breaking processes
which are seen (Fig. 5a) to occur in the thin (as compared
to the vertical wave lengths of the main Lagrangian waves)
atmospheric layers with the high negative vertical gradients
of the vertical displacements,∂SE,z/∂z<−1. These layers
have high positive vertical potential temperature gradients
∂θ/∂z=∂θ0/∂z(1−∂SE,z/∂z), whereθ0 is unperturbed po-
tential temperature.

Beside the thin layers with singularities there are an-
other layers, where the vertical gradients of the vertical
displacements are positive and reach their critical values,
∂SE,z/∂z≈1, at which wave induced convective instability
switches on and generates turbulence (Gossard and Hooke,
1975). In these layers the wave-perturbed potential tempera-
ture gradient∂θ/∂z becomes close to zero, but each well-
mixed turbulent layer is confined between two thin layers
with high positive potential temperature gradients or absolute
temperature inversions (Whiteway et al., 1995). The convec-
tive instability, however, arises for higher values ofM0 than
the condition∂SE,z/∂z<−1.

Thus, wave breaking processes of different types gener-
ate turbulent eddies of different scales confined within the
local regions of space, where

∣∣∂SE,z/∂z
∣∣ reaches the val-

ues of order 1. These regions are the main sinks of wave
energy, whose dissipation stabilizes the nonlinear growth of
the wave field gradients by some finite values. In CO2 the
vertical length scalelc=2π/mc of these regions was esti-
mated for a large number (n�1) of random waves by lim-
iting the rms values of the gradient∂SE,z/∂z by 1, wheremc

is the upper vertical wave number of the spectral tail. For the
stratosphere the estimated value oflc was in the range (10–
100) m, which was close to the characteristic scale found in
the spectra of star scintillations measured from space stations
(Gurvich and Chunchuzov, 2003, 2005). This scale separates
the two regions of star scintillation spectrum associated with
the anisotropic and isotropic temperature fluctuations in the
stratosphere. Takinglc∼50−100 m, we have limited the cal-
culated spectrum in Fig. 3b by the corresponding critical ver-
tical wave numbermc.

There are two competitive processes that are shaping the
Eulerian spectral tail. From one side, a strong nonlinear-
ity of the wave field leads to the non-resonant wave-wave
interactions that become significant for the vertical wave

numberskz>ν−1
V . The characteristic vertical wave number

m∗=1/(21/2νV )=0.007 rad/m above which the non-resonant
interactions form spectral tail is indicated in Fig. 3b (the cor-
responding vertical scaleL∗=2π/m∗≈900 m). These inter-
actions transfer wave energy from the wave numbers of the
most energy contained waves, excited by wave sources, to-
ward higher vertical wave numberskz>m∗, although some
energy transfers to the lower wave numbers as well (as seen
in Fig. 3b). From the other side, at high vertical wave num-
berskz approaching a critical wave numbermc�m∗, the dis-
sipation of the wave energy due to wave breaking processes
becomes important. These processes generate the turbulent
eddies of different vertical scales 2π/kz<lcwithin the thin
layers co-existing with the stably stratified layers of larger
vertical scales,

The arising turbulent diffusion smoothes high gradients of
the wave field (Gossard and Hooke, 1975; Weinstock, 1985;
Whiteway et al., 1995), thereby preventing extremely large
volume deformations of the fluid parcels. At the same time
the arising turbulent layers become confined by the thin sta-
ble layers with absolute temperature inversions (Whiteway et
al., 1995). The resemblance of the stable layers of high posi-
tive potential temperature gradients with the narrow “sheets”
observed in high resolution temperature profiles (Dalaudier,
1994) was first noted by Eckermann (1999).

