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Abstract. The nonlinear mechanism of shaping of a high mesosphere) we analyze in this paper a nonlinear shaping
vertical wave number spectral tail in the field of a few dis- mechanism for these fluctuations.

crete internal gravity waves in the atmosphere is studied in For the ocean a similar shaping mechanism was proposed
this paper. The effects of advection of fluid parcels by inter-earlier by Allen and Joseph, 1989 (hereinafter AJ89), who
acting gravity waves are taken strictly into account by calcu-tried to find a physical explanation for the well-known em-
lating wave field in Lagrangian variables, and performing apiric forms of the oceanic internal wave spectra derived by
variable transformation from Lagrangian to Eulerian frame. Garrett and Munk (1975). This mechanism was associated
The vertical profiles and vertical wave number spectra of thewith the influence of the wave-induced advection of fluid
Eulerian displacement field are obtained for both the case oparcels on both spatial and temporal internal wave spec-
resonant and non-resonant wave-wave interactions. The evara. The AJ89’ approach was later applied by Chunchuzov
lution of these spectra with growing parameter of nonlinear-(1996) to the atmosphere, and then developed by Chunchu-
ity of the internal wave field is studied and compared to thatzov (2001), Hines (2001) (hereinafter HO1), and Chunchu-
of a broad band spectrum of gravity waves with randomly zov (2002) (hereinafter CO2) with substantial modifications
independent amplitudes and phases. The calculated verticaf the AJ89'approach (the cause of these modifications and
wave number spectra of the vertical displacements or relativeheir detailed description are given in HO1 and CO2). Based
temperature fluctuations are found to be consistent with theon the nonlinear shaping mechanism we study here the de-
observed spectra in the middle atmosphere. pendence of the spectral forms on whether wave sources ex-
cite a few discrete gravity waves during observational period,
or a broad band spectrum of random waves.

A nature of the mesoscale fluctuations in the atmosphere is
debated for a long time (see, for instance, Fritts and Alexan-
der, 2003, Sect. 4.1). In certain range of high vertical wave
1 Introduction numbersk, the observed vertical wave number spectra of the

temperature fluctuations shovxkg3—power law. It was no-

Observations of the mesoscale wind velocity and temperaticed by Hines (1991) that the gravity waves with the high
ture fluctuations in the middle and upper atmosphere ofterwhich are Withinthekz‘3-spectral tail, have very low horizon-
reveal a presence of a small number of discrete gravity wavetal phase speeds, comparable to the horizontal wind velocity
(Sica, 1999; Gurvich and Chunchuzov, 2005). Other stud-fluctuations induced by the waves themselves. Such waves
ies suggest that the fluctuations are induced by a broad barghould strongly interact due to advective nonlinearity of the
spectrum of gravity waves (Allen and Vincent, 1995; Hines, Eulerian fluid motion equations.
1991). To explain the observed forms of the vertical wave To take into account the wave-induced advection of fluid
number spectra of temperature fluctuations in the stably stratparcels it was suggested in a number of works to use a
ified layers of the atmosphere (troposphere, stratosphere aridagrangian frame of variables for studying the dynamics
of gravity waves, and then perform a variable transforma-
tion to the Eulerian frame, where the advection takes place
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transformation it strictly takes into account the advective ef-tion they developed the model of the 3-D spectrum of tem-
fects associated with the nonlinear ter@¥)v in the Eule-  perature fluctuations, from which both the vertical and hor-
rian equations of motion without using any approximationsizontal wave number spectra were obtained. These spectra
for these terms. Using a Lagrangian approach it was foundvere shown to be consistent with their observed forms in the
in CO2 that a strong nonlinearity of the wave field generatesmiddle atmosphere.
a 3-D Eulerian wave number spectrum withz-power law The nonlinear shaping mechanism proposed in CO2 forms
decay at high wave numbeks This spectrum is of highly  a certain Eulerian frequency spectrum of the temperature and
anisotropic form as a result of a balance between the nonlinwind velocity fluctuations at a fixed point of space (Chunchu-
ear wave energy transfer from the characteristic (vertical ancov et al., 2006). This spectrum was derived from the 4-
horizontal) scales of internal wave sources toward smalleD frequency-wave number spectrum obtained in CO2. It
vertical and larger horizontal scales, and the dissipation ofwvas found that at high frequencies= N), which are be-
wave energy at small vertical scales due to wave breakingsond the buoyancy frequenay, the nonlinear wave-wave
processes. Such cascade-like energy transfer in the 3-D wausteractions generate in the frequency spectrunuthétail
number space is caused by non-resonant wave-wave interaof the same nature as tlkg3-tail in the vertical spectrum.
tions, which along with wave energy dissipation play a key For the intermediate range of frequencigs{w<N, fis in-
role in shaping of the equilibrium gravity wave spectrum. ertial frequency) the frequency wind velocity spectrum was
The wave-like fluid motions generated by the non-resonanshown to follow thesw =2 power law, where=02N/ x is the
interactions resemble anisotropic and vertically oriented vor-mean generation rate of wave energy from random gravity
tices rather than the linear gravity waves, because the dispewave sourcess is the rms value of the wave-induced hori-
sion surfaces of these waves in the frequency-wave numbezontal wind velocity fluctuationsy=o /0, characterizes the
space are completely “smeared” by advection. anisotropy of the Lagrangian wave fietd, is the rms value
The hypothesis about a significant role played by forwardOf the vertical wind velocit_y fluctua_tions. In t_his range the
energy cascade in shaping of the spectra of the mesosca[éequency spggtra of the wind velocity ﬂuctuauops measured
In stably stratified lower troposphere (by acoustic anemome-

fluctuations in the atmosphere was earlier proposed by De q i dina) | Il th d
wan (1997) on the basis of his saturated-cascade similitugéSrs and acoustic soun ing) in average (over all the measure

. . 2
theory. Using this theory Dewan found the forms of the hor- leegtorgé)decayed with growing asew™* (Chunchuzov et
izontal and temporal gravity wave spectra, which were close Recently, the Lagrangian approach, but slightly simplified,

to their observed forms, although he traditionally interpreted lied to th . by Pinkel (2008) t lai
the vertical spectra as a result of the saturation of linear grav\-’vas applied to the oceanic waves by Finkel, ( ) to explain
the observed velocity shear spectrum in the ocean. He con-

ity waves caused by their convective or shear instabilities.”. : : : .

The merging of wave saturation and wave cascade processé&dered the tlme-var_ylng a_dvect!on of ﬂu'd. parcels caused by
was assumed to be possible due to the existence of a uniq few energy _cont_alned S|_nu50|dal constituents of the wave
relation between the vertical wave length and period of grav—t'elld SL.‘Ch as |r;|e r(';lal anqlf|dal compofnents. T‘Phe Iak'gter Wetfe
ity waves. Lindborg (2006) also used a similitude theory aken In so-cafled semr-Lagrangian frame. € Kinematic

added by numeric simulations of energy cascade in stratifiedfiStortion of the wave field due to transfer f“’”? this frame
fluid. This allowed him to derive the=3 andx=>'3 forms to the frame of measurement platform resulted in the advec-
’ Z h

tive “smearing” of the discrete spectral lines. Analyzing this

for the vertical spectra (scales from 100 to 1000 m) and theeffect Pinkel (2008) assumed that the apparently continuous

honzontal spectra (scales from a_bout 1 10 500 km)’_reSPGC\'/vave number-frequency spectrum of the oceanic shear can
tively. However, contrary to the linear wave saturation hy-

Lo ) esult from a wave field populated at only a few intrinsic fre-
pothesis, Lindborg (2006) assumed that both the hor'zoma[quencies. It was noticed earlier in CO2 that the increasing

and vertical spectra arise *... from one and the same YPRyith wave amplitudes kinematic effects of advection become

qf nonlinear phaotlc motlpn. N govemed by the fuIIy.non- significant only when the nonlinearity of the wave field in
I|_near Boggsmesq gquanons. Such highly anls_otroplc MO%he Lagrangian frame becomes significant as well. There-
tions significantly differ from those induced by I_mear grav- f?re, the shaping mechanism for the wave spectrum consid-
ity waves, therefore he suggested for these motions a neutr%red here is not associated with a purely kinematic effect

term layer” instead of “wgve”. The conclusmp made by but results from a combined effect of both the advective and
Lindborg (2006) about the importance of a nonlinear energydynamic nonlinearities of the wave field

cascade in shaping of highly anisotropic mesoscale fluctua- The important result of the nonlinear theory developed in

tions in sta_bly s_tratified fluid is in agreeme_nt with that previ- CO2 was the obtained form for the 4-D gravity wave spec-
ously obtained in CO2 based on Lagrangian approach. trum, which allowed one to explain the observed forms of
Recently, the 3-D spectrum obtained in CO2 was slightly both the frequency and spatial 1-D (vertical and horizontal)
modified by Gurvich and Chunchuzov (2008) who assumedspectra based on the same shaping mechanism. The general-
that the anisotropy of the temperature fluctuations decreaseasy of this mechanism was shown by parameterization of the
with a decrease of their vertical scale. Based on this assumprertical, horizontal, frequency spectra and the corresponding
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second-order structure functions (under nonlinear saturatiokemperature and wind speed fluctuations is needed for the
of the fluctuations) through the same main parameiers prediction of the statistics of the amplitude and phase fluc-
and x, and by the agreement of the predicted and observeduations of low-frequency acoustic waves (Chunchuzov et
spectra (Gurvich and Chunchuzov, 2008; Chunchuzov et al.al., 2006; Ostashev et al., 2005) and electromagnetic waves
2006). However, the forms of other statistical characteristicSGurvich and Chunchuzov, 2003, 2005), propagating through
of the fluctuations such as their probability density functionsa realistic atmosphere.
and third-order structure functions still need to be obtained In this paper we consider the same nonlinear shaping
from the same theory and compared to the experimental datenechanism for gravity wave spectrum as in CO2, but for only
available. two waves. Based on the Lagrangian fluid motion equations,
The nonlinear theories of wave spectra proposed by AJ89derived in Sect. 2, we will study in Sect. 3 a nonlinear gener-
Chucnchuzov (1996), HO1, Hines (2002), and CO2 were re-ation of the harmonics of two given waves in the Lagrangian
cently tested by Klaassen and Sonmor (2006) (hereinafteframe of variables, and calculate their displacement field by
KS06) and Klaassen (2009), who came to the conclusion thatising perturbation method. In Sect. 4, the obtained field and
their kinematic model does not provide any support for thesets vertical wave number spectrum will be studied in the Eu-
theories. KSO06 found that for the typical wave amplitudeslerian frame. Both resonant and non-resonant wave-wave in-
required to produce thlez‘3-spectral tail the vertical profiles teractions will be analyzed. Such study will be extended in
of the Eulerian displacement wave field become multivaluedSect. 5 to the case of only one ducted gravity wave excited
and the transformation from Lagrangian to Eulerian variablesby wave sources to show a generality of the shaping mecha-
becomes invalid. As an alternative to the nonlinear shap-nism discussed here. In Sect. 6 the spectra for the case of a
ing mechanism for this tail, Klaassen (2009) suggested thatew discrete waves will be compared to those for the case of
“...through instability, atmospheric wave fields create anda high numbers(>>1) of gravity waves with randomly inde-
possibly coexist with a field of smaller-scale (perhaps turbu-pendent amplitudes and phases. The new forms obtained for
lent) eddies, which act to exert a force on the mean back3-D and 1-D wave number spectra will be analyzed.
ground flow. In other words, the secondary field of eddies
acts as a dissipation mechanism for the larger scale internal ) . ] S
waves, producing momentum deposition and perhaps satur& Eguations for nonlinear internal wave field in the La-
tion as the latter continue to propagate. ..” grangian frame of variables