5 Eulerian vertical wave number spectrum of ducted
gravity wave mode.

5.1 Nonlinear distortion of ducted wave field

Although, the most part of the gravity wave spectrum in the
atmosphere is composed of freely propagating waves (unlike
the ocean), there exist stably stratified layers in the atmo-
sphere where the trapped waves constitute a high-frequency
part of the spectrum with periods usually less than 10–15 min
(see, for instance, B̈ohme et al., 2004). To show the gener-
ality of the proposed shaping mechanism we will find below
the Eulerian vertical spectrum of the displacement field in-
duced by only one standing gravity mode in the atmospheric
layer of 2h thickness. Within this layer we take the buoy-
ancy frequencyN=const for−h≤c≤h andN1�N outside
this layer. For ducted wave the Lagrangian displacements
may be written as

Sc(r,t)= Asin(mc)cos(ωt +kaa+ϕ)+O(µ2), (47)

Sa(r,t)= XAcos(mc)sin(ωt +kaa+ϕ)+O(µ2), (48)

where 2π
/
m is the vertical period of standing wave,A is

the modal amplitude,ω=N |ka|
/
(k2

a+m2)1/2 andϕ are the
modal frequency and phase, respectively,X=m/ka , and via
O(µ2) are denoted the second-, third- and higher-order fields
generated in a given Lagrangian field of ducted mode. For
ducted wave (Eqs. 47–48) the system of the Eqs. (38) for the
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Eulerian displacement fieldSE=(SE,x,SE,z) taken atx=x0
and at a momentt0 becomes

z′
= sin[M(Z−z′)]cos(ωt0+QR0−Qx′

+φ) (49)

x′
= Xcos[M(Z−z′)]sin(ωt0+QR0−Qx′

+φ) (50)

where

z′
=

SE,z

A
,x′

=
SE,x

A
,M=mA,Q=

M

X
,Z=

z

A
, R0=

x0

A
(51)

The Eqs. (49–50) may be solved similarly to those derived
in Sect. 3 for the wave triad (Eqs. 43–44). For the time
momentst0 and horizontal co-ordinatesR0 satisfying a con-
dition: ωt0+kaR0+φ=2πn,n=0,±1,±2,..., the horizontal
displacement componentx′

=0, thereforex0=a. In this par-
ticular case Eq. (49) takes a simple form

z′
= sin[M(Z−z′)], (52)

which is similar to the solution of the equation describing
acoustic wave of finite amplitude (Rudenko and Soluyan,
1977). The solution of Eq. (52) may be written in the form

Z = z′
+M−1arcsin(z′) (53)

It is seen from Eq. (53) that for small relative amplitudes
of gravity mode (M�1) the vertical profilez′

=z′(Z,t0,R0)

of the Eulerian vertical displacements is almost of the same
sinusoidal form as that for the Lagrangian vertical dis-
placements with the horizontal co-ordinatea=x0 (where
SE,x=Sa=0). While increasingM up to 0.9 the Eulerian
profileSE,z(z,t0)=Az′ (shown by continuous line in Fig. 6a)
is distorted due to advective nonlinearity so that the points on
the sinusoidal profileSc(c,t0) (dotted line in Fig.6a) of the
Lagrangian standing wave (Eq. 52) are differently displaced
with respect to the nodes of the standing wave. Such dis-
placements grow with the local absolute values ofSc(c,t0),
and this leads to the non sinusoidal “steepening” of the Eule-
rian profileSE,z(z,t0) relative to the profileSc(c,t0).

One period of the standing wave (Eq. 52) is shown in
Fig. 6b. This fragment illustrates the vertical displace-
mentsSc(c,t0) of the selected four equidistant fluid parcels
with Lagrangian co-ordinatesc1,c2,c3,c4. The parcels
are instantly displaced to the points with the vertical co-
ordinatesx1,x2,x3,x4 so that xi=ci+Sc(ci,t0),i=1,..,4,

andSE,z(z=xi,t0)=Sc(ci,t0). Such displacements condense
the positionsx2,x3,x4 of the parcels 2, 3, 4 as compared
to their undisturbed positionsc2,c3,c4, and, at the same
time, increase the distances between parcels 1 and 2. The
non sinusoidal distortion of the Eulerian profileSE,z(z,t0) is
accompanied by an increase of the local vertical gradients
∂SE,z/∂z, and by generating of the high vertical wave num-
ber harmonics of the main wave (Eqs. 47–48) in the Fourier
spectrum ofSE,z(z,t0). The overlapping spectral picks cor-
responding to the different harmonics form a nonlinear tail in
the Fourier spectrum.

Fig. 6. Vertical profiles of the vertical displacement field of ducted
gravity mode in Lagrangian (dotted line) and Eulerian (continu-
ous line) frames,M=0.9; (a) distortion of the profileSE,z(z,t0);
(b) fragment ofSE,z(z,t0) illustrating the distortion of the profile
due to displacementsSc(c,t0) of the selected four equidistant fluid
parcels with the Lagrangian co-ordinatesc1,c2,c3,c4.

5.2 Vertical wave number spectrum of ducted wave field

The vertical wave number spectra for the displacement fields
SE,z(z,x0,t0) at x0=0 and ϕ=π/2 are shown in Fig. 7
for different time momentst0. These spectra are calcu-
lated for M=0.9, for which the parameter of nonlinearity
M0=M/2=0.45. One can find well-pronounced spectral
peaks corresponding to the second-, third- and higher-order
harmonics of the main mode withm=0.0075 rad/m. Despite
a “brush-like” form of the obtained spectra their power law
decays are close to the observedβk−3

z -form, and such agree-
ment supports our assumption about a nonlinear origin of the
observed spectral tail.

A further growth of M up to 1 (or M0 up to 0.5)
leads to the multivalues in the profileSE,z(z,x0,t0)

near the points Zp=π+2πp, (p-integer), x′
=0 (or

SE,z=0), and z′
=0(or SE,x=0). At these stagnation

points the gradient of the displacement field (Eq. 52)
∂z′/∂Z=Mcos[M(Z−z′)]{1+Mcos[M(Z−z′)]}−1

→−∞
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Fig. 7. Vertical wave number spectra of the vertical displacementsSE,z(z,x0,t0) calculated forM0=0.45 (M=0.9), m=0.0075 rad/m,
A=120 m,X=m/ka=15,x0=0 and for different values ofωt0 indicated in the upper right corner.

asM→1. Also, the relative deformations of a fluid volume,
J−1=M2

[−cos2(mc)cos2(ωt+kaa+φ)+sin2(mc)sin2

(ωt+kaa+φ)], reach physically impossible values of about
−1. It was assumed by K09 that in real fluids the appearance
of discontinuities in the wave field profile and of extremely
large deformations of a fluid parcel volume (for whichJ=0)

is prevented by wave-induced instabilities arising in the
vicinity of stagnation points. The instabilities lead to the
development of three-dimensional eddies, which in turn can
transfer their energy to the turbulent eddies of smaller scales
up to the internal scale of turbulence at which the turbulent
energy dissipates due to molecular viscosity and thermal
conductivity.

In the realistic atmosphere as known the turbulence gener-
ated by wave breaking processes smoothes high gradients of
the wave field due to turbulent viscosity (Gossard and Hooke,
1975), thereby preventing the arising of discontinuities and
of extremely large fluid parcel deformations. However, such
smoothing as mentioned above occurs only in the local re-
gions of the wave field which have relatively small vertical
sizeslc∼(10–100) m, whereas wave field vertical variations
of larger scales,lc<2π/kz<2π/m∗, are caused by various
nonlinear harmonics generated due to non resonant wave-
wave interactions. These interactions lead to the cascade-like
wave energy transfer over wave numbers of the spectral tail
towards high vertical wave numberskz∼mc, at which wave
energy transfers to the energy of turbulent eddies.

The role of nonlinearity and dissipation in shaping of the
vertical profile of nonlinear gravity wave field has certain
similarity with that in shaping of so-called N-wave in the
nonlinear acoustics (Rudenko and Soluyan, 1977). The latter

is the exact solution of the Lagrangian wave motion equa-
tions for ideal fluid (Zarembo and Krasilnikov, 1965), which
describes a nonlinear distortion of initially sinusoidal wave
profile with increasing distance from a plane acoustic source.
The points on the acoustic wave profile propagate with the
different local speeds proportional to the fluid parcel veloc-
ities in the acoustic wave. This causes a steepening of the
wave form with increasing distance from a source so that
wave profile in the nonviscous fluid ultimately becomes dis-
continuous and multivalued near wave front. The “curing”
of the profile from multivalues can be achieved by taking
into account a molecular viscosity and thermal conductivity.
At large Reynolds number, Re�1, the competition between
the nonlinear distortion of the wave profile and dissipative
smoothing of high gradients at the wave front establishes N-
like wave form at some distance from a source. It is im-
portant to note that dissipation takes place mostly within a
thin wave front with a thickness∼1/Re, whereas the rest part
of the N-wave remains distorted due to nonlinearity of the
acoustic wave field. For highly nonlinear gravity waves con-
sidered here a smoothing of the large wave field gradients in
the middle atmosphere is caused mostly by turbulent viscos-
ity.