It is necessary to note that the multivalues can arise in thc?N . . . .
. , ; i e start with a system of motion equations for nonviscous,
profile of the wave field, because the latter is a solution of

. ) . . stably stratified, and nonrotating fluid in Lagrangian frame of
nonviscous fluid motion equations. Another well-known ex- ="
: . . .. variablesr=(a,b,c) andt (Lamb, 1932; Gossard and Hooke,
ample of such solutions is a plane acoustic wave of finite

amplitude, whose wave profile distorts with increasing dis-lg?s):

f[ance from a plqne source until it becomes multivalued neary2,. 5, 92y 3y 927 3z 19p

its wave front (Lighthill, 1978; Rudenko and Soluyan, 1977). — — +t-5 = t| 2z t8) ="+ (1)
o . . datc da  0t* da at da p da

By taking into account a molecular viscosity and thermal

conductivity one can stabilize the nonlinear steepening of the ) ) )

wave profile and prevent the arising of multivalues. In the 9°x dx 9%y dy 9z g 9z _ _la_P @)

case of internal waves propagating through realistic atmo-9t2 b~ 912 9b at2 ab p b

sphere the different types of wave-induced instabilities may

prevent the arising of discontinuities in the wave field pro- 32y 5x 32y 9y 927 9z 1ap

file through wave breaking processes and transferring wave; 2 5. v 32 5. 7| 3,2 3 poc ®3)
energy into the energy of turbulent eddies. However, these

processes as shown in CO2 occur only within the thin spa-, ; = po )
tial regions whose thickness is small compared to the verticalo

scales, 2/ k;, typical forthek;3-tail. In these local regions o\’
of space a sink of wave energy balances the nonlinear wav& = P0 (%) ®)
energy transfer through the entire spectral tail.

Since wave drag parameterization schemes are sensitive whereg is gravity acceleratiory is adiabatic constant, y, z
the height dependence of the forms of the vertical wave numare the co-ordinates at a momenaf a fluid parcel, whose
ber spectra and of the characteristic scales of wave breakingndisturbed position under static state of the atmosphere is
processes the estimating of these scales is of great impogiven by co-ordinates, b, andc, p is the density of a parcel
tance for solving the problem of parameterization of gravity at a moment, p is its pressurepo and po are the density
wave drag in the atmospheric circulation models (McLan-and pressure of the same parcel under static condition, and
dress, 1997; Fritts and Alexander, 2003). Beside this, the/=2%2-2 s the determinant of the Jacobian of transforma-

) " . 0(a,b,0) - . . .
knowledge of the space-time spectrum of the wave-inducedion érom Lagrangian variables, b, ¢ to Eulerian variables
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x,y,z. Under static condition the parcels obey a static equawhere, according to Eq. (5), the volume disturbances are
tion 8p0/8c=—gpo, z=c. One can notice that a nonlinearity given by

of the system of Egs. (1-5) is associated with the nonlinearity 1 1
of the inertial terms in the left sides of the Eqgs. (1-3) describ-Y1= . —[———= -1 (13)
ing parcel’s acceleration, the nonlinearity of a mass continu- (1—|— %) 4

ity Eq. (4), and the nonlinearity of the adiabatic equation of

state (Eq. 5). and L. describe specifically Lagrangian components of the

Assume, that there are wave disturbances in the atmo-
acceleration, which arise due to transition from Eulerian to
sphere that cause small perturbations of parcel's density,
the Lagrangian frame. The nonlinearity of the forth (pres-
p1=p—po, Or volume Vi=1/p—1/po per unit mass, and

. A . r rminth me expressions i i with the non-
pressurepi=p— po, relative to their undisturbed values. De- sure) te the same expressions is associated with the no

note the components of the displacement vestr. b c. ) linearity of the ad|abat|c_state equatlon_ (Eq. 5).
In case of small relative pressure disturbances, such that
of the parcel by4(a,b,c,t) y1(a,b,c,t), andzy(a,b,c,t), SO

we can write

The first three nonlinear terms in the expressiondfprL,

-PL 1«1, the relation (13) may be expanded into an infinite
0

wWer seri
x=a+x1(a,b,c,t), y=b+y1(a,b,c,1), z=c+z1(a,b,c,)(6) PO o SoeS

1 P1 p?
Vi=—|— +0 (14)
and 00 [ pocg <( pocé)z
J = Zeagy 810 +0x1(r,1) /074 ] wherecgz% is the adiabatic sound speed squared, and via
2
102  Oaa(r, D/ rpllOsy +02a(r.0/0ry ] < plz 5 | we designated the small terms of orde?—z
(o, 8,y=1,2,3), 7) (pocg) c2)

and the terms of higher order. With the use of Eq. (14) the
wherer=(a,b,c), eqp, is the anti-symmetric unit tensor of Ed. (11) takes the following form
the third rankj.s=1 for =g andé,s=0 for a#p. The sum 3221 0 n N2 py
=L+ 2)2 (15)

in Eq. (7) is taken over repeating indicesg andy . -7
. . . . . . ot dc
Under incompressible fluid approximatiod:'=1, which
implies a conservation of the density of a fluid parcel along
its trajectory. According to the mass continuity equation
(Eg. 4) the wave disturbances of the volumeare accompa- squared.

1 dpo

2__
whereN“=—g oo de

—|—L‘%> is the Brunt-\aisala frequency
0

nied by the disturbanceg;=J—1, of the Jacobiad relative To express pressure terms in Eq. (15) via displacements
to 1: we use Eq. (7), which allows us to write the deviation of the
Jacobian from 1/;=J —1, as
poVi=J1 8 dx1  dyr 9
J1= ox oy o J", (16)
da aob ac

P pi1dpo | 1 9p1
Taking into account that ()= J2 de +55 90 the

" i i
Egs. (1-3) can be rewritten in the following form where J” is the sum of the quadratic and cubic (over the

displacement derivatives) terms in Eq. (7), therefore from

92x1 9 Egs. (8) and (16) we have
— +ng) L, d 0 d
t2  da ( ﬁ+ﬂ:pov1—ﬂ—1” (17)
9%x10x1  9%y1dy1  9%z19z1 p1 o oc
L,=—2 -t ¢ IJ19N T 101y, 0P 9) Takmg the derivative over of both sides of the Eq. (9), and
9t2 da  0t2 da 912 da da’

the derivative oveb of both sides of the Eqg. (10), and then
adding them with the use of Eq. (17) we obtain

32y1 32 dz1 dL, aLb
— L , = oL "
52 + 8b< +gZ1> b 572 (povl 5e J )—i—AL( +gz1 ) Ba (18)
9%x19x1  9%y1dy1  0%z1 021 ap1 (10) The Eq. (18) allows one to eliminate a pressure tarn{ gl)

Ly————=-""-_ /-7 e
b 92 9b o2 ab o2 ab ' ob from the left side of the Eq. (15) by applying the operatar
) p to both sides of this equation. As a result we obtain

0°z1 , d (1 p1dpo dpo 2 2

a7 (2 20 v, 11 04 2 _ N2 on
912 dc < e >+ 2 dc * dc ¢ (h) I +N2 ALz g L2 de

= (N? - aa—c)[ s (Vi —J")+ (G + aL")] (19)
3%x10x1 3%y1dy1 9%z1 9z ap1 [ }

Li=——— =22 o — Syt 12 +AL|Lc+g0
“TT02 9c 9 ¢ ar2 ac ac (12) ‘ (pocg)?
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In what follows we consider internal wave field under in- Then, the second-order equation takes the form
compressible fluid approximation, which requires a formal

limit transition co— o0 or V1—0 in the Egs. (8-12), and 9°Az]
(14). Such transition implies that the phase speeds of the 372

internal waves considered here are small compared to the . . )
sound speed (Gossard and Hooke, 1975). In this cas¥nere f(z') is the right side of the Eq. (20) expressed

the term| poVa—J" | =|dx1/da-+dy1 /db+dz1 /dc| describ- throu/gh qnly flrst-ord_er dlsplacemenma_zx/l,y1=y/l ar_ld

ing linear disturbances of a fluid parcel's volume caused?1=21- Similar equations can be obtained for the higher-
by pressure variations takes the value of the order oforder termsinthe displacement field. _
|p1/(poc?)|~|g21/ 2| <1, therefore the first and last terms Our goal now is to consider a process of generation of non-
in the right side of the Eqg. (19) can be neglected. As a resylfinear h_armonlcs in a given field of.d|scr(.ate mtemal grawty
Eq. (19) takes the form containing only displacement com-Waves in the atmosphere and obtain their wave field both in

N2 3° 9z)
+N2A 2] - ?ﬁa_cl =f(@@) (22)

ponents Lagrangian and Eulerian co-ordinate systems.
3%Az N? 92 3z
21+N2AJ_Z1___2_1 i ions i i
at g 9t dc 3 Internal wave-wave interactions in the Lagrangian
N2 g 9L, 9Ly frame of variables
=|——-= — |+ALL,. (20)
g o da 3b 3.1 Second-order Lagrangian displacements induced
Assume that the maximum values of the vertical and hori- by internal waves

zontal displacement components, designated aand A, i ) )
respectively, are small compared to the corresponding verB€lowW we consider wave-wave interactions based on a well-
tical and horizontal length scales, and,, over which a known methodology of nonlinear wave theory (see, for in-

displacement field significantly varies. We consider the ratioStance, Phillips, 1967; McComas and Bretherton, 1977;
=A. /1, as a small parametef:« 1. From a linear continu- Craik, 1985; Lighthill, 1978; Rudenko and Soluyan, 1977),
ity equation]lw%—k%Jr%%O, and from our assumption but in the La.grar?gian frame. Let us.present a linear in-
about the axial symmetry of the displacement field in the hor-t8rnal wave field in the atmosphere wiNFconst as a su-

izontal plane we conclude that the following derivatives areferpl?sit(i]?n Okf tWIS p)la£e (v]\{/ave: Wi]:h ;"’a"z numl?te(rj vec-
. | o c Ay OrSK1=(Kqa,1,Kp,1,Kc, 1), £2=(Kq,2,Kp 2, Kc,2) @and amplitudes
small: ‘ #<1, therefore the ratuﬁ‘a— (or Ac 1, Ac.2. Under Boussinesq approximation:

xy 971

da dc

%) is of the order of%. In this case the deviation of the Ja-

cobian (7) from 1, given by Eq. (16), contains second-orderik1 2|>> i@

~ 2 e 3 P ” d de

(~w*) and third-order ¢ w°) small terms in the suri”. 00
Now we can estimate the nonlinear terms in the right side

of the Eq. (20) and compare them with the linear terms inthe_ﬁrst-order_ vertical dlsp!acement fietllr, 1) (below we
. . . ) 2 omit a subscript 1 for the displacement components) may be
the left side assuming a Boussinesq approximatiof: «1,

P : resented as
which implies that the mean atmospheric density sIowap

~

1
=—. (23)

varies over the vertical length scdle(Lighthill, 1978). If , 1 i, 1—kyr) i t—kor)
w is the characteristic frequency of the internal wave field,* = EezH [Acae™™ +Ac e I+ce. (24)
2 2 2 2 2 2
then|Ly|~w?| 2028 |1y |, and| L | ~o?| St e K 12 ieg
a ¢ wherew;=N(; ~1) /2>0 are wave frequencieg=1, 2,
1.j c.j

hence fol, ¢ «1landA, -la the right side of the Eq. (20) a”dki}:kij*l-k;i,--

2 . . .
takes thevalue“’—z(1+§%)A§. Atthe sametime the leftside =~ Below we consider a two-dimensional casé;, ;=0

12l . . - .
ofhe Eq. (20) s ofthe order a2+ ), for =N and 910 33=0, (07 wiich a firsorder continuiy equaton,
a ‘lo e +%5:=0, placement com

lCN?Z<<1, therefore the ratio of the terms in the right side of ponent
the Eg. (20) to the value of the left sidef<~u<1.

- . c 1 c k .

Let us seek a solution of the nonlinear Eq. (20) as a sex’ = —-e2# [ ”’1AC,1e*’(“’1f*k1’>
ries over small perturbations-{x ) of the displacement field: ka1
z1=2+z7+..., (similarly, for.xl ar?dyl), Whergzi:O(u), +k0,2AC’Zei(w2tk2r)i| Lee. (25)
Z’1’=O(u2) and etc., to obtain a linear equation fdras a ka2
first-order approximation: Using a linear solution (Egs. 24—25) consider now a second-
A7y ., N23° 3z order Eq. (22) with the initial conditiorz” (a, b, ¢,1=0)=0.

912 TNALz - g 912 dc - (21) " The substitution of Egs. (24) and (25) to the right sides of

www.ann-geophys.net/27/4105/2009/ Ann. Geophys., 27, 41542009
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the Egs. (20) and (22) produces the following forcing term r1=7/Aw, whereas for the case of resonant interactions it
of difference frequency; —wo: takes a maximum at=ryon in accordance with Eq. (29). The
1 ' _ ratio of the maximum amplitude under non resonant interac-
@)= frAc 1AL pel/Hirmeditika—kary L ¢ ¢ (26)  tions with| Aw|~w3 to that under resonant interactions is the
4 value of order

where )
11 1/2
f1=i(@F—wh) ke 1k] o+ ke 2k mnon“’,31,2|kc,1kc,2Ac,1Ac,2|/ ! (31)
ke 1k
—ka,lka,z(kc,l—i—kc,z)](kc’lkc’z —i—l) (27)  As long as Eg. (31) is valid the amplitudes of the non-
a,1Ka,2

resonant harmonics are small compared to those of resonant
Similarly, one can write the contribution to the right side harmonics, therefore wave-wave interactions have a selec-
of the Eq. (22) from other forcing terms at frequencies tive character with a nonlinear wave energy exchange taking
w1tw?2, 2w1, 20 andw=0. The forcing term at frequency place mostly between resonant wave modes. However, as a
w1+wycan be obtained by replacing on —wsz, k2 on —k2 nonlinear parametegr increases and approaches some finite
in Egs. (26) and (27). For the second harmoniegaghd  values smaller than 1, the increasing withamplitudes of
2w this term tends to zero, since Eq. (27) becomes zero fothe non-resonant modes become comparable to those of the
ki1=—k, and w1=—w>, This result shows that there is no resonant modes (according to Eq. 31). In this case the wave
self-interaction for each wave under Boussinesq approximaenergy exchange between wave modes due to non-resonant
tion, including the case=0. interactions becomes important as well. Such energy ex-
Let us seek a solution of Eqg. (22) in the following form:  change does not have a selective character, since any wave
may interact with any other wave to generate a non- reso-

= %(Ag(ut)ec/H‘i(“’3"k3’) +c.c), ks=ki—ky, nant harmonic, whose frequency and wave number are not
2 connected via dispersion relation (sinee0). The impor-

w3=N(—23 12 (28a) tance of the non-resonant interactions between internal grav-

k3‘3—|—k62)3 ity waves in shaping of their energy spectrum was pointed out

by Phillips (1967), who also noticed that such interactions
resemble cascade-like strong interactions between turbulent
motions of different scales in stably stratified fluid.

Consider first the case of resonant wave-wave interactions.
Let designate the aspect ratios of the vertical to the horizon-
1 A1 A* ze*"A“”, Aw=w1—ws—ws. (28b) tal wave number components of the interacting wave triad

t  Aiwgks e aszE],:Z—*-j_, and assume tha(?»1 (j=1,2,3). In this case

If resonant conditions are met, iks=k1—ko, w3=w1—wp, ~ We can neglect by the termsO(1/X?) in the dispersion

then the solution of the Eq. (28b) satisfying initial condi- equations for each of the three waves, so that the system of
tion A3(r=0)=0is Ag(l‘)z% f A A% ,t. The amplitude the equations describing resonance conditions takes the form
) c,

where Az(ut) is a slowly varying amplitude over the time
period 2r/w3. Substitutingz” along with Eq. (27) to the
Eq. (22), and neglecting the termsu®, u/(k.3H) and
1/(ksH)?, we obtain the equation fot3(r):

0A3) 1 f1

iw3k§ .
of the harmonic of difference frequency grows linearly with (McComas and Bretherton, 1977):
time o kaa|_|ke2|_|kas3 ’ ka1 ka2 _ ’ kei ke o (32)
A3l = |Ac1Ac2|” — for { < non keal ke2| |kesl kaz kaz — kes kes
non
1 After introducing new variablesx,:%, 5:2; and elim-

(29) ,

= 12’
B1,2w3 ke 1ke 2Ac 1A 2] /

wheremon is the characteristic interaction time between the

inating i—g from the second equation of Eq. (32) we obtain
the relationship betweepandé

_ f1 i i i —
two waves, and8y o= 4iw§k§(kc,1k,f,z>l/2‘ is the interaction J 3 ‘_ 5_1’21 (33)
coefficient. In the opposite case of non-resonant interac- " =
tions between waves, i.Aw=w1—wz—w3#0, the ampli- |t e choose now a particular set of the vertical
tude|As(1)| is wave numbers satisfying the last equation in Eq. (32):
h sin(der) k..1=0.005rad/m, k. »=—0.003 rad/m, k. 3=0.008 rad/m,
|Ag| == | L5 A 1A ,——2 =], (30)  then from Egs. (32-33) obtain: £=55/64, n=5/8,
4iwsk? e Xp|_11 |x3]|_3
2 X—i =3, X—;‘zg. Hence, we can choose the val-

and periodically varies in time with a period % In ues X1=6, X»,=22 X3=8.25 to obtain a set of the hor-
the latter caseAs| reaches a first maximum at a moment izontal wave number components, 1~0.000833ragm,
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kq,2~—0.000136 rad/mk, 3~0.000969 rad/m, and frequen-
cies,w1~N/|X1|=0.0033 rad/sp2~N /| X2|=0.0009 rad/s,
satisfying resonance conditions (32).

A.2=5940m at some reference height=20km, then
from Egs. (27) and (29) the amplitude of the harmonic

Note that a cho-with w3=w1—w»=0.0024rad/s at a moment=2.32x10°s,

sen set of the wave numbers for a resonance triad satequalsA.3=34.2m (in this case the coefficieify »~0.41
isfies a Boussinesq approximation, since for all the threeand the interaction timgon=4.2x10°s).

_1 i

Wave%k - [~1072, whereH~8 km.
]

A second-order field for a horizontal component of the
displacement,”, can be found from a second-order mass-
continuity equation {;=0) for incompressible fluid:

—+—+J"=0,

dc da

, 0z dx" 97 ax’
" 9c da  da dc

Vd . .
— _OAc)]_A:,zec/He_l(wl_wZ)t—H(kl_kZ)r +e.c. (34)

kuvlkcz.z kav2kc2,1 /

where ro=—2k. 1kc.2+ ot 7 x" are given by
Eqg. (24) and (25), respectively, and the harmasfihias the
amplitudeA. 3 given by Eq. (29). From Eq. (34) we obtain

_ kc,3
2k, .3
roAc 147 ,

4(ka,l_ka,2)

Note, that the amplitude of the first term in Eq. (35) grows
linearly with time, whereas second term remains limited in
its absolute value.