5.3 Analytic solution for a periodic ducted wave field

Consider now a limiting case, when the thickness 2h of the
atmospheric layer tends formally to infinity. For−∞<z<∞

a vertical displacement fieldx′
=F(Z) obeying Eq. (52) is

a periodic process with a 2π/m period. In this case we
can find a solution of the Eq. (52) and its discrete power
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Fig. 8. Evolution of the discrete power spectrum,c2
n, of the periodic vertical displacements (given by Eq. 52) with increasing normalized

amplitude,M, of ducted gravity mode. Spectral intensitiesc2
n are calculated for the discrete vertical wave numberskz=nm, m=0.0075 rad/m,

n=0,1,2,..., and forM=(0.7−0.9).

spectrumS(kz) in analytic forms (Appendix A). Indeed,
a solution of the Eq. (52) may be presented as a Fourier

series:SE,z(z)=Az′
=A

∞∑
n=1

bnsinnmz, with the coefficients

bn(M)=
−2(−1)nJn(nM)

nM
for n=1,2,. . . , (given by Eqs. A1 and

A6). Using a correlation function of the periodic displace-
ment fieldSE,z(z) (formula A9) and the corresponding dis-
crete power spectrum defined by Eq. (A10) one obtains the
following expression for one-sided power vertical wave num-
ber spectrumS(kz):

S(kz) =

∑
∞

n=1
cn

2δ(kz −nm),

c2
n =

2A2J 2
n (nM)

(nM)2
=

2J 2
n (nM)

(nm)2
,

n = 1,2,3,... (54)

It is important to note that the intensitiesc2
n of the spec-

trum (Eq. 54) at discrete vertical wave numberskz=nm

depend only on the non-dimensional amplitudeM=mA (or
M0) and the harmonic’s numbern. For n=0 the spectrum
has a zero intensity, since the mean (over period) value
<SE,z(z)>=0. For growing values ofM a spectral inten-
sity c2

n as a function ofkz=nm is shown in Fig. 8. While
increasingM from 0.7 to 0.9 the discrete intensities of the
spectral tail withn>1 increase up to the values, whose
power law decay with increasingn becomes close ton−3

(a straight line 0.4/(m2n3) in Fig. 8) within some range of
n. However, at highn they show a more rapid decrease
with increasingn than n−3. The vertical wave number
range of the spectral tail is limited by critical wave number

mc=mnc, at which the variance of the displacement gradi-

ent, <(∂SE,z(z)
/
∂z)

2>=
∑nc

n=1m2n2cn
2
=
∑nc

n=12J 2
n (nM),

reaches a value of about 1. The critical vertical wave num-
bersmc = mnc above which wave field breaks into turbu-
lence are indicated by vertical arrows in Fig. 9. The corre-
sponding minimal vertical scales, 2π/mc, are of about 34 m
for M=0.87, and 93 m forM=0.9. It is of importance that
the analytically obtained discrete spectrum shows the same
evolution of its tail with increasing parameterM as numer-
ically estimated continuous spectral tail of ducted gravity
mode in the layer of finite thickness−h<z<h.

The 2-D case considered above demonstrates the simplest
examples with only two propagating waves and one ducted
wave, when the nonlinear mechanism works. The applicabil-
ity of the 3-D case in the real atmosphere is shown below for
an ensemble of gravity waves with arbitrary amplitudes and
phases.