The expression (29) for the amplitude. 3 of the differ-
ence frequency harmonic was obtained by a small perturb
tion method, which is valid for the time momentsingn, for
which we can neglect by a reverse effect of the resonant hal
monic on the field of the first-order waves. The reverse effec
may be taken into account by the method of slowly vary-

c

" eﬁAC’Seﬂwstﬂkgr

eﬁe—i(wl—w2)7+i(k1—k2)r +e.c (35)

ing amplitudes (see, for instance, McComas and Brethertonf
1977; Phillips,1967; Craik, 1985), which assumes a slow

time variation of the wave amplitudess. 1(ut), A. 2(ut) and
A 3(ut) over their periods. Using this method one can ob-

tain from Eq. (20) a system of three nonlinear equations for4
the amplitudes of the wave triad, which shows a conservation

of their total wave energy :

2 2 2

|Aca|”+|Ac2|"+]|Ac 3| =const (36)

3.2 Estimates of the amplitudes of nonlinear harmonics
in the stratosphere

Let estimate at some momentr,on the amplitude of the
harmonic (31) for the altitudes 20-25 km of the lower strato-
sphere.
horizontal velocity fluctuationsr are in the range (0.5—
5m/s) (Fritts and Alexander, 2003), so fof=0.02rad/s

r-

Note, that the combinative harmonic with the wave
number ks=ki1+k2 has the corresponding frequency
wa=N |ka,a/kc.4|=0.007rad/s that differs from the sum
w1+w2=0.0042rad/s, so this harmonic is a non-resonant
one. Its amplitude, designated here A4s4, can be esti-
mated from Eq. (30) by replacings, k3 on wa,k4, and by
taking into account thahw=w1+w2—w4. The coefficient
f1 can be obtained from Eq. (21) by changing the signs of
ka2 andk 2. In this case the amplitude 4=27 m at a mo-
mentry=2.5x10°s, and is comparable with the amplitude of
the resonant harmonic.

The measure of nonlinearity of the obtained wave field can
be characterized by parameter

Mo={[(ke1Ac 1)+ (ke 2Ac2)? + (ke 3Ac3)21/2}Y2, (37)

which is the rms value of the \vertical
gradient<(dz1/dc)?>)Y2, therefore Mg is of the same
order of smallness as the parameter|k.1A4.1|<1
introduced in Sect. 2. For a chosen set of wave
numbers and amplitudes of the wave triddp~0.33,
and the rms value of the vertical displacements is
w=[(|Ac1[*+|Ac 2/ +|Ac3[)/21Y2=67m. I the
resonance case the first term in Eq. (35) is on one order
higher in amplitude than the second one, therefore only the

First term will be taken into account in the second-order field

of the horizontal displacements=x"+x"+0 (u%), where

x" andx” are given by Egs. (25) and (35), respectively, and

r\/ia O (13 are designated all the nonlinear harmonics of

third-order and of higher order. The relative contribution
rom these harmonics into the total displacement field
increases with increasing parametés.

Vertical profile and spectrum of the wave field in the
Eulerian frame of variables

4.1 Resonantinteractions

To understand how the obtained Lagrangian wave field is
viewed from the Eulerian frame we perform a transformation
of variablesx=r+S(r, t), which allows one to calculate the
displacement field at some fixed point of space(x, y,z)

at a moment. Let designate this field b§z(x,7), and the

At these altitudes the typical rms values of thecomponents of the vectd(r,) by S, (r,1),Sy(r,t), and

Sq(r,t) instead ofxy, y1 andz;. Since the displace-
ment Sg(x,7) at a pointx is caused by a fluid parcel

the corresponding rms values of the vertical displacementswith a co-ordinater in the unperturbed atmosphere, then

vy=0/N, are between 25m and 250m. If we choose
now for the first-order waves the amplitudés 1=65.34 m,

www.ann-geophys.net/27/4105/2009/

Se(x,t)=S(r,t). The latter relationship allows one to
express a Lagrangian co-ordinate msx—Sg(x,t), and
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3

4000 , , . i . kc, .
SE,x(x0,2,10) = _Zk “|Ac.j|codw;ito
3000 j=1"%J
—kq,j(x0— SE,x(x0,2,70))
2000 . —kc,j(Z —8g,z(x0,2,70)) —¢j]~ (40)
£
*§ 1000} _ where¢1, ¢2, and gz=¢1—¢- are the initial phases of the
5 interacting waves.
S ol . Introducing new non-dimensional variables
&
L]
s SE Z SE
81 1 d=—27=— | X'=—"2, Mj=k v,
3 vy vy vy '
2000+ - Acj M; X0
P=—, i=—~ R=—, ®,=witg—¢;, (41

-3000
and performing the following transform of variables:

4000 I I I I I
-100 -l a0 a0 100 180 200 0= Z/ -7 / / (42)
- ’

Vertical displacement, m

. ) ) ) _ one can rewrite Eqgs. (39-40) in the non-dimensional form:
Fig. 1. One of the vertical profile€(z) (continuous line) of the

Eulerian vertical displacement field of the resonant wave triad cal- 3
cula_ted fc_JrMO:O.33,x0=377O m andp=2318.4s. Also shoyvn are ./ _ ij cog M6 + Qj(x’ —R)+ /] (43)
vertical displacementS, (a=xq, ¢, 1g)=L(c) of the parcels with the =
same Lagrangian horizontal co-ordinatexg and different vertical
co-ordinateg—c, (dashed line)g, is some reference co-ordinate
taken inside a given atmospheric layer. 3

X' =[-)_XjpjcodM;0+ Q;(x' — R)+ @],

j=1

obtain the equation for the Eulerian displacement vector , _ 70 (44)

Se(x,t):

For a chosen horizontal co-ordinate (or R) and a given
Se(x,1)=8x—SEg(x,1),7) (38)  momentso the first equation in Eq. (44) was solved nu-

merically with respect toc’. The solutionx’'=x'(8) was
For a given fieldS(r,)the solution of the Eq. (38) allows one  sypstituted to the Eq. (43) to find'=z'(9), and then
to find the instant vertical profile of the Eulerian displace- z)=;'(9)—6 from Eq. (44). The obtained in parametric
ment vectorS ¢ (x=xo, y=y0,2,0) atamomenio foragiven  form solution of the Eqgs. (43-44) allows one to calculate the
vertical line with the horizontal co-ordinates-=xo, y=yo. vertical profiles of the Eulerian displacement components at

In the case of the resonant wave triad, analyzed in Sect. 3any time momenty. One of the profileS ; (xo,z,70)=E(z)

the Lagrangian displacemenss(r,1)=z'+z"4+0(u%) and  of the field of resonance wave triad taken at a moment
Sa(r,t)=x"+x"4+0u3) are given by Egs. (24), (25), (28) 1,=2318.4s and aty=3770 m is shown in Fig. 1. Along with
and (35). This field will be analyzed in the atmospheric layerthe Eulerian field we plotted in Fig. 1. the vertical profile of
of thickness 2«2H, within which the wave amplitudes the Lagrangian vertical displacememstSa=xo, c,t9)=L(c)
Ac,;,(j=1,2,3,...) are considered as constant values takenof the fluid parcels with the same horizontal co-ordinate
at some reference height of the layer. The substitution a=xg in the unperturbed atmosphere and with the different
of the expressions (24), (25), (28) and (35) in the Eq. (38)vertical co-ordinates—c, (in this caseL(c) is given by the
leads to the following system of equations for the vertical right side of the Eqg. (39), where we s&t , (xo,z,70)=0 and
and horizontal componentSg  (xo, z,f0), Sk x(x0,2,f0), Of z—SEg ;(x0,2,10)=cC).

the Eulerian displacement vectSg (x=xo, y=y0,z,%0) at a Despite a high nonlinearity of the wave fiela/¢=0.33)
momenty: the distortion of the Eulerian profil€(z) relative to the La-
grangian profileL(c) is not significant. This fact shows that
3 under resonance conditions the total wave energy is “kept”
Sk.z(x0.2.10) = )| Ac.j|codw;to within a wave triad regardless of the chosen co-ordinate
j=1 frame. However, the distortion df(z) becomes significant
—ka,j(x0—SE x (x0,2,10)) in the opposite case of non- resonant wave-wave interactions
—ke,j(z—SE 7 (x0,2,10)) —qbl,], (39) which will be considered below.
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4.2 Non-resonant interactions 3000

Consider the case, when the interaction between the two 55|
Lagrangian waves leads to the generation of the harmon-
ics with combinative frequenciass=wi—w2, wa=wi1+wz

and corresponding (related via dispersion equations) wave ™.
numbersks and k4, for which the synchronism conditions
are violated: k1—ko#ks, ki+ko#ks. In this case, a
sum in the Egs. (39-40) should be taken over four terms
(j=1,2,3,4). Beside this we have to keep second term in
the Eqg. (35) for the harmonic of the horizontal displace-
ments withwz=w1—w>, and the same term for the harmonic
with wg=w1+wy, because these terms can be comparable
in amplitudes with the first term in Eq. (35). Thus, in the 3000+
non-resonance case the system of the equations for the Eu
lerian displacements becomes similar to Eqs. (43-44), but 4

1000 -

m

-1000 -

Vertical coordinate

2000

DD 1 1 1 1 1 1 1
s . . L : 200 <150 4100 6D 0 &0 1m0 150 20
)[/\r/]lthEJ:(l[iAZrS:%A, and with the following additional term in Vertical displacement, m
e Eq. :

Besinl M=0 "R+ ® Fig. 2. Vertical profiles of the Eulerian and Lagrangian vertical dis-
5Sinl 5_ +Oslx )/+ 51 placement fieldsL(c) (¢=0) and E(z) (xg=0), in the case of non-
—BgsIN[Mgb + Q6(x” — R) + Pel, resonant interactions between waves calculatedMge=0.44 m,
Bs=10|Ac.1Ac.2| /120y (ka1 Fha.2)l, vy=98m ando=2.5x10%s.

P55 6= P1F P, (45)

where the upper and lower signs correspond to the subing Mg from O to Mp=0.44, because the contribution into

scripts 5 and 6, respectively. this field O (u®), coming from different nonlinear harmon-
For solving this system (similarly to 43—44) the follow- ics, becomes significant and forms a continuous Lagrangian

ing set of the parameters was chose;1=0.005rad/m,  spectral tail due to overlapping of these harmonics. The ad-

kc,2=—0.003 rad/mk, 3=k, 1—k¢ 2=0.008 rad/m, vection in the Eulerian frame causes additional distortion of
kc,4=0.0046 rad/m k. 1+k. 2=0.002 rad/m), the wave field relative to the Lagrangian frame by generat-
ka.1=—8.33x10"*rad/m,k, p=—1.36x10"*rad/m, ing Eulerian spectral tail of higher amplitude than that in the
ka.3=—9.7x10"*rad/m Gk, 1—k, 2=—6.97x10"%rad/m),  Lagrangian frame.

ka.a=kq14ka 2=—9.7x10"*rad/m, w1=3.3x10 3rad/s, Thus, the non-sinusoidal distortion of the Eulerian wave
wr=9x10"*rad/s,w3=2.4x10"3rad/s, field is caused by both the nonlinearity of the wave field in

ws=4.2x10"3rad/s, ®,=3.95rad, $,=0.53rad, the Lagarangian frame (which distorts the initial Lagrangian
®3=0.82rad, ®4=1.57rad, ®5=3.42rad, ®g=4.48rad, field), and the nonlinearity of the transformation from La-
A;1=987m, A »=888m, A, 3=296m, A;4=29.6m. grangian to the Eulerian variables. In the Eulerian frame
The chosen set of the wave parameters is typical for thehese nonlinearities cause the non-resonant interactions be-
stratospheric altitudes (Eckermann, 1999; Fritts and Alexaniween original waves and their numerous harmonics, which
der, 2003). In this caseBs=—5.7, Bg=—4, ro=8.9x107°, are open and readily transfer wave energy from the original
vy=98m, and the parameter of nonlinearityfo=0.44, waves to the high and low vertical wave number harmon-
shows a strong nonlinearity of the wave field. The calculatedics. The non-resonant case as found here significantly dif-
instant profiled.(c) and E(z) are shown in Fig. 2. fers from the case of resonance wave triad considered above,
One can notice a non-sinusoidal “ steepening” of the wavesince the resonance tends to keep energy within a wave triad
crests and troughs in the vertical variations of the Eulerianand prevents its distortion.
field E(z), shown in Fig. 2, and a growth of its local gradi-
ents as compared to those in the Lagrangian figlg. Such 4.3 Vertical wave number spectral tail generated by a
distortion of the wave fieldE (z) relative toL(c) is caused nonlinearity of the wave field
by a nonlinearity of the process of advection of fluid parcels
induced by the wave field (Chunchuzov, 1996; Eckermann,The nonlinear distortion of the Eulerian vertical proffigz)
1999; CO2). This process is accompanied by a growth ofis accompanied by enhancement of the amplitudes of high
the amplitudes of the high vertical wave number harmonicsvertical wave number harmonics of given two Lagrangian
in the Fourier spectrum of the Eulerian fielt{z)relative to  waves in the Fourier spectrum @f(z). These harmonics
those in the Lagrangian frame. At the same time the La-are generated due to numerous non-resonant wave-wave in-
grangian wave field becomes nonlinear itself while increas-teractions, and form a high vertical wave number tail in the
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;. (@ . b)

Spectrum, mzf(md/m 1)
Spectruim, mgz’(rad/m )
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Vertical wave number, rad/in Vertical wave number, radsin

Fig. 3. Evolution of the vertical wave number spectra for the vertical profiés) (continuous line) and.(c) (dotted line) with growing
parameter of nonlinearityfy. (a) Mg=0.05vy=12m. (b) My=0.44,vy,=98 m; the corresponding profiles are shown in Fig. 2. The
straight dashed line corresponds to the observed power law M&ﬁ; B=0.1. The wave numbergx* andm. are indicated by arrows,
wherem x=1/(21/2vy) is the lower characteristic wave number above which the non-resonant interactions form spectral tailjsati
critical vertical wave number, at which wave energy dissipates due to wave-induced instabilities.

power spectral density (PSD) &f(z) defined as (Bendat and solutions do not take into account the existing mechanisms

Piersol, 1967): of wave energy dissipation in the realistic atmosphere (Gos-
F(k,)F % (k;) sard and Hooke, 1975) that limit an infinite growth of the
PSDE(z)) = (46)  local wave field gradients with increasing value . In

/

where F (k;) is a Fourier transform off(z) calculated be-
low by using MATLAB toolbox, and is the length of the

the absence of dissipation a strong nonlinear steepening of
the wave crests in the Eulerian profile(z) for Mp=0.44

o7 L . (Fig. 2) leads to the extremely high values of the vertical gra-
realization ofE(z). While increasing the parameter of non- dients|BSE,Z/az _which can exceed 1 at certain altitudes, as

linearity Mo from Mo=0.05 (Fig. 3a) toMo=0.44 (Fig. 3b) o0 i Fig. 4a. Beside this, the calculated for the second-

the amplitude of the tail in the 'Eulenan spectrum INCreaseSorder displacement field vertical variations of the Jacobian
as well. For small wave amplitudes/o=0.05, there is a

: . i J1=J—1 (see Fig. 4b), have the rms values of about 0.2,
very weak difference between ngranglan an_d Eulerian spec; nd at certain altitudes may reach maximum values of about
tra, although the appearance in the Eulerian spectr_um 99.6. This means that the Lagrangian displacement field con-
the peak corresponding to the second-order harmonic W'tQaining second-order terms-¢12), obeys the approxima-
kc.3=kc.1—k..2=0.008 is already noticeable (see continuous tion (34) of fluid incompressibicl)ity’/,]lzj—1:0 only with

line in Fig. 3a). The amplitudes of the second-order har- he accuracy of the terms of ordé#?. The third-’orderterms
monic and of higher order harmonics in the Lagrangian andt 3 v 32" ox' 92 9 0

Eulerian spectra (shown in Fig. 3b by the dotted and contin{"~Mp) like 5= 57— 32 5¢+--, and higher-order terms con-
uous lines, respectively) gradually increase with increasing'Puté to the deviatiow/ —1 from incompressibility, which
My. However, the most rapid increase of these harmonic

dncreases with increasing value &fy. Therefore, the accu-
takes place in the Eulerian spectrum, whose high-wave numf@cy ©f the incompressible fluid approximation, which was
ber tail approaches afy=0.44 the straight line correspond-

initially assumed in the paper for small enough valuesfgf
ing to the observed power law decﬂyz‘3, B=0.1. While

decreases with an increasei§.

changing the locationg of the profile E(z), the slope of the The high-order terms in the displacement field contain
spectral tail also changes due to horizontal nonhomogeneityhe harmonics with the combinative frequencies; +qw»
of the wave field, but an average power law decay of the tail(p and ¢ are integer numbers) greater than the buoyancy
remains close to thﬁk;s—power law (Chunchuzov, 2008).  frequencyN. As a result the temporal variations of the

It is important to note that our analysis of the internal Eulerian displacement field become also nonsinusoidal and
wave field was based on the approximate solutions of thecontain a nonlinear high-frequency tait¢—2) in their fre-
motion equations for nonviscous fluid (Egs. 1-5). Thesequency spectrum (Chunchuzov et al., 2006). Thus, a highly
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I. P. Chunchuzov: Nonlinear shaping mechanism for gravity wave spectrum in the atmosphere 4115

(3] ib)

2000+ 4 2000 .

1000} { oo T
£ B
) o
- 45
i
= 0 = 0 :
= = e
[ - 1
T ¢
9 ooot ©-1000 F
g —_—] 8 “““““
£ B
S 2000 ﬁ2000

3000} 1 ool

2 15 4 D& i 0.5 1 08 0B 04 D2 i 02 04 OB

d(s, )iz J 1

Fig. 4. Vertical profiles of the vertical gradient of the Eulerian displacemeifg, . /dz, and of the relative volume deformations of fluid
parcelsJ1=J -1, for the case shown in Fig. 2a) dSg . /dz vs. vertical Eulerian co-ordinate-c,. Vertical straight line corresponds to the
valuedSg . /dz=—1. (b) J1=J—1 vs. vertical Lagrangian co-ordinate-c;.

nonlinear displacement field may vary in time so fast that
during short characteristic time scales27/N the sound 2000 .
travels on the distancagt that are less than the vertical
length scales2/k, of the field’s spatial variations. For such
short time intervals the pressure of adiabatically displaced 1000 |
fluid parcel is unable of adjusting to the hydrostatic atmo-
spheric pressure, since this parcel “meets” a background,
which is already disturbed by fluid compressibility. There-
fore, there is no adiabatic constrain imposed by KS06 on the
volume variations/ —1, because this constrain was based on
the assumption about the existence of the parcel’s pressure
adjustment to the hydrostatic background atmospheric pres-
sure. Such assumption is valid for only slow displacements
with small amplitudes, but not for nonlinear displacements
with high amplitudes and fast temporal variations.

-1000 |

-2000

Vertical co-ovdinate, m

To prevent the extremely large deformations of fluid par- -3000 ¢
cel’'s volumeJi=J—1, arising in the ideal fluid under strong
nonlinearity of the wave field, we have to limit the spatial s : :
gradients of the obtained Eulerian and Lagrangian displace- =200 -0 O 1ad
ment fields by taking into account the dissipation of wave vertical displacement, m
energy. Otherwise, the further increase of the parameter
from 0.44 to 0.52 leads to the local absolute values/of Fig. 5. The multivalues (indicated by arrows) arising in the vertical
exceeding 1 at certain altitudes, what means the nonphysProfile £(z)(xo=0) for Mo=0.52,vy =118 m.
cal 100% relative changes of the fluid parcel’s volume and
the invalidity of the Lagrangian to Eulerian variable transfor-
mation. In the latter case the vertical profit€z) becomes their kinematic advection models for a non-dissipative wave
discontinuous and multivalued in the thin local regions of field comprised of a superposition of seven or more linear La-
space (shown in Fig. 5a by arrows) due to unlimited nonlin-grangian gravity waves. These models extended earlier Eck-
ear distortion of the wave field. Such multivalued Eulerian ermann’s model (Eckermann, 1999) by taking into account
profiles were earlier found by KS06 and Klaassen (2009) incompressible gravity waves.