6 Eulerian spectrum of a random ensemble of internal
gravity waves in the atmosphere

6.1 Relationship between Eulerian spectra and La-
grangian correlation functions of the random wave-
induced displacements

For the case of high numbern of waves (n�1) with ran-
domly independent amplitudes and phases, previously an-
alyzed by AJ89, Chunchuzov (1996), Chunchuzov (2001),
HO1 and CO2, a more appropriate method for finding an
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Fig. 9. Vertical wave number spectrum of a random internal wave field, given by Eqs. (62–63), and its amplitudeβ. (a) β as a function of the
parametera0≡M2/8 characterizing the degree of nonlinearity of the wave field.(b) Model spectrumS1E(kz) calculated for two altitudes,
which are 15 km apart.

equilibrium internal wave spectrum is the statistical approach
based on the transformation (6) from Lagrangian to Eulerian
variables: x=r+S(r,t), SE,j (x,t)=Sj (r,t),(j=1,2,3),
which can be also derived through the delta functionδ(x) as
follows: SE,j (x,t)=

∫
d3rJSj (r,t)δ(x−y), y=r+S(r,t),

r=(a,b,c),x=(x,y,z), andJ is the determinant of the Ja-
cobian of transformation defined by Eq. (7). Using a Fourier
transformδ(x−y)=(2π)−3

∫
d3kexp[ik(x−y)] one obtains

the relationship between Lagrangian and Eulerian vertical
displacements (AJ89, C96, CO2, H01):

SE,z(x,t) = (2π)−3 (55)∫
d3r

∫
d3kJSc(r,t)exp[ik(x−r −S(r,t))]

Based on the assumption about the random displacement
field S(r,t) as being a statistically stationary, homogeneous
and Gaussian field the transformation (55) allows one to
obtain a relationship between the 3-D Eulerian wave num-
ber spectrumSE(k) and the correlation functions of the La-
grangian displacement field (CO2):

S̄E(k) =

∫ ∫ ∫
d3RGs(R,k)exp[−

∑
i,j

Dij (R)kikj ] (56)

where Gs(R,k)={C33(R)+[
∑
j

D3j (R)kj ]
2
} for the case

of incompressible fluid (J=1), Dij (R)=Cij (0)−Cij (R),

and Cij (R)=<Si(r
′,t)Sj (r

′′,t)> are the spatial cor-
relation functions for different displacement compo-
nents with i,j=1,2,3, R=r ′

−r ′′. In general case
of J 6=1 the linear, quadratic and cubic (over the dis-
placement gradients) terms in Eq. (7) describe the
deformations of a fluid parcel due to its compress-
ibility. They lead to the additional terms inGs(R,k)

like those produced by the cubic terms:(
∑
j

D3j (R)kj )
2

[(
∑
n,γ

∂Cnγ /∂Rγ kn)
2(
∑
α,m

∂Cαm/∂Rαkm)2(
∑
β,p

∂Cβp/∂Rβkp)2
].

At high wave number values only small-scale variations of
the displacement fieldS(R,t)significantly contribute to the
spectrum (Eq. 56). If at small scalesRi a structure function
2Dij (R) is of quadratic form:

Dij (R) ≈

∑
m,n

CijmnRmRn, (57)

Cijmn =< (∂Si/∂rm)(∂Sj/∂rn) >= −[∂2Cij/∂Rm∂Rn]R=0

then at highk the 3-D spectrum (Eq. 56) has ak−5 power
law decay, and the corresponding vertical wave number spec-
trum takes a universalk−3

z -form at highkz. This general re-
sult was obtained in CO2 for any Lagrangian displacement
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field S(R,t) having a quadratic structure function (57). Such
structure of the fieldS(R,t) is typical for both linear and
nonlinear gravity waves. However, for estimating the coeffi-
cientsCijmn in Eq. (57) the fieldS(R,t) was chosen in CO2
as a superposition of weakly interacting gravity wave modes.

6.2 3-D and 1-D spatial spectra of the wave-induced
displacements

The nonlinearity of the Lagrangian motion equations (1–5)
causes the interactions between gravity waves so that some
equilibrium wave energy distribution among Lagrangian
wave modes forms due to the energetic balance between the
nonlinear energy transfer from the characteristic horizontal
(k−1

0 ) and vertical (m−1
0 ) scales of the source spectrum to-

ward smaller scales, and the wave energy dissipation at small
vertical length scales. It was shown in AJ89, HO1, and CO2
that the form of the Lagrangian wave energy distribution
E(k⊥,m) between modes does not affect the asymptotic form
of the 3-D Eulerian spectral tail at high vertical wave num-
bers, thereforeE(k⊥,m) was chosen by CO2 in the form:

E(k⊥,m)= C |m|k⊥exp{−[m2/(2m2
0)+k2

⊥
/(2k2

0)],

C = ρ0N
2ν2

V /[(2π)1/2m2
0k

3
0] (58)

For 21/2|kz|νV �1, (νV is the rms value of the vertical dis-
placement field), and for the low horizontal wave numbers

k⊥, such that
χ2k2

⊥

k2
z

�1, the 3-D spectrum (Eq. 56) takes the

asymptotic form:

∼

SE(k⊥,kz)=
β

8πe0
|kz|

−5exp{−
k2
⊥

4e0k2
z

}[1+O(
χ2k2

⊥

k2
z

)] (59)

β = (2π)−1/22−13a
−5/2
0 exp{−

1

32a0
} (60)

where χ=m0/k0≈ν1/νV , ν1 is the rms value of the
horizontal displacement components,a0=−C3333/16 and
e0=−C3311/8 are the coefficients proportional to the mean
square values of the vertical and horizontal gradients of
the vertical displacement fieldSc(r,t), respectively. Using
Eq. (58) the quantitiesa0 ande0 may be expressed through

the parameters of nonlinearityM≡m0νV and χ : a0=
M2

8 ,
e0≈

a0
χ2 (the parameterMwas introduced in CO2 and equals

M0/21/2). They characterize the degree of nonlinearity and
anisotropy of the wave field, respectively.

The obtained 3-D spectrum (Eqs. 59–60) shows the ex-
istence of highly anisotropic spatial inhomoigeneities in the
displacement and temperature fields, whose anisotropy de-
pends on the value ofe0�1. This spectrum was used by
Gurvich and Chunchuzov (2003, 2005) for explaining the
spectra of stellar scintillations observed from space, and by
Ostashev et al. (2005) for modelling of a scattering of the
acoustic waves from anisotropic wind speed and temperature
inhomogeneities caused by internal wave field in the atmo-
sphere.

After integrating Eq. (59) over 2πk⊥dk⊥ from 0 to∞ we
obtain a 1-D vertical wave number spectrum of the vertical
displacementsS1E(kz):

S1E(kz) = βk−3
z , m∗ � kz < mc, (61)

where β is given by Eq. (60),m ∗ =
1

21/2νV
=

N

21/2σ
is the

characteristic vertical wave number, above which the non-
resonant wave-wave interactions become important and form
a universal spectral tail (Eq. 61),σ is the rms value of the
Lagrangian velocity fluctuations, andmc=m∗exp( 1

β
) is the

critical vertical wave number, at which wave energy dissi-
pates due to wave instabilities.

As seen from Eq. (60) the amplitudeβ of the spectral
tail (Eq. 61) increases rapidly with increasinga0 (or M),
but starting froma0≈0.01 such increase significantly slows
down (Fig. 9a) so thatβ reaches a broad maximum of about
0.22 ata0≈0.012 (M∼0.315). Therefore, a further increase
of M does not change the amplitude of the tail. Moreover, the
growth ofM is limited itself by the wave-induced instabili-
ties that prevent the parameterM to reach the valueM≈0.5
for which <(J−1)2>=1. In the nonviscous fluid the latter
condition leads to the discontinuities in the wave field profile
and the divergence of the interaction potential energy of the
internal wave field as shown in AJ89 and CO2 (p. 1771 ).

Note that the amplitude of the spectral tailβ reaches a
maximum of about 0.2 and becomes saturated for the val-
ues M=0.3–0.4, for which the variance of the Jacobian,
<(J−1)2>, being the value of orderM4 (CO2, p. 1771),
remains less than 1. In the local regions of space, where a
highly nonlinear wave field breaks into turbulence, the tur-
bulence viscosity is expected to smooth extremely high gra-
dients of the wave field. Such smoothing also decreases the
value of<(J−1)2> as compared to that in the nonviscous
fluid. Thus, the obtainedk−3

z spectral tail is saturated as a
result of a combined effect of strong nonlinearity of the wave
field within wave number range (Eq. 61) and dissipation of
the wave energy at high values ofkz near the critical wave
numberkz≈mc. The same amplitude dependence with grow-
ing M0 we obtained earlier for the spectrum of a few discrete
waves (shown in Fig. 5). Hence, a process of nonlinear satu-
ration of the amplitude of spectral tail takes place for both a
few discrete waves and for a high number of random waves
with a broadband wave number spectrum.