200
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It was found in KS06 that for the typical wave amplitudes numberskz>v‘71. The characteristic vertical wave number
in the middle atmosphere required for producing a broadm, x=1/(21/2y,,)=0.007 rad/m above which the non-resonant
Eulerian tail with a slope of-3, the Lagrangian to Eule- interactions form spectral tail is indicated in Fig. 3b (the cor-
rian transformations are overwhelmingly singular, with mul- responding vertical scales =27 /m x~900 m). These inter-
tiple parcels frequently occupying the same physical pointsactions transfer wave energy from the wave numbers of the
in space. These singularities are induced by stretching demost energy contained waves, excited by wave sources, to-
formation fields which form during the superposition of si- ward higher vertical wave numbeks>mx, although some
nusoidal waves with nonparallel wave vectors. Such deforenergy transfers to the lower wave numbers as well (as seen
mation fields were assumed in KO9 to be unstable with re-in Fig. 3b). From the other side, at high vertical wave num-
spect to three-dimensional vortices, therefore “...the satupersk, approaching a critical wave numbey.>msx, the dis-
rated middle atmosphere wave fields are frequently accomsipation of the wave energy due to wave breaking processes
panied by small-scale turbulent eddies”. Thus, the instabil-becomes important. These processes generate the turbulent
ity proposed in K09 leads to the wave breaking processegddies of different vertical scalest 2k, </ within the thin
which are seen (Fig. 5a) to occur in the thin (as comparedayers co-existing with the stably stratified layers of larger
to the vertical wave lengths of the main Lagrangian waves)vertical scales,
atmospheric layers with the high negative vertical gradients The arising turbulent diffusion smoothes high gradients of
of the vertical displacement8,Sg ;/dz<—1. These layers the wave field (Gossard and Hooke, 1975; Weinstock, 1985;
have high positive vertical potential temperature gradientswhiteway et al., 1995), thereby preventing extremely large
00/3z=000/3z(1-0SE ;/dz), wherefy is unperturbed po- volume deformations of the fluid parcels. At the same time
tential temperature. the arising turbulent layers become confined by the thin sta-

Beside the thin layers with singularities there are an-ble layers with absolute temperature inversions (Whiteway et
other layers, where the vertical gradients of the verticalal., 1995). The resemblance of the stable layers of high posi-
displacements are positive and reach their critical valuestive potential temperature gradients with the narrow “sheets”
dSE,;/dz~1, at which wave induced convective instability observed in high resolution temperature profiles (Dalaudier,
switches on and generates turbulence (Gossard and Hookg994) was first noted by Eckermann (1999).

1975). In these layers the wave-perturbed potential tempera-

ture gradientdd/dz becomes close to zero, but each well-

mixed turbulent layer is confined between two thin layers> Eulerian vertical wave number spectrum of ducted
with high positive potential temperature gradients or absolute ~ gravity wave mode.

temperature inversions (Whiteway et al., 1995). The convec- , ) ) ,

tive instability, however, arises for higher valuesi than 5.1 Nonlinear distortion of ducted wave field

the conditiond Sg ,/dz<—1. . .
Thus, wave breaking processes of different types g(_}ner,_A\Ithough, the most part of the gravity wave spectrum in the

ate turbulent eddies of different scales confined within theatmosphere 'S compo_sed of freely p_rqpagatmg waves (unlike
. the ocean), there exist stably stratified layers in the atmo-
local regions of space, whel@Sg ./dz| reaches the val-

ues of order 1. These regions are the main sinks of waveS phere where the trapped waves constitute a high-frequency

energy, whose dissipation stabilizes the nonlinear growth oPart of the spectrum with periods usually less than 10-15 min

the wave field gradients by some finite values. In CO2 the(s.ee’ for instance, @hme e.t al, 2004)'. To ShOW. the gener-
. : . ality of the proposed shaping mechanism we will find below
vertical length scald.=27/m. of these regions was esti-

; the Eulerian vertical spectrum of the displacement field in-
mated for a large numben$-1) of random waves by lim- duced by only one standing gravity mode in the atmospheric
iting the rms values of the gradiet§ g . /dz by 1, wheren, y only 99 y P

. : : layer of 21 thickness. Within this layer we take the buoy-
is the upper vertical wave number of the spectral tail. For the _ .
; : ancy frequencyW=const for—h<c<h and Ny<N outside
stratosphere the estimated valueowas in the range (10- this layer. For ducted wave the Lagrangian displacements
100) m, which was close to the characteristic scale found in yer. grang P

L . may be written as
the spectra of star scintillations measured from space stations y

(Gurvich and Chunchuzov, 2003, 2005). This scale separates, (r, 1) = Asin(mc)coSwt + kqaa +¢) + O (1?), (47)
the two regions of star scintillation spectrum associated with
the anisotropic and isotropic temperature fluctuations in thesS, (r,7) = X AcoSmc) sin(wt + kqa +¢) + O (1?), (48)

stratosphere. Taking~50—100 m, we have limited the cal-

culated spectrum in Fig. 3b by the corresponding critical ver-where 2r /m is the vertical period of standing wave, is

tical wave numben,.. the modal amplitudep=N |k, |/ (k2+m?)¥/? and¢ are the
There are two competitive processes that are shaping theodal frequency and phase, respectivélym/ k., and via

Eulerian spectral tail. From one side, a strong nonlinear-O (u?) are denoted the second-, third- and higher-order fields

ity of the wave field leads to the non-resonant wave-wavegenerated in a given Lagrangian field of ducted mode. For

interactions that become significant for the vertical waveducted wave (Egs. 47-48) the system of the Eqs. (38) for the
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Eulerian displacement fiellg=(Sg x, Sk ;) taken atv=xg 3000
and at a moment becomes ]
=
7' =sinM(Z —z')]coswio+ QRo— Ox' +¢) (49) § oo}
E
x'=XcodM(Z —7)]sin(wtg+ QRo— Ox'+¢) (50) Ioor
S -1000
where =
& -2000
Sk SE M b4 X0
/__ »Z /__ s X _ _ _ —_
7= X ——,M—mA,Q—X,Z— RO—A (51) o0

’ B ! ! !
A -150 -100 -0 o 50 100 1580

A A

The Egs. (49-50) may be solved similarly to those derived : : T :

in Sect. 3 for the wave triad (Egs. 43-44). For the time ™[ , “n 1
momentsg and horizontal co-ordinate®y satisfying a con- ol elxtr~

dition: wtg+k, Ro+¢=27n,n=0,£1,£2,..., the horizontal
displacement component=0, thereforexp=a. In this par- sool
ticular case Eq. (49) takes a simple form

. s00 F
7 =sinM(Z -2, (52)
which is similar to the solution of the equation describing “

acoustic wave of finite amplitude (Rudenko and Soluyan,
1977). The solution of Eq. (52) may be written in the form

300F

Vertical co-ordinate, m

Z =7+ M tarcsinz)) (53)

It is seen from Eq. (53) that for small relative amplitudes

of gravity mode § «1) the vertical profilez’=z'(Z, 9, Ro) o ) . .
of the Eulerian vertical displacements is almost of the same " "% G aidiiscement m
sinusoidal form as that for the Lagrangian vertical dis-

placements with the horizontal co-ordinate=xo (where Fig. 6. Vertical profiles of the vertical displacement field of ducted
S »=S,=0). While increasingM up to 0.9 the Eulerian gravity mode in Lagrangian (dotted line) and Eulerian (continu-
profile Sg . (z,t9)=Az’ (shown by continuous line in Fig. 6a) ©Us line) frames/=0.9; (a) distortion of the profileSg ,(z,10);

is distorted due to advective nonlinearity so that the points orf?) ragment ofS. - (z.1o) illustrating the distortion of the profile
the sinusoidal profiles, (c, 1) (dotted line in Fig.6a) of the due to dls.placemen&.(c,.zo) of the §elected four equidistant fluid
Lagrangian standing wave (Eq. 52) are differently displaced'oameIS with the Lagrangian co-ordinatgscz, c, ca.

with respect to the nodes of the standing wave. Such dis-

placements grow with the local absolute valuesgt, 7o),
and this leads to the non sinusoidal “steepening” of the Eule
rian profileSg ; (z, o) relative to the profiles, (c, ro).

One period of the standing wave (Eq. 52) is shown in The vertical wave number spectra for the displacement fields
Fig. 6b. This fragment illustrates the vertical displace- Se.z(z,x0,%0) at xo=0 and ¢=n/2 are shown in Fig. 7
mentsS,(c, 7o) of the selected four equidistant fluid parcels for different time momentso. These spectra are calcu-
with Lagrangian co-ordinatess,cs,c3,ca. The parcels lated for M=0.9, for which the parameter of nonlinearity
are instantly displaced to the points with the vertical co- Mo=M/2=0.45. One can find well-pronounced spectral
ordinates x1,x2,x3,xa SO that x;=c;+S.(ci,t0),i=1,..,4, peaks corresponding to the second-, third- and higher-order
andSg . (z=x;,10)=S.(ci,10). Such displacements condense harmonics of the main mode with=0.0075 rad/m. Despite
the positionsry, x3,x4 of the parcels 2, 3, 4 as compared & “brush-like” form of the obtained spectra their power law
to their undisturbed positionsy, c3,ca, and, at the same decays are close to the obsenydd > -form, and such agree-
time, increase the distances between parcels 1 and 2. TH&ent supports our assumption about a nonlinear origin of the
non sinusoidal distortion of the Eulerian profig . (z,70) is ~ observed spectral tail.
accompanied by an increase of the local vertical gradients A further growth of M up to 1 (or My up to 0.5)
dSk.;/9z, and by generating of the high vertical wave num- leads to the multivalues in the profil&g ;(z,xo,%)
ber harmonics of the main wave (Egs. 47-48) in the Fouriemear the points Z,=n+2rp, (p-integer), x'=0 (or
spectrum ofSg . (z,10). The overlapping spectral picks cor- Sg .=0), and z’=0(or Sg,=0). At these stagnation
responding to the different harmonics form a nonlinear tail in points the gradient of the displacement field (Eq. 52)
the Fourier spectrum. 97/ /0 Z=McodM (Z—z)[{1+McodM(Z—7)]} 1> -0

5.2 Vertical wave number spectrum of ducted wave field
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Fig. 7. Vertical wave number spectra of the vertical displacemetts (z,xg,7) calculated forM=0.45 (M=0.9), m=0.0075 rad/m,
A=120m,X=m/k,=15,x0=0 and for different values abrg indicated in the upper right corner.

asM—1. Also, the relative deformations of a fluid volume, is the exact solution of the Lagrangian wave motion equa-
J—1=M?[—coZ(mc)coF(wt+ksa+d)+Sirt(mc)sirf tions for ideal fluid (Zarembo and Krasilnikov, 1965), which
(wt+kgza+¢)], reach physically impossible values of about describes a nonlinear distortion of initially sinusoidal wave
—1. Itwas assumed by K09 that in real fluids the appearancerofile with increasing distance from a plane acoustic source.
of discontinuities in the wave field profile and of extremely The points on the acoustic wave profile propagate with the
large deformations of a fluid parcel volume (for whi¢k-0) different local speeds proportional to the fluid parcel veloc-
is prevented by wave-induced instabilities arising in theities in the acoustic wave. This causes a steepening of the
vicinity of stagnation points. The instabilities lead to the wave form with increasing distance from a source so that
development of three-dimensional eddies, which in turn canwave profile in the nonviscous fluid ultimately becomes dis-
transfer their energy to the turbulent eddies of smaller scalesontinuous and multivalued near wave front. The “curing”
up to the internal scale of turbulence at which the turbulentof the profile from multivalues can be achieved by taking
energy dissipates due to molecular viscosity and thermainto account a molecular viscosity and thermal conductivity.
conductivity. At large Reynolds number, Bel, the competition between

In the realistic atmosphere as known the turbulence geneithe nonlinear distortion of the wave profile and dissipative
ated by wave breaking processes smoothes high gradients §fMoothing of high gradients at the wave front establishes N-
the wave field due to turbulent viscosity (Gossard and Hooke!lkeé wave form at some distance from a source. It is im-
1975), thereby preventing the arising of discontinuities andPortant to note that dissipation takes place mostly within a
of extremely large fluid parcel deformations. However, suchthin wave front with a thickness 1/Re, whereas the rest part
Smoothing as mentioned above occurs on|y in the local re_of the N-wave remains distorted due to nonlinearity of the
gions of the wave field which have relatively small vertical @coustic wave field. For highly nonlinear gravity waves con-
sizesl.~(10-100) m, whereas wave field vertical variations Sidered here a smoothing of the large wave field gradients in
of larger scales].<2m/k.<2m/mx, are caused by various the middle atmosphere is caused mostly by turbulent viscos-
nonlinear harmonics generated due to non resonant wavely-
wave interactions. These interactions lead to the cascade-like
wave energy transfer over wave numbers of the spectral taib.3 Analytic solution for a periodic ducted wave field
towards high vertical wave numbeks~m., at which wave
energy transfers to the energy of turbulent eddies. Consider now a limiting case, when the thicknesso? the

The role of nonlinearity and dissipation in shaping of the atmospheric layer tends formally to infinity. Fepo<z<oo
vertical profile of nonlinear gravity wave field has certain a vertical displacement field'=F(Z) obeying Eq. (52) is
similarity with that in shaping of so-called N-wave in the a periodic process with an2m period. In this case we
nonlinear acoustics (Rudenko and Soluyan, 1977). The lattecan find a solution of the Eq. (52) and its discrete power
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Fig. 8. Evolution of the discrete power spectrun,f,, of the periodic vertical displacements (given by Eq. 52) with increasing normalized
amplitude,M, of ducted gravity mode. Spectral intensiti€sare calculated for the discrete vertical wave numbe#s:m, m=0.0075 rad/m,
n=0,1,2, ..., and forM=(0.7-0.9).

spectrumS(k;) in analytic forms (Appendix A). Indeed, m.=mn., at which the variance of the displacement gradi-
a solution of the Eq. (52) may be presented as a Fouriegnt, <(9SE. 7(2)/8 )2 =y" m 2n2¢, =Z 2])12(nM),

series: Sg . (z)=Az/=A Z b, sinmmz, with the coefficients  reaches a value of about 1. The critical vertlcal wave num-
n=1 bersm. = mn,. above which wave field breaks into turbu-

by (M)y==2CDL M) for =1 2. .., (given by Egs. Al and lence are indicated by vertical arrows in Fig. 9. The corre-
AB). Using a correlation function of the periodic displace- sponding minimal vertical scalesg2m,, are of about 34 m
ment fieldSg . (z) (formula A9) and the corresponding dis- for M=0.87, and 93 m foM=0.9. It is of importance that
crete power spectrum defined by Eq. (A10) one obtains théhe analytically obtained discrete spectrum shows the same
following expression for one-sided power vertical wave num- evolution of its tail with increasing parametg&f as numer-

ber spectrun® (k,): ically estimated continuous spectral tail of ducted gravity

© 9 mode in the layer of finite thicknessh <z <h.
Sthe) =), ~ en®S (ke —nm), The 2-D case considered above demonstrates the simplest

2A%2J2(nM)  2J%(nM) examples with only two propagating waves and one ducted

€n = (nM)2 - (nm)2 wave, when the nonlinear mechanism works. The applicabil-
n=123.. (54) ity of the 3-D case in the real atmosphere is shown below for
an ensemble of gravity waves with arbitrary amplitudes and

It is important to note that the intensitieg of the spec-
trum (Eq. 54) at discrete vertical wave numbéts=nm
depend only on the non-dimensional amplitudeemA (or
Mo) and the harmonic’s number. Forn=0 the spectrum 6 Eulerian spectrum of a random ensemble of internal

has a zero intensity, since the mean (over period) value gravity waves in the atmosphere

<SE,;(z)>=0. For growing values o/ a spectral inten-

sity ¢2 as a function ofc,=nm is shown in Fig. 8. While 6.1 Relationship between Eulerian spectra and La-
increasingM from 0.7 to 0.9 the discrete intensities of the grangian correlation functions of the random wave-
spectral tail withn>1 increase up to the values, whose induced displacements

power law decay with increasing becomes close ta—3

(a straight line 0.4/4213) in Fig. 8) within some range of For the case of high number of waves {>>1) with ran-

n. However, at highm they show a more rapid decrease domly independent amplitudes and phases, previously an-
with increasingn than n=3. The vertical wave number alyzed by AJ89, Chunchuzov (1996), Chunchuzov (2001),
range of the spectral tail is limited by critical wave number HO1 and CO2, a more appropriate method for finding an

phases.
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Fig. 9. Vertical wave number spectrum of a random internal wave field, given by Eqgs. (62—63), and its anghlitape as a function of the
parameterig=M?2/8 characterizing the degree of nonlinearity of the wave fiéhd.Model spectruns g (k) calculated for two altitudes,
which are 15 km apart.

equilibrium internal wave spectrum is the statistical approachwhere G (R, k)= {C33(R)+[ZD3, (R)k; 12} for the case
based on the transformation (6) from Lagrangian to Eulerian
variables: x=r+S(r.t), Sg.;(x.0)=S;(r.0).(j=12.3), of incompressible fluid {= 1) D;i(R)=C;; (0)—C;;(R),

which can be also derived through the delta functior) as ~ @nd Cij(R)=<S;(".10)S;(r",n)> are the spatial cor-

follows: Sg_j(x.6)=[d3 JS;(r.0)8(x—y), y=r+S(r.1) relation functions for different displacement compo-
) 9 b 1 9 1 . . . _ i Vi

r=(a,b,c),x=(x,y,z), andJ is the determinant of the Ja- NeNts with i,j=1,2,3, R=r'~r".  In general case

cobian of transformation defined by Eq. (7). Using a Fourier® /#1 the linear, quadratic and cubic (over the dis-

transform8(x—y)=(2n)*3fd3kexmk(x—y)] one obtains placement gradients) terms in Eq. (7) describe the

the relationship between Lagrangian and Eulerian verticafleformations of a fluid parcel due to its compress-
displacements (AJ89, C96, CO2, HO1): ibility. They lead to the additional terms 6, (R, k)
' ' ’ like those produced by the cubic term$ZD3J (R)kj)?

Sg.(x,1) = (21)73 (55) [(Zacny/aR kn)? (Z dCam/d Rokm)? (Zacﬁp/aRﬁk,,) 1.
Bop

[d3V/d3kJSc(r, nexplik(x—r—S(r,1))] At high wave number values only smaII scale variations of
the displacement fiel§ (R, r)significantly contribute to the
ectrum (Eg. 56). If at small scal&s a structure function

. . S
Based on the assumption about the random displaceme D;;(R) is of quadratic form:

field S(r,t) as being a statistically stationary, homogeneous
and Gaussian field the transformation (55) allows one toD;; (R)’\"chjmanan (57)
obtain a relationship between the 3-D Eulerian wave num- mon

ber spectruns ¢ (k) and the correlation functions of the La- Cijmn =< (38 /0rn) (S, /9rn) >=—[3%Ci; /3 Rnd Ryl r=0

grangian displacement field (CO2): 5
then at highk the 3-D spectrum (Eq. 56) haska> power
law decay, and the corresponding vertical wave number spec-