At low wave numbers the 3-D spectrum̄SE(k⊥,kz) sig-
nificantly depends on the power spectrum of the random in-
ternal wave sources, and is weakly affected by the nonlinear
effects. Therefore, for 2(k2

⊥
ν2

1+kzν
2
V )�1 the forms of the

3-D Lagrangian and Eulerian displacement spectra are only
slightly differ from each other (see AJ89 and CO2) . In this
case the 3-D spectrum̄SE(k⊥,kz) can be chosen in the form
given by Eq. (58), whereC is some constant. Fork2

z�m∗
2

the 1-D vertical wave number spectrum of the vertical dis-
placements,S1E(kz), can be obtained by integrating Eq. (58)
over 2πk⊥dk⊥ from 0 to∞.
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The low wave number part of the spectrumS1E(kz) is con-
nected at the intermediate wave numberkz∼m∗ with a high
vertical wave number tail (Eq. 61) by some transitional por-
tion of the spectrum, whose exact shape is unknown to us.
To find an approximate shape of this spectral portion we
take into account the continuity of the spectrum atkz=m∗.
Equating atkz=m∗ the low-wave number part of the spec-
trum S1E(kz) and its high-wave number tail we can find the

constantC. Taking also into account that
mc∫
0

S1E(kz)dkz≈ν2
V

we obtain the following approximate form for the spectrum
S1E(kz):

S1E(kz) = βkzm∗
−4exp[−(k2

z −m∗
2)/(2m2

0)],

0< kz ≤ m∗, (62)

S1E(kz) = βk−3
z , m∗ < kz < mc, (63)

where the ratiom∗/m0 depends onβ. ForM=0.34 the spec-
tral tail is under saturation condition, for whichβ=0.22 and
m∗/m0≈2. For this case the spectrum (Eq. 62–63) is shown
in Fig. 9b. for the two rms vertical displacements,νV =244 m
andνV =623 m, corresponding to the two different altitudes
15 km apart. The increase ofνV with altitude due to de-
crease of the mean atmospheric density leads to the decrease
of the wave numberm0 of the spectral maximum along with
the characteristic wave numbersm∗ andmc. Such increase,
however, does not change the amplitude of the tail (Eq. 63),
whose characteristic (outer) vertical scale 2π/m∗ increases
from 2167 m to 5712 m along with an increase of the wave
breaking scale 2π/mc from 23 m to about 59 m. It is neces-
sary to note that a generation of thek−3

z -tail in the Eulerian
frame of variables is not a purely kinematic effect associated
with a nonlinear transformation from Lagrangian to the Eule-
rian frame of variables: the advective nonlinearity generates
a saturated tail for only those values ofM0 for which a non-
linearity of the Lagrangian wave field becomes important as
well.

7 Conclusions

In this paper a nonlinear shaping mechanism was studied for
the vertical wave number spectrum of the field composed of
two propagating gravity waves or one ducted gravity wave.
This mechanism is similar to that previously proposed in
CO2 for an ensemble of large number of waves with ran-
domly independent amplitudes and phases. In both CO2
and present paper we took into account a strong nonlinear-
ity of the gravity wave field for the wave amplitudes and
wave numbers typical for the real atmosphere. This was done
by solving the nonlinear fluid motion equations in the La-
grangian frame and by applying a variable transformation to
the Eulerian co-ordinates. Such an exact transformation al-
lowed us to take strictly into account the advection of fluid

parcels induced by the wave field itself. The different advec-
tion of different fluid parcels as shown leads to the “steep-
ening”of the wave crests and troughs when transferring from
Lagrangian to the Eulerian frame of variables. Such non si-
nusoidal distortion of the wave field vertical profile is accom-
panied by generating of a high vertical wave number spectral
tail in its Fourier spectrum. The 3-D form for this tail was
used in the paper to obtain a new form (given by Eqs. 62–
63) for the 1-D vertical wave number spectrum in the broad
range of wave numbers.

The amplitude of the spectral tail increases with the pa-
rameter of nonlinearityM0 up to some broad maximum or
saturation for which the 1-D spectral tail takes a form close
to βk−3

z regardless of whether wave sources excite in the La-
grangian frame only two discrete internal waves, one ducted
wave or a random ensemble of waves with a broadband wave
number spectrum. This was also confirmed by an analytic
solution found for a discrete vertical wave number spectrum
of the periodic (overz) standing wave of finite amplitude. A
further increase ofM0, and of the spatial gradients in the Eu-
lerian displacement wave field, is limited by their threshold
values, at which the wave breaking processes generate turbu-
lent eddies in certain local regions of space.

Thus, on reachingM0 certain values (about 0.3–0.4) there
exists some vertical wave number range within which the
wave energy transfer toward high vertical wave numbers is
balanced by a sink of the wave energy due to wave breaking
processes at some critical wave number. Within this range a
vertical wave number spectrum of the Eulerian vertical dis-
placements takes a universalβk−3

z -form with the theoretical
valueβ=0.22 that lies within its observed range (0.1–0.3).

Appendix A

Discrete spectrum of periodic displacements

The function in the right side of the Eq. (52) may be pre-
sented as a Fourier series

x′
=

∑
∞

n=1
bnsinnMZ (A1)

with the coefficients

bn(M) = 2/
π

π∫
0

sin(MZ−Mx′)sin(nMZ)d(MZ) (A2)

In Eq. (A2) we change variables

MZ−Mx′
= η,

MZ = η+Msinη
(A3)

and carry out integration by parts

bn(M) = 2/
π

π∫
0

sinηsin[n(η+Msinη)]d(η+Msinη)

= 2/
(πn)

π∫
0

cosηcos[n(η+Msinη)]dη

(A4)
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Using relationships for Bessel functions

Jν(nz) = 1/
π

π∫
0

cos(νη−nzsinη)dη

Jν+1(nz)+Jν−1(nz) = 2ν
/
(nz)Jν(nz)

(A5)

the Fourier coefficients given by Eq. (A4) can be presented
as follows

bn =
−2Jn(−nM)

nM
=

−2enπiJn(nM)

nM
(A6)

Returning back to the initial variables
SE,z=Ax′,m=M/A,z=Z/A given by Eq. (51b) the
instant Eulerian vertical displacement field can be presented
as an infinite series of different harmonics of a given wave
(Eq. 52):

SE,z(z) = A

∞∑
n=1

bnsinnmz, −∞ < z < ∞ (A7)

For periodic function (Eq. A7) we can find its correlation
function

B(1z) = < SE,z(z)SE,z(z+1z) >

= A2/T

∫ T/2

−T/2

∑
∞

n=1

∑
∞

k=1
bn

bk sinnmzsinkm(z+1z), (A8)

where the averaging<. . .> is taken over periodT =2π/m.
Taking into account that the integral (A8) is not zero forn=k

only we obtain

B(1z) = A2/2
∑

∞

n=1
bn

2cos(nm1z) (A9)

Using correlation function (A9) one can also calculate a
power spectrum of the displacement field (Eq. 52) by apply-
ing a Fourier transform ofB(1z):

F(kz) = (2π)−1

∞∫
−∞

d(1z)B(1z)expikz1z

= (2π)−1A2/4

∞∫
−∞

d(1z)
∑

∞

n=1
bn

2

[cos(nm−kz)1z+cos(nm+kz)1z]

= A2/4
∑

∞

n=1
bn

2
[δ(kz −nm)+δ(kz +nm)] (A10)

whereδ(x) is delta function. Thus, a one-sided power spec-
trum, defined asS(kz)=2F(kz) for kz≥0 andS(kz)=0 for
kz<0, takes the form

S(kz) =

∑
∞

n=1
cn

2δ(kz −nm) (A11)

wherec2
n=A2b2

n/2 are the intensities of the discrete spec-
trum, which according to Eq. (A6) are

c2
n =

2A2J 2
n (nM)

(nM)2
=

2J 2
n (nM)

(nm)2
(A12)
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