SE(k)=///dsRGS(R,k)exq—ZDij(R)kikj] (56)  frum takes a universal- 3-form at highk,. This general re-
i sult was obtained in CO2 for any Lagrangian displacement
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field S(R,¢) having a quadratic structure function (57). Such  After integrating Eq. (59) overs2k  dk; from O tooco we
structure of the fieldS(R,¢) is typical for both linear and obtain a 1-D vertical wave number spectrum of the vertical
nonlinear gravity waves. However, for estimating the coeffi- displacement$ig (k;):

cientsC;jm, in Eq. (57) the fieldS(R, 1) was chosen in CO2

as a superposition of weakly interacting gravity wave modes Sk (k;) = Bk, mx <k <mp, (61)
6.2 3-D and 1-D spatial spectra of the wave-induced where g is given by Eq. (60),m =ﬁ=% is the
displacements characteristic vertical wave number, above which the non-

resonant wave-wave interactions become important and form
The nonlinearity of the Lagrangian motion equations (1-5) 5 yniversal spectral tail (Eq. 61¥is the rms value of the
causes the interactions between gravity waves so that SOMeagrangian velocity fluctuations, ame.=m *exp(%) is the
equilibrium wave energy distribution among Lagrangian cyitical vertical wave number, at which wave energy dissi-
wave modes forms due to the energetic balance between tr}gates due to wave instabilities.
nonllinear energy tranlsfer from the characteristic horizontal ag seen from Eq. (60) the amplituge of the spectral
(ko) and vertical f1,”) scales of the source spectrum t0- 14| (Eq. 61) increases rapidly with increasiag (or M),
ward smaller scales, and the wave energy dissipation at Smay;t starting fromug~0.01 such increase significantly slows
vertical length scales. It was shown in AJ89, HO1, and CO24gwn (Fig. 9a) so that reaches a broad maximum of about
that the form of the Lagrangian wave energy distripution 0.22 atap~0.012 (M~0.315). Therefore, a further increase
E(k1,m) between modes does not affect the asymptotic formys 37 goes not change the amplitude of the tail. Moreover, the
of the 3-D Eulerian spectral tail at high vertical wave num- qyq\th of M is limited itself by the wave-induced instabili-
bers, thereford (k. ,m) was chosen by CO2 in the form:  ties that prevent the parametef to reach the valug/~0.5
E(ky,m)=C|m|k,exp(—[m?/(2m3)+ k2 / (2, for w.h_ich <(J—1)2>:1_. In the rjqnviscous fluid t.he Iatte_r
22 12, 2,3 condition leads to the discontinuities in the wave field profile
C = poN“vy /1(2m) ™ “mgko] (58)  and the divergence of the interaction potential energy of the
For 21/2|kz|VV>>1: (vy is the rms value of the vertical dis- internal wave field as shown in AJ89 and CO2 (p. 1771).
placement field)z, and for the low horizontal wave numbers Note that the amplitude of the spectral tgilreaches a
x%k3 maximum of about 0.2 and becomes saturated for the val-
k., such 'that Kz <1, the 3-D spectrum (Eq. 56) takes the ues M=0.3-0.4, for which the variance of the Jacobian,
asymptotic form: <(J—1)2>, being the value of orded* (CO2, p. 1771),
~ B 5 ki x2 i remains less than 1. In the local regions of space, where a
SE(kLkz)=$|kz| eXp{—W}[lJrO( 12 )1 (59)  highly nonlinear wave field breaks into turbulence, the tur-
0 0% ‘ bulence viscosity is expected to smooth extremely high gra-
1/2~-13 —5/2 1 dients of the wave field. Such smoothing also decreases the
p=(2m)"?2" Fag / exp{—3—2ao} (60) value of <(J—1)2> as compared to that in the nonviscous
fluid. Thus, the obtained;e’ spectral tail is saturated as a
result of a combined effect of strong nonlinearity of the wave
field within wave number range (Eq. 61) and dissipation of
fthe wave energy at high values bf near the critical wave
numberk,~m.. The same amplitude dependence with grow-
ing Mo we obtained earlier for the spectrum of a few discrete
) . u waves (shown in Fig. 5). Hence, a process of nonlinear satu-
the parameters of nonlinearityy=movy and x: ao="g,  ration of the amplitude of spectral tail takes place for both a
eo~ % (the parameteMwas introduced in CO2 and equals fey discrete waves and for a high number of random waves
Mop/2%?). They characterize the degree of nonlinearity andwith a broadband wave number spectrum.
anisotropy of the wave field, respectively. At low wave numbers the 3-D spectrusiy (k| ,k.) Sig-

The obtained 3-D spectrum (Egs. 59-60) shows the extificantly depends on the power spectrum of the random in-
istence of highly anisotropic spatial inhomoigeneities in theternal wave sources, and is weakly affected by the nonlinear
displacement and temperature fields, whose anisotropy deeffects. Therefore, for (vaf+kzv‘2,)<<1 the forms of the
pends on the value afp<«1. This spectrum was used by 3-D Lagrangian and Eulerian displacement spectra are only
Gurvich and Chunchuzov (2003, 2005) for explaining the slightly differ from each other (see AJ89 and CO2) . In this
spectra of stellar scintillations observed from space, and byase the 3-D spectrusSi (k. ,k,) can be chosen in the form
Ostashev et al. (2005) for modelling of a scattering of thegiven by Eq. (58), wher€ is some constant. F(klzz<<m>|<2
acoustic waves from anisotropic wind speed and temperaturthe 1-D vertical wave number spectrum of the vertical dis-
inhomogeneities caused by internal wave field in the atmo-placements$ g (k;), can be obtained by integrating Eq. (58)
sphere. over 2tk dk, from 0 toooc.

where y=mg/ko~v1/vy, v1 is the rms value of the
horizontal displacement componentg=—C3333/16 and
eo=—C3311/8 are the coefficients proportional to the mean
square values of the vertical and horizontal gradients o
the vertical displacement fielSl.(r,7), respectively. Using
Eqg. (58) the quantitiesp andeg may be expressed thr(gugh
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The low wave number part of the spectrdag (k) is con- parcels induced by the wave field itself. The different advec-
nected at the intermediate wave numbgermx* with a high  tion of different fluid parcels as shown leads to the “steep-
vertical wave number tail (Eg. 61) by some transitional por- ening”of the wave crests and troughs when transferring from
tion of the spectrum, whose exact shape is unknown to usLagrangian to the Eulerian frame of variables. Such non si-
To find an approximate shape of this spectral portion wenusoidal distortion of the wave field vertical profile is accom-
take into account the continuity of the spectrunkatms. panied by generating of a high vertical wave number spectral
Equating atk,=mx* the low-wave number part of the spec- tail in its Fourier spectrum. The 3-D form for this tail was
trum S1£ (k;) and its high-wave number tail we can find the used in the paper to obtain a new form (given by Egs. 62—
63) for the 1-D vertical wave number spectrum in the broad
4 range of wave numbers.
we obtain the following approximate form for the spectrum  The amplitude of the spectral tail increases with the pa-

me
constaniC. Taking also into account thaft S1£ (kz)dkz%v‘%

S1e(k;): rameter of nonlinearityMp up to some broad maximum or
saturation for which the 1-D spectral tail takes a form close
S1g (k;) = Bk,m x4 exp[—(kf — m*z)/(ZmS)], to ﬂk;3 regardless of whether wave sources excite in the La-
0 <k, <mx, (62) grangian frame only two discrete internal waves, one ducted
wave or a random ensemble of waves with a broadband wave
S1g (k) :ﬂkz_s, mx <k, <me, (63) number spectrum. This was also confirmed by an analytic

solution found for a discrete vertical wave number spectrum
where the ratian * /mo depends o. For M=0.34 the spec-  of the periodic (over) standing wave of finite amplitude. A
tral tail is under saturation condition, for whigh=0.22 and  further increase o#g, and of the spatial gradients in the Eu-
mx /mo~2. For this case the spectrum (Eqg. 62—-63) is shownlerian displacement wave field, is limited by their threshold
in Fig. 9b. for the two rms vertical displacements=244m  values, at which the wave breaking processes generate turbu-
andvy =623 m, corresponding to the two different altitudes lent eddies in certain local regions of space.
15km apart. The increase of; with altitude due to de- Thus, on reaching/y certain values (about 0.3-0.4) there
crease of the mean atmospheric density leads to the decreasgists some vertical wave number range within which the
of the wave numbetig of the spectral maximum along with wave energy transfer toward high vertical wave numbers is
the characteristic wave numbensc andm,.. Such increase, balanced by a sink of the wave energy due to wave breaking
however, does not change the amplitude of the tail (Eq. 63)processes at some critical wave number. Within this range a
whose characteristic (outer) vertical scale/#i* increases  vertical wave number spectrum of the Eulerian vertical dis-
from 2167 m to 5712 m along with an increase of the waveplacements takes a univerﬁlf—form with the theoretical
breaking scale2/m. from 23 m to about 59 m. Itis neces- valuepg=0.22 that lies within its observed range (0.1-0.3).
sary to note that a generation of thg53—tail in the Eulerian
frame of variables is not a purely kinematic effect associated )
with a nonlinear transformation from Lagrangian to the Eule-APPendix A
rian frame of variables: the advective nonlinearity generates . o
a saturated tail for only those values/df, for which a non-  DiSCrete spectrum of periodic displacements
linearity of the Lagrangian wave field becomes important a

well SThe function in the right side of the Eq. (52) may be pre-

sented as a Fourier series
o0 .
x'=Y"" b,SimMZ (A1)

7 Conclusions with the coefficients

In this paper a nonlinear shaping mechanism was studied for T
the vertical wave number spectrum of the field composed ofn (M) = Z/H/sin(MZ —Mx")sinnMZ)d(MZ)  (A2)
two propagating gravity waves or one ducted gravity wave. 0

This mechanism is similar to that previously proposed in In Eq. (A2) we change variables

CO2 for an ensemble of large number of waves with ran-

domly independent amplitudes and phases. In both CO2MZ —Mx'=n, (A3)
and present paper we took into account a strong nonlinearM Z = n+ M sinn

ity of the gravity wave field for the wave amplitudes and ;.4 carry out integration by parts

wave numbers typical for the real atmosphere. This was done

by solving the nonlinear fluid motion equations in the La- by(M) = 2/ fsinnsin[n(n+Msinn)]d(n+Msinn)
grangian frame and by applying a variable transformation to Ty

the Eulerian co-ordinates. Such an exact transformation al-
lowed us to take strictly into account the advection of fluid

™ (A4)
= 2/(nn)f0097605[n(n + M siny)]dn
0
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L1 (12) + Jy-1(n2) =27/ 1 Ty (n2)
the Fourier coefficients given by Eq. (A4) can be presentedReferences
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